Search results for: abnormal tissues
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1231

Search results for: abnormal tissues

391 Combination Method Cold Plasma and Liquid Threads

Authors: Nino Tsamalaidze

Abstract:

Cold plasma is an ionized neutral gas with a temperature of 30-40 degrees, but the impact of HP includes not only gas, but also active molecules, charged particles, heat and UV radiation of low power The main goal of the technology we describe is to launch the natural function of skin regeneration and improve the metabolism inside, which leads to a huge effect of rejuvenation. In particular: eliminate fine mimic wrinkles; get rid of wrinkles around the mouth (purse-string wrinkles); reduce the overhang of the upper eyelid; eliminate bags under the eyes; provide a lifting effect on the oval of the face; reduce stretch marks; shrink pores; even out the skin, reduce the appearance of acne, scars; remove pigmentation. A clear indication of the major findings of the study is based on the current patients practice. The method is to use combination of cold plasma and liquid threats. The advantage of cold plasma is undoubtedly its efficiency, the result of its implementation can be compared with the result of a surgical facelift, despite the fact that the procedure is non-invasive and the risks are minimized. Another advantage is that the technique can be applied on the most sensitive skin of the face - these are the eyelids and the space around the eyes. Cold plasma is one of the few techniques that eliminates bags under the eyes and overhanging eyelids, while not violating the integrity of the tissues. In addition to rejuvenation and lifting effect, among the benefits of cold plasma is also getting rid of scars, kuperoze, stretch marks and other skin defects, plasma allows to get rid of acne, seborrhea, skin fungus and even heals ulcers. The cold plasma method makes it possible to achieve a result similar to blepharoplasty. Carried out on the skin of the eyelids, the procedure allows non-surgical correction of the eyelid line in 3-4 sessions. One of the undoubted advantages of this method is a short rehabilitation and rapid healing of the skin.

Keywords: wrinkles, telangiectasia, pigmentation, pore closing

Procedia PDF Downloads 59
390 Evaluation of the Cytotoxicity and Genotoxicity of Chemical Material in Filters PM2.5 of the Monitoring Stations of the Network of Air Quality in the Valle De Aburrá, Colombia

Authors: Alejandra Betancur Sánchez, Carmen Elena Zapata Sánchez, Juan Bautista López Ortiz

Abstract:

Adverse effects and increased air pollution has raised concerns about regulatory policies and has fostered the development of new air quality standards; this is due to the complexity of the composition and the poorly understood reactions in the atmospheric environment. Toxic compounds act as environmental agents having various effects, from irritation to death of cells and tissues. A toxic agent is defined an adverse response in a biological system. There is a particular class that produces some kind of alteration in the genetic material or associated components, so they are recognized as genotoxic agents. Within cells, they interact directly or indirectly with DNA, causing mutations or interfere with some enzymatic repair processes or in the genesis or polymerization of proteinaceous material involved in chromosome segregation. An air pollutant may cause or contribute to increased mortality or serious illness and even pose a potential danger to human health. The aim of this study was to evaluate the effect on the viability and the genotoxic potential on the cell lines CHO-K1 and Jurkat and peripheral blood of particulate matter PM T lymphocytes 2.5 obtained from filters collected three monitoring stations network air quality Aburrá Valley. Tests, reduction of MTT, trypan blue, NRU, comet assay, sister chromatid exchange (SCE) and chromosomal aberrations allowed evidence reduction in cell viability in cell lines CHO-K1 and Jurkat and damage to the DNA from cell line CHOK1, however, no significant effects were observed in the number of SCEs and chromosomal aberrations. The results suggest that PM2.5 material has genotoxic potential and can induce cancer development, as has been suggested in other studies.

Keywords: PM2.5, cell line Jurkat, cell line CHO-K1, cytotoxicity, genotoxicity

Procedia PDF Downloads 240
389 The Effects of Lipid Emulsion, Magnesium Sulphate and Metoprolol in Amitryptiline-Induced Cardiovascular Toxicity in Rats

Authors: Saylav Ejder Bora, Arife Erdogan, Mumin Alper Erdogan, Oytun Erbas, Ismet Parlak

Abstract:

Objective: The aim of this study was to evaluate histological, electrical and biochemical effects of metoprolol, lipid emulsion and magnesium sulphate as an alternative method to be used in preventing long QT emergence, that is among the lethal consequences of amitryptiline toxicity. Methods: Thirty Sprague- Dawley male rats were included. Rats were randomly separated into 5 groups. First group was administered saline only while the rest had received amitryptiline 100 mg/kg + saline, 5 mg/kg metoprolol, 20 ml/kg lipid emulsion and 75 mg/kg magnesium sulphate (MgSO4) intraperitoneally. ECG at DI lead, biochemical tests following euthanasia were performed in all groups after 1 hour of administration. Cardiac tissues were removed, sections were prepared and examined. Results: QTc values were significantly shorter in the rest when compared to amitryptiline+ saline group. While lipid emulsion did not affect proBNP and troponin values biochemically as compared to that of the control group, histologically, it was with reduced caspase 3 expression. Though statistically insignificant in the context of biochemical changes, pro-BNP and urea levels were lower in the metoprolol group when compared to controls. Similarly, metoprolol had no statistically significant effect on histological caspase 3 expression in the group that was treated with amitryptiline+metoprolol. On the other hand, there was a statistically significant decrease in Troponin, pro-BNP and urea levels as well as significant decline in histological caspase 3 expression within the MgSO4 group when compared to controls. Conclusion: As still a frequent cause of mortality in emergency units, administration of MgSO4, lipid emulsion and metoprolol might be beneficial in alternative treatment of cardiovascular toxicity caused by tricyclic antidepressant overdose, whether intake would be intentional or accidental.

Keywords: amitryptiline, cardiovascular toxicity, long QT, Rat Model

Procedia PDF Downloads 155
388 Digital Transformation: Actionable Insights to Optimize the Building Performance

Authors: Jovian Cheung, Thomas Kwok, Victor Wong

Abstract:

Buildings are entwined with smart city developments. Building performance relies heavily on electrical and mechanical (E&M) systems and services accounting for about 40 percent of global energy use. By cohering the advancement of technology as well as energy and operation-efficient initiatives into the buildings, people are enabled to raise building performance and enhance the sustainability of the built environment in their daily lives. Digital transformation in the buildings is the profound development of the city to leverage the changes and opportunities of digital technologies To optimize the building performance, intelligent power quality and energy management system is developed for transforming data into actions. The system is formed by interfacing and integrating legacy metering and internet of things technologies in the building and applying big data techniques. It provides operation and energy profile and actionable insights of a building, which enables to optimize the building performance through raising people awareness on E&M services and energy consumption, predicting the operation of E&M systems, benchmarking the building performance, and prioritizing assets and energy management opportunities. The intelligent power quality and energy management system comprises four elements, namely the Integrated Building Performance Map, Building Performance Dashboard, Power Quality Analysis, and Energy Performance Analysis. It provides predictive operation sequence of E&M systems response to the built environment and building activities. The system collects the live operating conditions of E&M systems over time to identify abnormal system performance, predict failure trends and alert users before anticipating system failure. The actionable insights collected can also be used for system design enhancement in future. This paper will illustrate how intelligent power quality and energy management system provides operation and energy profile to optimize the building performance and actionable insights to revitalize an existing building into a smart building. The system is driving building performance optimization and supporting in developing Hong Kong into a suitable smart city to be admired.

Keywords: intelligent buildings, internet of things technologies, big data analytics, predictive operation and maintenance, building performance

Procedia PDF Downloads 130
387 Different Types of Amyloidosis Revealed with Positive Cardiac Scintigraphy with Tc-99M DPD-SPECT

Authors: Ioannis Panagiotopoulos, Efstathios Kastritis, Anastasia Katinioti, Georgios Efthymiadis, Argyrios Doumas, Maria Koutelou

Abstract:

Introduction: Transthyretin amyloidosis (ATTR) is a rare but serious infiltrative disease. Myocardial scintigraphy with DPD has emerged as the most effective, non-invasive, highly sensitive, and highly specific diagnostic method for cardiac ATTR amyloidosis. However, there are cases in which additional laboratory investigations reveal AL amyloidosis or other diseases despite a positive DPD scintigraphy. We describe the experience from the Onassis Cardiac Surgery Center and the monitoring center for infiltrative myocardial diseases of the cardiology clinic at AHEPA. Materials and Methods: All patients with clinical suspicion of cardiac or extracardiac amyloidosis undergo a myocardial scintigraphy scan with Tc-99m DPD. In this way, over 500 patients have been examined. Further diagnostic approach based on clinical and imaging findings includes laboratory investigation and invasive techniques (e.g., biopsy). Results: Out of 76 patients in total with positive myocardial scintigraphy Grade 2 or 3 according to the Perugini scale, 8 were proven to suffer from AL Amyloidosis during the investigation of paraproteinemia. Among these patients, 3 showed Grade 3 uptake, while the rest were graded as Grade 2, or 2 to 3. Additionally, one patient presented diffuse and unusual radiopharmaceutical uptake in soft tissues throughout the body without cardiac involvement. These findings raised suspicions, leading to the analysis of κ and λ light chains in the serum, as well as immunostaining of proteins in the serum and urine of these specific patients. The final diagnosis was AL amyloidosis. Conclusion: The value of DPD scintigraphy in the diagnosis of cardiac amyloidosis from transthyretin is undisputed. However, positive myocardial scintigraphy with DPD should not automatically lead to the diagnosis of ATTR amyloidosis. Laboratory differentiation between ATTR and AL amyloidosis is crucial, as both prognosis and therapeutic strategy are dramatically altered. Laboratory exclusion of paraproteinemia is a necessary and essential step in the diagnostic algorithm of ATTR amyloidosis for all positive myocardial scintigraphy with diphosphonate tracers since >20% of patients with Grade 3 and 2 uptake may conceal AL amyloidosis.

Keywords: AL amyloidosis, amyloidosis, ATTR, myocardial scintigraphy, Tc-99m DPD

Procedia PDF Downloads 39
386 Chemical Speciation and Bioavailability of Some Essential Metal Ions In Different Fish Organs at Lake Chamo, Ethiopia

Authors: Adane Gebresilassie Hailemariam, Belete Yilma Hirpaye

Abstract:

The enhanced concentrations of heavy metals, especially in sediments, may indicate human-induced perturbations rather than natural enrichment through geological weathering. Heavy metals are non-biodegradable, persist in the environment, and are concentrated up to the food chain, leading to enhanced levels in the liver and muscle tissues of fishes, aquatic bryophytes, and aquatic biota. Marine organisms, in general fish in particular, accumulate metals to concentrations many times higher than present in water or sediment as they can take up metals in their organs and concentrate at different levels. Thus, metals acquired through the food chain due to pollution are potential chemical hazards, threatening consumers. The Nile tilapia (oreochromic niloticus), catfish (clarius garpinus), and water samples were collected from five sampling sites, namely, inlet-1, inlet-2, center, outlet-1 and outlet-2 of Lake Chamo. The concentration of major and trace metals Na, K, Mg, Ca, Cr, Co, Ni, Mn and Cu in the two fish muscles, gill and liver, was determined using an atomic absorption spectrometer (AAS) and flame photometer (FP). Metal concentrations in the water have also been evaluated within the two consecutive seasons, winter (dry) and spring (wet). The results revealed that the concentration of those metals in Tilapia’s (O. niloticus) muscle, gill, and liver were Na 44.5, 35.1, 28, Mg 2.8, 8.41, 4.61, K 43, 32, 30, Ca 1.5, 6.0, 5.5, Cr 0.91, 1.2, 3.5, Co 3.0, 2.89, 2.62, Ni 0.94, 1.99, 2.2, Mn 1.23, 1.51, 1.6 and Cu 1.1, 1.99, 3.5 mg kg-1 respectively and in catfish’s muscle, gill and liver Na 25, 39, 41.5, Mg 4.8, 2.87, 6, K 29, 38, 40, Ca 2.5, 8.10, 3.0, Cr 0.65, 3.5, 5.0, Co 2.62, 1.86, 1.73, Ni 1.10, 2.3, 3.1, Mn 1.54, 1.57, 1.59 and Cu 1.01, 1.10, 3.70 mg kg-1 respectively. The highest accumulation of Na and K were observed for tilapia muscle and catfish gill, Mg and Ca got higher in tilapia gill and catfish liver, while Co is higher in muscle of the two fish. The Cr, Ni, Mn and Cu levels were higher in the livers of the two fish species. In conculusion, metal toxicity through food chain is the current dangerous issue for human and othe animals. This needs deep focus to promot the health of living animals. The Details of the work are going to be discussed at the conference.

Keywords: bioaccumulation, catfish, essential metals, nile tilapia

Procedia PDF Downloads 50
385 Effects of Malachite Green Contaminated Water on Production of Pak Choy and Chinese Convolvulus

Authors: N. Piwpuan, J. Tosalee, N. Phonkerd

Abstract:

Malachite green (MG), a synthetic dye, is used in industries and aquaculture and also disposed in the effluent. Use of wastewater in irrigation increases due to water shortage. However, wastewater containing dyes, MG, are toxic to biological systems. Therefore, effects of MG on growth of vegetables were evaluated in order to utilize dye-contaminated wastewater for irrigation. In this study, Pak choy (Brassica chinensis) and Chinese convolvulus (Ipomoea aquatica) were grown in growing material (mixture of soil, coconut fiber, and compost) for four weeks and afterward kept watering with 200 ml of tap water containing MG at the concentrations of 0 (control), 1, 2, 10, and 20 mg/L. At harvest, number of leaf and shoot and root dry weight of the treated plants were measured and compared with control. For both species, their biomass values were similar among treatments and did not differ from the control plants (dry weight were 0.6-1.0 and 1.1-1.7 g/plant for B. chinensis and I. aquatica, respectively). B. chinensis treated with 2, 10, and 20 mg/L of MG produced lower number of new leaf and had smaller and shorter leaf compared to control and treatment of 1 mg/L. These results indicate the different responses between plant species, which B. chinensis is more sensitive to contaminant compared to I. aquatica. There was no sign of MG and leucomalachite green (LMG) detected in root and shoot tissues of plants treated with MG at 20 mg/L, tested by thin layer chromatography. After plant harvest, toxicity of the growing material from all treatments was tested on mung beans. Percent germination (83-97%), seedling fresh weight (0.3-0.5 g/plant), and shoot length (11-12.5 cm) were similar to the control. These indicated that contaminant in growing material did not pose detrimental effect on mung beans. Based on these results, the water contaminated with low concentration of MG, such as discharge from aquaculture, may serve as ferti-irrigation water to compensate water shortage.

Keywords: ferti-irrigation, soil toxicity, triphenylmethane dye, wastewater reuse

Procedia PDF Downloads 180
384 Structural and Morphological Characterization of Inorganic Deposits in Spinal Ligaments

Authors: Sylwia Orzechowska, Andrzej Wróbel, Eugeniusz Rokita

Abstract:

The mineralization is a curious problem of connective tissues. Factors which may play a decisive role in the regulation of the yellow ligaments (YL) mineralization are still open questions. The aim of the studies was a detailed description of the chemical composition and morphology of mineral deposits in the human yellow ligaments. Investigations of the structural features of deposits were used to explain the impact of various factors on mineralization process. The studies were carried out on 24 YL samples, surgically removed from patients suffer from spinal canal stenosis and the patients who sustained a trauma. The micro-computed tomography was used to describe the morphology of mineral deposits. The X-ray fluorescence method and Fourier transform infrared spectroscopy were applied to determine the chemical composition of the samples. In order to eliminate the effect of blur in microtomographic images, the correction method of partial volume effect was used. The mineral deposits appear in 60% of YL samples, both in patients with a stenosis and following injury. The mineral deposits have a heterogeneous structure and they are a mixture of the tissue and mineral grains. The volume of mineral grains amounts to (1.9 ± 3.4)*10-3 mm3 while the density distribution of grains occurs in two distinct ranges (1.75 - 2.15 and 2.15-2.5) g/cm3. Application of the partial volume effect correction allows accurate calculations by eliminating the averaging effect of gray levels in tomographic images. The B-type carbonate-containing hydroxyapatite constitutes the mineral phase of majority YLs. The main phase of two samples was calcium pyrophosphate dihydrate (CPPD). The elemental composition of minerals in all samples is almost identical. This pathology may be independent on the spine diseases and it does not evoke canal stenosis. The two ranges of grains density indicate two stages of grains growth and the degree of maturity. The presence of CPPD crystals may coexist with other pathologies.

Keywords: FTIR, micro-tomography, mineralization, spinal ligaments

Procedia PDF Downloads 359
383 Clinical and Molecular Characterization of Ichthyosis at King Abdulaziz Medical City, Riyadh KSA

Authors: Reema K. AlEssa, Sahar Alshomer, Abdullah Alfaleh, Sultan ALkhenaizan, Mohammed Albalwi

Abstract:

Ichthyosis is a disorder of abnormal keratinization, characterized by excessive scaling, and consists of more than twenty subtypes varied in severity, mode of inheritance, and the genes involved. There is insufficient data in the literature about the epidemiology and characteristics of ichthyosis locally. Our aim is to identify the histopathological features and genetic profile of ichthyosis. Method: It is an observational retrospective case series study conducted in March 2020, included all patients who were diagnosed with Ichthyosis and confirmed by histological and molecular findings over the last 20 years in King Abdulaziz Medical City (KAMC), Riyadh, Saudi Arabia. Molecular analysis was performed by testing genomic DNA and checking genetic variations using the AmpliSeq panel. All disease-causing variants were checked against HGMD, ClinVar, Genome Aggregation Database (gnomAD), and Exome Aggregation Consortium (ExAC) databases. Result: A total of 60 cases of Ichthyosis were identified with a mean age of 13 ± 9.2. There is an almost equal distribution between female patients 29 (48%) and males 31 (52%). The majority of them were Saudis, 94%. More than half of patients presented with general scaling 33 (55%), followed by dryness and coarse skin 19 (31.6%) and hyperlinearity 5 (8.33%). Family history and history of consanguinity were seen in 26 (43.3% ), 13 (22%), respectively. History of colloidal babies was found in 6 (10%) cases of ichthyosis. The most frequent genes were ALOX12B, ALOXE3, CERS3, CYP4F22, DOLK, FLG2, GJB2, PNPLA1, SLC27A4, SPINK5, STS, SUMF1, TGM1, TGM5, VPS33B. Most frequent variations were detected in CYP4F22 in 16 cases (26.6%) followed by ALOXE3 6 (10%) and STS 6 (10%) then TGM1 5 (8.3) and ALOX12B 5 (8.3). The analysis of molecular genetic identified 23 different genetic variations in the genes of ichthyosis, of which 13 were novel mutations. Homozygous mutations were detected in the majority of ichthyosis cases, 54 (90%), and only 1 case was heterozygous. Few cases, 4 (6.6%) had an unknown type of ichthyosis with a negative genetic result. Conclusion: 13 novel mutations were discovered. Also, about half of ichthyosis patients had a positive history of consanguinity.

Keywords: ichthyosis, genetic profile, molecular characterization, congenital ichthyosis

Procedia PDF Downloads 175
382 Intraoperative ICG-NIR Fluorescence Angiography Visualization of Intestinal Perfusion in Primary Pull-Through for Hirschsprung Disease

Authors: Mohammad Emran, Colton Wayne, Shannon M Koehler, P. Stephen Almond, Haroon Patel

Abstract:

Purpose: Assessment of anastomotic perfusion in Hirschsprung disease using Indocyanine Green (ICG)-near-infrared (NIR) fluorescence angiography. Introduction: Anastomotic stricture and leak are well-known complications of Hirschsprung pull-through procedures. Complications are due to tension, infection, and/or poor perfusion. While a surgeon can visually determine and control the amount of tension and contamination, assessment of perfusion is subject to surgeon determination. Intraoperative use of ICG-NIR enhances this decision-making process by illustrating perfusion intensity and adequacy in the pulled-through bowel segment. This technique, proven to reduce anastomotic stricture and leak in adults, has not been studied in children to our knowledge. ICG, an FDA approved, nontoxic, non-immunogenic, intravascular (IV) dye, has been used in adults and children for over 60 years, with few side effects. ICG-NIR was used in this report to demonstrate the adequacy of perfusion during transanal pullthrough for Hirschsprung’s disease. Method: 8 patients with Hirschsprung disease were evaluated with ICG-NIR technology. Levels of affected area ranged from sigmoid to total colonic Hirschsprung disease. After leveling, but prior to anastomosis, ICG was administered at 1.25 mg (< 2 mg/kg) and perfusion visualized using an NIR camera, before and during anastomosis. Video and photo imaging was performed and perfusion of the bowel was compared to surrounding tissues. This showed the degree of perfusion and demarcation of perfused and non-perfused bowel. The anastomosis was completed uneventfully and the patients all did well. Results: There were no complications of stricture or leak. 5 of 8 patients (62.5%) had modification of the plan based on ICG-NIR imaging. Conclusion: Technologies that enhance surgeons’ ability to visualize bowel perfusion prior to anastomosis in Hirschsprung’s patients may help reduce post-operative complications. Further studies are needed to assess the potential benefits.

Keywords: colonic anastomosis, fluorescence angiography, Hirschsprung disease, pediatric surgery, SPY

Procedia PDF Downloads 111
381 Lactoferrin Expression Profiling is Essential for Cancer Cell Proliferation and Metastasis, Correlates with Clinical Features, as Well as Early Stages of Breast Cancer

Authors: Azar Heidarizadi, Mahdieh Salimi, Hossein Mozdarani

Abstract:

Introduction: As a complex disease, breast cancer results from several genetic and epigenetic changes. Lactoferrin, a member of the transferrin family, is reported to have a number of biological functions, including DNA synthesis, immune responses, iron transport, etc., any of which could play a role in tumor progression. This study aimed to investigate the bioinformatics data and experimental assay to find the pattern of promoter methylation and gene expression of LTF in breast cancer to study its potential role in cancer management. Material and Methods: To evaluate the LTF promoter's methylation status, we studied the MS-PCR and Real-Time PCR on samples from patients with breast cancer and normal cases. This study includes 67 patient samples, including tumoral, plasma, and normal tissue adjacent samples, as well as 30 plasma samples from standard cases and 10 tissue samples of breast reduction cases. Subsequently, bioinformatics analyses such as cBioPortal databases, string, and geomatics were conducted to disclose the prognostic value of LTF in breast cancer progression. Results: The analysis of LTF expression showed an inverse relationship between the expression level of LTF and the stages of tissues of breast cancer patients (p<0.01). In fact, stages 1 and 2 had a high expression in LTF, while, in stages 3 and 4, a significant reduction was observable (p < 0.0001). LTF expression frequently alters with a decrease in the expression in ER+, PR+, and HER2+ patients (P < 0.01) and an increase in the expression in the TNBC, LN¯, ER¯, and PR- patients (P < 0.001). Also, LTF expression is significantly associated with metastasis and lymph node involvement factors (P < 0.0001). The sensitivity and specificity of LTF were detected, respectively. A negative correlation was detected between the results of level expression and methylation of the LTF promoter. Conclusions: The altered expression of LTF observed in breast cancer patients could be considered as a promotion in cell proliferation and metastasis even in the early stages of cancer.

Keywords: LTF, expression, methylation, breast cancer

Procedia PDF Downloads 31
380 Identification of Body Fluid at the Crime Scene by DNA Methylation Markers for Use in Forensic Science

Authors: Shirin jalili, Hadi Shirzad, Mahasti Modarresi, Samaneh Nabavi, Somayeh Khanjani

Abstract:

Identifying the source tissue of biological material found at crime scenes can be very informative in a number of cases. Despite their usefulness, current visual, catalytic, enzymatic, and immunologic tests for presumptive and confirmatory tissue identification are applicable only to a subset of samples, might suffer limitations such as low specificity, lack of sensitivity, and are substantially impacted by environmental insults. In addition their results are operator-dependent. Recently the possibility of discriminating body fluids using mRNA expression differences in tissues has been described but lack of long term stability of that Molecule and the need to normalize samples for each individual are limiting factors. The use of DNA should solve these issues because of its long term stability and specificity to each body fluid. Cells in the human body have a unique epigenome, which includes differences in DNA methylation in the promoter of genes. DNA methylation, which occurs at the 5′-position of the cytosine in CpG dinucleotides, has great potential for forensic identification of body fluids, because tissue-specific patterns of DNA methylation have been demonstrated, and DNA is less prone to degradation than proteins or RNA. Previous studies have reported several body fluid-specific DNA methylation markers.The presence or absence of a methyl group on the 5’ carbon of the cytosine pyridine ring in CpG dinucleotide regions called ‘CpG islands’ dictates whether the gene is expressed or silenced in the particular body fluid. Were described methylation patterns at tissue specific differentially methylated regions (tDMRs) to be stable and specific, making them excellent markers for tissue identification. The results demonstrate that methylation-based tissue identification is more than a proof-of-concept. The methodology holds promise as another viable forensic DNA analysis tool for characterization of biological materials.

Keywords: DNA methylation, forensic science, epigenome, tDMRs

Procedia PDF Downloads 409
379 Aire-Dependent Transcripts have Shortened 3’UTRs and Show Greater Stability by Evading Microrna-Mediated Repression

Authors: Clotilde Guyon, Nada Jmari, Yen-Chin Li, Jean Denoyel, Noriyuki Fujikado, Christophe Blanchet, David Root, Matthieu Giraud

Abstract:

Aire induces ectopic expression of a large repertoire of tissue-specific antigen (TSA) genes in thymic medullary epithelial cells (MECs), driving immunological self-tolerance in maturing T cells. Although important mechanisms of Aire-induced transcription have recently been disclosed through the identification and the study of Aire’s partners, the fine transcriptional functions underlied by a number of them and conferred to Aire are still unknown. Alternative cleavage and polyadenylation (APA) is an essential mRNA processing step regulated by the termination complex consisting of 85 proteins, 10 of them have been related to Aire. We evaluated APA in MECs in vivo by microarray analysis with mRNA-spanning probes and RNA deep sequencing. We uncovered the preference of Aire-dependent transcripts for short-3’UTR isoforms and for proximal poly(A) site selection marked by the increased binding of the cleavage factor Cstf-64. RNA interference of the 10 Aire-related proteins revealed that Clp1, a member of the core termination complex, exerts a profound effect on short 3’UTR isoform preference. Clp1 is also significantly upregulated in the MECs compared to 25 mouse tissues in which we found that TSA expression is associated with longer 3’UTR isoforms. Aire-dependent transcripts escape a global 3’UTR lengthening associated with MEC differentiation, thereby potentiating the repressive effect of microRNAs that are globally upregulated in mature MECs. Consistent with these findings, RNA deep sequencing of actinomycinD-treated MECs revealed the increased stability of short 3’UTR Aire-induced transcripts, resulting in TSA transcripts accumulation and contributing for their enrichment in the MECs.

Keywords: Aire, central tolerance, miRNAs, transcription termination

Procedia PDF Downloads 361
378 Viscoelastic Characterization of Gelatin/Cellulose Nanocrystals Aqueous Bionanocomposites

Authors: Liliane Samara Ferreira Leite, Francys Kley Vieira Moreira, Luiz Henrique Capparelli Mattoso

Abstract:

The increasing environmental concern regarding the plastic pollution worldwide has stimulated the development of low-cost biodegradable materials. Proteins are renewable feedstocks that could be used to produce biodegradable plastics. Gelatin, for example, is a cheap film-forming protein extracted from animal skin and connective tissues of Brazilian Livestock residues; thus it has a good potential in low-cost biodegradable plastic production. However, gelatin plastics are limited in terms of mechanical and barrier properties. Cellulose nanocrystals (CNC) are efficient nanofillers that have been used to extend physical properties of polymers. This work was aimed at evaluating the reinforcing efficiency of CNC on gelatin films. Specifically, we have employed the continuous casting as the processing method for obtaining the gelatin/CNC bionanocomposites. This required a first rheological study for assessing the effect of gelatin-CNC and CNC-CNC interactions on the colloidal state of the aqueous bionanocomposite formulations. CNC were isolated from eucalyptus pulp by sulfuric acid hydrolysis (65 wt%) at 55 °C for 30 min. Gelatin was solubilized in ultra-pure water at 85°C for 20 min and then mixed with glycerol at 20 wt.% and CNC at 0.5 wt%, 1.0 wt% and 2.5 wt%. Rotational measurements were performed to determine linear viscosity (η) of bionanocomposite solutions, which increased with increasing CNC content. At 2.5 wt% CNC, η increased by 118% regarding the neat gelatin solution, which was ascribed to percolation CNC network formation. Storage modulus (G’) and loss modulus (G″) further determined by oscillatory tests revealed that a gel-like behavior was dominant in the bionanocomposite solutions (G’ > G’’) over a broad range of temperature (20 – 85 °C), particularly at 2.5 wt% CNC. These results confirm effective interactions in the aqueous gelatin-CNC bionanocomposites that could substantially increase the physical properties of the gelatin plastics. Tensile tests are underway to confirm this hypothesis. The authors would like to thank the Fapesp (process n 2016/03080-3) for support.

Keywords: bionanocomposites, cellulose nanocrystals, gelatin, viscoelastic characterization

Procedia PDF Downloads 129
377 Metabolically Healthy Obesity and Protective Factors of Cardiovascular Diseases as a Result from a Longitudinal Study in Tebessa (East of Algeria)

Authors: Salima Taleb, Kafila Boulaba, Ahlem Yousfi, Nada Taleb, Difallah Basma

Abstract:

Introduction: Obesity is recognized as a cardiovascular risk factor. It is associated with cardio-metabolic diseases. Its prevalence is increasing significantly in both rich and poor countries. However, there are obese people who have no metabolic disturbance. So we think obesity is not always a risk factor for an abnormal metabolic profile that increases the risk of cardiometabolic problems. However, there is no definition that allows us to identify the individual group Metabolically Healthy but Obese (MHO). Objective: The objective of this study is to evaluate the relationship between MHO and some factors associated with it. Methods: A longitudinal study is a prospective cohort study of 600 participants aged ≥18 years. Metabolic status was assessed by the following parameters: blood pressure, fasting glucose, total cholesterol, HDL cholesterol, LDL cholesterol, and triglycerides. Body Mass Index (BMI) was calculated as weight (in kg) divided by height (m2), BMI = Weight/(Height)². According to the BMI value, our population was divided into four groups: underweight subjects with BMI <18.5 kg/m2, normal weight subjects with BMI = 18.5–24.9 kg/m², overweight subjects with BMI=25–29.9 kg/m², and obese subjects who have (BMI ≥ 30 kg/m²). A value of P < 0.05 was considered significant. Statistical processing was done using the SPSS 25 software. Results: During this study, 194 (32.33%) were identified as MHO among 416 (37%) obese individuals. The prevalence of the metabolically unhealthy phenotype among normal-weight individuals was (13.83%) vs. (37%) in obese individuals. Compared with metabolically healthy normal-weight individuals (10.93%), the prevalence of diabetes was (30.60%) in MHO, (20.59%) in metabolically unhealthy normal weight, and (52.29%) for metabolically unhealthy obese (p = 0.032). Blood pressure was significantly higher in MHO individuals than in metabolically healthy normal-weight individuals and in metabolically unhealthy obese than in metabolically unhealthy normal weight (P < 0.0001). Familial coronary artery disease does not appear to have an effect on the metabolic status of obese and normal-weight patients (P = 0.544). However, waist circumference appears to have an effect on the metabolic status of individuals (P < 0.0001). Conclusion: This study showed a high prevalence of metabolic profile disruption in normal-weight subjects and a high rate of overweight and/or obese people who are metabolically healthy. To understand the physiological mechanism related to these metabolic statuses, a thorough study is needed.

Keywords: metabolically health, obesity, factors associated, cardiovascular diseases

Procedia PDF Downloads 83
376 Removal of Cr (VI) from Water through Adsorption Process Using GO/PVA as Nanosorbent

Authors: Syed Hadi Hasan, Devendra Kumar Singh, Viyaj Kumar

Abstract:

Cr (VI) is a known toxic heavy metal and has been considered as a priority pollutant in water. The effluent of various industries including electroplating, anodizing baths, leather tanning, steel industries and chromium based catalyst are the major source of Cr (VI) contamination in the aquatic environment. Cr (VI) show high mobility in the environment and can easily penetrate cell membrane of the living tissues to exert noxious effects. The Cr (VI) contamination in drinking water causes various hazardous health effects to the human health such as cancer, skin and stomach irritation or ulceration, dermatitis, damage to liver, kidney circulation and nerve tissue damage. Herein, an attempt has been done to develop an efficient adsorbent for the removal of Cr (VI) from water. For this purpose nanosorbent composed of polyvinyl alcohol functionalized graphene oxide (GO/PVA) was prepared. Thus, obtained GO/PVA was characterized through FTIR, XRD, SEM, and Raman Spectroscopy. As prepared nanosorbent of GO/PVA was utilized for the removal Cr (VI) in batch mode experiment. The process variables such as contact time, initial Cr (VI) concentration, pH, and temperature were optimized. The maximum 99.8 % removal of Cr (VI) was achieved at initial Cr (VI) concentration 60 mg/L, pH 2, temperature 35 °C and equilibrium was achieved within 50 min. The two widely used isotherm models viz. Langmuir and Freundlich were analyzed using linear correlation coefficient (R2) and it was found that Langmuir model gives best fit with high value of R2 for the data of present adsorption system which indicate the monolayer adsorption of Cr (VI) on the GO/PVA. Kinetic studies were also conducted using pseudo-first order and pseudo-second order models and it was observed that chemosorptive pseudo-second order model described the kinetics of current adsorption system in better way with high value of correlation coefficient. Thermodynamic studies were also conducted and results showed that the adsorption was spontaneous and endothermic in nature.

Keywords: adsorption, GO/PVA, isotherm, kinetics, nanosorbent, thermodynamics

Procedia PDF Downloads 371
375 Correlation of Leptin with Clinico-Pathological Features of Breast Cancer

Authors: Saad Al-Shibli, Nasser Amjad, Muna Al Kubaisi, Norra Harun, Shaikh Mizan

Abstract:

Leptin is a multifunctional hormone produced mainly by adipocyte. Leptin and its receptor have long been found associated with breast cancer. The main aim of this study is to investigate the correlation between Leptin/Leptin receptor and the clinicopathological features of breast cancer. Blood samples for ELISA, tissue samples from tumors and adjacent breast tissue were taken from 51 women with breast cancer with a control group of 40 women with a negative mammogram. Leptin and Leptin receptor in the tissues were estimated by immunohistochemistry (IHC). They were localized at the subcellular level by immunocytochemistry using transmission electron microscopy (TEM). Our results showed significant difference in serum leptin level between control and the patient group, but no difference between pre and post-operative serum leptin levels in the patient group. By IHC, we found that the majority of the breast cancer cells studied, stained positively for leptin and leptin receptors with co-expression of leptin and its receptors. No significant correlation was found between leptin/leptin receptors expression with the race, menopausal status, lymph node metastasis, estrogen receptor expression, progesterone receptor expression, HER2 expression and tumor size. Majority of the patients with distant metastasis were associated with high leptin and leptin receptor expression. TEM views both Leptin and Leptin receptor were found highly concentrated within and around the nucleus of the cancer breast cells, indicating nucleus is their principal seat of actions while the adjacent breast epithelial cells showed that leptin gold particles are scattered all over the cell with much less than that of the cancerous cells. However, presence of high concentration of leptin does not necessarily prove its over-expression, because it could be internalized from outside by leptin receptor in the cells. In contrast, leptin receptor is definitely over-expressed in the ductal breast cancer cells. We conclude that reducing leptin levels, blocking its downstream tissue specific signal transduction, and/or blocking the upstream leptin receptor pathway might help in prevention and therapy of breast cancer.

Keywords: breast cancer, expression, leptin, leptin receptors

Procedia PDF Downloads 114
374 Drug Delivery to Solid Tumor: Effect of Dynamic Capillary Network Induced by Tumor

Authors: Mostafa Sefidgar, Kaamran Raahemifar, Hossein Bazmara, Madjid Soltani

Abstract:

The computational methods provide condition for investigation related to the process of drug delivery, such as convection and diffusion of drug in extracellular matrices, and drug extravasation from microvascular. The information of this process clarifies the mechanisms of drug delivery from the injection site to absorption by a solid tumor. In this study, an advanced numerical method is used to solve fluid flow and solute transport equations simultaneously to show how capillary network structure induced by tumor affects drug delivery. The effect of heterogeneous capillary network induced by tumor on interstitial fluid flow and drug delivery is investigated by this multi scale method. The sprouting angiogenesis model is used for generating capillary network induced by tumor. Fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network and fluid flow in normal and tumor tissues. The Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. Finally, convection-diffusion-reaction equation is used to simulate drug delivery. The dynamic approach which changes the capillary network structure based on signals sent by hemodynamic and metabolic stimuli is used in this study for more realistic assumption. The study indicates that drug delivery to solid tumors depends on the tumor induced capillary network structure. The dynamic approach generates the irregular capillary network around the tumor and predicts a higher interstitial pressure in the tumor region. This elevated interstitial pressure with irregular capillary network leads to a heterogeneous distribution of drug in the tumor region similar to in vivo observations. The investigation indicates that the drug transport properties have a significant role against the physiological barrier of drug delivery to a solid tumor.

Keywords: solid tumor, physiological barriers to drug delivery, angiogenesis, microvascular network, solute transport

Procedia PDF Downloads 288
373 Inactivation of Semicarbazide-Sensitive Amine Oxidase Induces the Phenotypic Switch of Smooth Muscle Cells and Aggravates the Development of Atherosclerotic Lesions

Authors: Miao Zhang, Limin Liu, Feng Zhi, Panpan Niu, Mengya Yang, Xuemei Zhu, Ying Diao, Jun Wang, Ying Zhao

Abstract:

Background and Aims: Clinical studies have demonstrated that serum semicarbazide-sensitive amine oxidase (SSAO) activities positively correlate with the progression of atherosclerosis. The aim of the present study is to investigate the effect of SSAO inactivation on the development of atherosclerosis. Methods: Female LDLr knockout (KO) mice were given the Western-type diet for 6 and 9 weeks to induce the formation of early and advanced lesions, and semicarbazide (SCZ, 0.125%) was added into the drinking water to inactivate SSAO in vivo. Results: Despite no impact on plasma total cholesterol levels, abrogation of SSAO by SCZ not only resulted in the enlargement of both early (1.5-fold, p=0.0043) and advanced (1.8-fold, p=0.0013) atherosclerotic lesions, but also led to reduced/increased lesion contents of macrophages/smooth muscle cells (SMCs) (macrophage: ~0.74-fold, p=0.0002(early)/0.0016(advanced); SMC: ~1.55-fold, p=0.0003(early) /0.0001(advanced)), respectively. Moreover, SSAO inactivation inhibited the migration of circulating monocytes into peripheral tissues and reduced the amount of circulating Ly6Chigh monocytes (0.7-fold, p=0.0001), which may account for the reduced macrophage content in lesions. In contrast, the increased number of SMCs in lesions of SCZ-treated mice is attributed to an augmented synthetic vascular SMC phenotype switch as evidenced by the increased proliferation of SMCs and accumulation of collagens in vivo. Conclusion: SSAO inactivation by SCZ promotes the phenotypic switch of SMCs and the development of atherosclerosis. The enzymatic activity of SSAO may thus represent a potential target in the prevention and/or treatment of atherosclerosis.

Keywords: atherosclerosis, phenotype switch of smooth muscle cells, SSAO/VAP-1, semicarbazide

Procedia PDF Downloads 300
372 Antibacterial Activity of Endophytic Bacteria against Multidrug-Resistant Bacteria: Isolation, Characterization, and Antibacterial Activity

Authors: Maryam Beiranvand, Sajad Yaghoubi

Abstract:

Background: Some microbes can colonize plants’ inner tissues without causing obvious damage and can even produce useful bioactive substances. In the present study, the diversity of the endophytic bacteria associated with medicinal plants from Iran was investigated by culturing techniques, molecular gene identification, as well as measuring them for antibacterial activity. Results: In the spring season from 2013 to 2014, 35 herb pharmacology samples were collected, sterilized, meshed, and then cultured on selective media culture. A total of 199 endophytic bacteria were successfully isolated from 35 tissue cultures of medical plants, and sixty-seven out of 199 bacterial isolates were subjected to identification by the 16S rRNA gene sequence analysis method. Based on the sequence similarity gene and phylogenetic analyses, these isolates were grouped into five classes, fourteen orders, seventeen families, twenty-one genera, and forty strains. The most abundant group of endophytic bacteria was actinobacterial, consisting of thirty-two (47%) out of 67 bacterial isolates. Ten (22.3%) out of 67 bacterial isolates remained unidentified and classified at the genus level. The signature of the 16S rRNA gene formed a distinct line in a phylogenetic tree showing that they might be new species of bacteria. One (5.2%) out of 67 bacterial isolates was still not well categorized. Forty-two out of 67 strains were candidates for antimicrobial activity tests. Nineteen (45%) out of 42 strains showed antimicrobial activity multidrug resistance (MDR); thirteen (68%) out of 19 strains were allocated to classes actinobacteria. Four (21%) out of 19 strains belonged to the Bacillaceae family, one (5.2%) out of 19 strains was the Paenibacillaceae family, and one (5.2%) out of 19 strains belonged to the Pseudomonadaceae family. The other twenty-three strains did not show inhibitory activities. Conclusions: Our research showed a high-level phylogenetic diversity and the intoxicating antibiotic activity of endophytic bacteria in the herb pharmacology of Iran.

Keywords: Antibacterial activity, endophytic bacteria, multidrug-resistant bacteria, whole genom sequencing

Procedia PDF Downloads 61
371 Genetic Instabilities in Marine Bivalve Following Benzo(α)pyrene Exposure: Utilization of Combined Random Amplified Polymorphic DNA and Comet Assay

Authors: Mengjie Qu, Yi Wang, Jiawei Ding, Siyu Chen, Yanan Di

Abstract:

Marine ecosystem is facing intensified multiple stresses caused by environmental contaminants from human activities. Xenobiotics, such as benzo(α)pyrene (BaP) have been discharged into marine environment and cause hazardous impacts on both marine organisms and human beings. As a filter-feeder, marine mussels, Mytilus spp., has been extensively used to monitor the marine environment. However, their genomic alterations induced by such xenobiotics are still kept unknown. In the present study, gills, as the first defense barrier in mussels, were selected to evaluate the genetic instability alterations induced by the exposure to BaP both in vivo and in vitro. Both random amplified polymorphic DNA (RAPD) assay and comet assay were applied as the rapid tools to assess the environmental stresses due to their low money- and time-consumption. All mussels were identified to be the single species of Mytilus coruscus before used in BaP exposure at the concentration of 56 μg/l for 1 & 3 days (in vivo exposure) or 1 & 3 hours (in vitro). Both RAPD and comet assay results were showed significantly increased genomic instability with time-specific altering pattern. After the recovery period in 'in vivo' exposure, the genomic status was as same as control condition. However, the relative higher genomic instabilities were still observed in gill cells after the recovery from in vitro exposure condition. Different repair mechanisms or signaling pathway might be involved in the isolated gill cells in the comparison with intact tissues. The study provides the robust and rapid techniques to exam the genomic stability in marine organisms in response to marine environmental changes and provide basic information for further mechanism research in stress responses in marine organisms.

Keywords: genotoxic impacts, in vivo/vitro exposure, marine mussels, RAPD and comet assay

Procedia PDF Downloads 255
370 3D Modeling for Frequency and Time-Domain Airborne EM Systems with Topography

Authors: C. Yin, B. Zhang, Y. Liu, J. Cai

Abstract:

Airborne EM (AEM) is an effective geophysical exploration tool, especially suitable for ridged mountain areas. In these areas, topography will have serious effects on AEM system responses. However, until now little study has been reported on topographic effect on airborne EM systems. In this paper, an edge-based unstructured finite-element (FE) method is developed for 3D topographic modeling for both frequency and time-domain airborne EM systems. Starting from the frequency-domain Maxwell equations, a vector Helmholtz equation is derived to obtain a stable and accurate solution. Considering that the AEM transmitter and receiver are both located in the air, the scattered field method is used in our modeling. The Galerkin method is applied to discretize the Helmholtz equation for the final FE equations. Solving the FE equations, the frequency-domain AEM responses are obtained. To accelerate the calculation speed, the response of source in free-space is used as the primary field and the PARDISO direct solver is used to deal with the problem with multiple transmitting sources. After calculating the frequency-domain AEM responses, a Hankel’s transform is applied to obtain the time-domain AEM responses. To check the accuracy of present algorithm and to analyze the characteristic of topographic effect on airborne EM systems, both the frequency- and time-domain AEM responses for 3 model groups are simulated: 1) a flat half-space model that has a semi-analytical solution of EM response; 2) a valley or hill earth model; 3) a valley or hill earth with an abnormal body embedded. Numerical experiments show that close to the node points of the topography, AEM responses demonstrate sharp changes. Special attentions need to be paid to the topographic effects when interpreting AEM survey data over rugged topographic areas. Besides, the profile of the AEM responses presents a mirror relation with the topographic earth surface. In comparison to the topographic effect that mainly occurs at the high-frequency end and early time channels, the EM responses of underground conductors mainly occur at low frequencies and later time channels. For the signal of the same time channel, the dB/dt field reflects the change of conductivity better than the B-field. The research of this paper will serve airborne EM in the identification and correction of the topographic effects.

Keywords: 3D, Airborne EM, forward modeling, topographic effect

Procedia PDF Downloads 292
369 Increase of the Nanofiber Degradation Rate Using PCL-PEO and PCL-PVP as a Shell in the Electrospun Core-Shell Nanofibers Using the Needleless Blades

Authors: Matej Buzgo, Erico Himawan, Ksenija JašIna, Aiva Simaite

Abstract:

Electrospinning is a versatile and efficient technology for producing nanofibers for biomedical applications. One of the most common polymers used for the preparation of nanofibers for regenerative medicine and drug delivery applications is polycaprolactone (PCL). PCL is a biocompatible and bioabsorbable material that can be used to stimulate the regeneration of various tissues. It is also a common material used for the development of drug delivery systems by blending the polymer with small active molecules. However, for many drug delivery applications, e.g. cancer immunotherapy, PCL biodegradation rate that may exceed 9 months is too long, and faster nanofiber dissolution is needed. In this paper, we investigate the dissolution and small molecule release rates of PCL blends with two hydrophilic polymers: polyethylene oxide (PEO) or polyvinylpyrrolidone (PVP). We show that adding hydrophilic polymer to the PCL reduces the water contact angle, increases the dissolution rate, and strengthens the interactions between the hydrophilic drug and polymer matrix that further sustain its release. Finally using this method, we were also able to increase the nanofiber degradation rate when PCL-PEO and PCL-PVP were used as a shell in the electrospun core-shell nanofibers and spread up the release of active proteins from their core. Electrospinning can be used for the preparation of the core-shell nanofibers, where active ingredients are encapsulated in the core and their release rate is regulated by the shell. However, such fibers are usually prepared by coaxial electrospinning that is an extremely low-throughput technique. An alternative is emulsion electrospinning that could be upscaled using needleless blades. In this work, we investigate the possibility of using emulsion electrospinning for encapsulation and sustained release of the growth factors for the development of the organotypic skin models. The core-shell nanofibers were prepared using the optimized formulation and the release rate of proteins from the fibers was investigated for 2 weeks – typical cell culture conditions.

Keywords: electrospinning, polycaprolactone (PCL), polyethylene oxide (PEO), polyvinylpyrrolidone (PVP)

Procedia PDF Downloads 258
368 Extraction and Encapsulation of Carotenoids from Carrot

Authors: Gordana Ćetković, Sanja Podunavac-Kuzmanović, Jasna Čanadanović-Brunet, Vesna Tumbas Šaponjac, Vanja Šeregelj, Jelena Vulić, Slađana Stajčić

Abstract:

The color of food is one of the decisive factors for consumers. Potential toxicity of artificial food colorants has led to the consumers' preference for natural products over products with artificial colors. Natural pigments have many bioactive functions, such as antioxidant, provitamin and many other. Having this in mind, the acceptability of natural colorants by the consumers is much higher. Being present in all photosynthetic plant tissues carotenoids are probably most widespread pigments in nature. Carrot (Daucus carota) is a good source of functional food components. Carrot is especially rich in carotenoids, mainly α- and β-carotene and lutein. For this study, carrot was extracted using classical extraction with hexane and ethyl acetate, as well as supercritical CO₂ extraction. The extraction efficiency was evaluated by estimation of carotenoid yield determined spectrophotometrically. Classical extraction using hexane (18.27 mg β-carotene/100 g DM) was the most efficient method for isolation of carotenoids, compared to ethyl acetate classical extraction (15.73 mg β-carotene/100 g DM) and supercritical CO₂ extraction (0.19 mg β-carotene/100 g DM). Three carrot extracts were tested in terms of antioxidant activity using DPPH and reducing power assay as well. Surprisingly, ethyl acetate extract had the best antioxidant activity on DPPH radicals (AADPPH=120.07 μmol TE/100 g) while hexane extract showed the best reducing power (RP=1494.97 μmol TE/100 g). Hexane extract was chosen as the most potent source of carotenoids and was encapsulated in whey protein by freeze-drying. Carotenoid encapsulation efficiency was found to be high (89.33%). Based on our results it can be concluded that carotenoids from carrot can be efficiently extracted using hexane and classical extraction method. This extract has the potential to be applied in encapsulated form due to high encapsulation efficiency and coloring capacity. Therefore it can be used for dietary supplements development and food fortification.

Keywords: carotenoids, carrot, extraction, encapsulation

Procedia PDF Downloads 244
367 Isolation, Characterization, and Antibacterial Activity of Endophytic Bacteria from Iranian Medicinal Plants

Authors: Maryam Beiranvand, Sajad Yaghoubi

Abstract:

Background: Some microbes can colonize plants’ inner tissues without causing obvious damage and can even produce useful bioactive substances. In the present study, the diversity of the endophytic bacteria associated with medicinal plants from Iran was investigated by culturing techniques, molecular gene identification, as well as measuring them for antibacterial activity. Results: In the spring season from 2013 to 2014, 35 herb pharmacology samples were collected, sterilized, meshed, and then cultured on selective media culture. A total of 199 endophytic bacteria were successfully isolated from 35 tissue cultures of medical plants, and sixty-seven out of 199 bacterial isolates were subjected to identification by the 16S rRNA gene sequence analysis method. Based on the sequence similarity gene and phylogenetic analyses, these isolates were grouped into five classes, fourteen orders, seventeen families, twenty-one genera, and forty strains. The most abundant group of endophytic bacteria was actinobacterial, consisting of thirty-two (47%) out of 67 bacterial isolates. Ten (22.3%) out of 67 bacterial isolates remained unidentified and classified at the genus level. The signature of the 16S rRNA gene formed a distinct line in a phylogenetic tree showing that they might be new species of bacteria. One (5.2%) out of 67 bacterial isolates was still not well categorized. Forty-two out of 67 strains were candidates for antimicrobial activity tests. Nineteen (45%) out of 42 strains showed antimicrobial activity multidrug-resistance (MDR); thirteen (68%) out of 19 strains were allocated to classes actinobacteria. Four (21%) out of 19 strains belonged to the Bacillaceae family, one (5.2%) out of 19 strains was the Paenibacillaceae family, and one (5.2%) out of 19 strains belonged to the Pseudomonadaceae family. The other twenty-three strains did not show inhibitory activities. Conclusions: Our research showed a high-level phylogenetic diversity and the intoxicating antibiotic activity of endophytic bacteria in the herb pharmacology of Iran.

Keywords: medical plant, endophytic bacteria, antimicrobial activity, whole genome sequencing analysis

Procedia PDF Downloads 90
366 Magnetohemodynamic of Blood Flow Having Impact of Radiative Flux Due to Infrared Magnetic Hyperthermia: Spectral Relaxation Approach

Authors: Ebenezer O. Ige, Funmilayo H. Oyelami, Joshua Olutayo-Irheren, Joseph T. Okunlola

Abstract:

Hyperthermia therapy is an adjuvant procedure during which perfused body tissues is subjected to elevated range of temperature in bid to achieve improved drug potency and efficacy of cancer treatment. While a selected class of hyperthermia techniques is shouldered on the thermal radiations derived from single-sourced electro-radiation measures, there are deliberations on conjugating dual radiation field sources in an attempt to improve the delivery of therapy procedure. This paper numerically explores the thermal effectiveness of combined infrared hyperemia having nanoparticle recirculation in the vicinity of imposed magnetic field on subcutaneous strata of a model lesion as ablation scheme. An elaborate Spectral relaxation method (SRM) was formulated to handle equation of coupled momentum and thermal equilibrium in the blood-perfused tissue domain of a spongy fibrous tissue. Thermal diffusion regimes in the presence of external magnetic field imposition were described leveraging on the renowned Roseland diffusion approximation to delineate the impact of radiative flux within the computational domain. The contribution of tissue sponginess was examined using mechanics of pore-scale porosity over a selected of clinical informed scenarios. Our observations showed for a substantial depth of spongy lesion, magnetic field architecture constitute the control regimes of hemodynamics in the blood-tissue interface while facilitating thermal transport across the depth of the model lesion. This parameter-indicator could be utilized to control the dispensing of hyperthermia treatment in intravenous perfused tissue.

Keywords: spectra relaxation scheme, thermal equilibrium, Roseland diffusion approximation, hyperthermia therapy

Procedia PDF Downloads 89
365 Relationship of Epidermal Growth Factor Receptor Gene Mutations Andserum Levels of Ligands in Non-Small Cell Lung Carcinoma Patients

Authors: Abdolamir Allameh, Seyyed Mortaza Haghgoo, Adnan Khosravi, Esmaeil Mortaz, Mihan Pourabdollah-Toutkaboni, Sharareh Seifi

Abstract:

Non-Small Cell Lung Carcinoma (NSCLC) is associated with a number of gene mutations in epidermal growth factor receptor (EGFR). The prognostic significance of mutations in exons 19 and 21, together with serum levels of EGFR, amphiregulin (AR), and Transforming Growth Factor-alpha (TGF-α) are implicated in diagnosis and treatment. The aim of this study was to examine the relationship of EGFR mutations in selected exons with the expression of relevant ligands in sera samples of NSCLC patients. For this, a group of NSCLC patients (n=98) referred to the hospital for lung surgery with a mean age of 59±10.5 were enrolled (M/F: 75/23). Blood specimen was collected from each patient. Besides, formalin fixed paraffin embedded tissues were processed for DNA extraction. Gene mutations in exons 19 and 21 were detected by direct sequencing, following DNA amplification which was done by PCR (Polymerase Chain Reaction). Also, serum levels of EGFR, AR, and TGF-α were measured by ELISA. The results of our study show that EGFR mutations were present in 37% of Iranian NSCLC patients. The most frequently identified mutations were deletions in exon 19 (72.2%) and substitutions in exon 21 (27.8%). The most frequently identified alteration, which is considered as a rare mutation, was the E872K mutation in exon 21, which was found in 90% (9 out of 10) cases. EGFR mutation detected in exon 21 was significantly (P<0.05) correlated with the levels of its ligands, EGFR and TGF-α in serum samples. Furthermore, it was found that increased serum AR (>3pg/ml) and TGF-α (>10.5 pg/ml) were associated with shorter overall survival (P<0.05). The results clearly showed a close relationship between EGFR mutations and serum EGFR and serum TGF-α. Increased serum EGFR was associated with TGF-α and AR and linked to poor prognosis of NSCLC. These findings are implicated in clinical decision-making related to EGFR-Tyrosine kinase inhibitors (TKIs).

Keywords: lung cancer, Iranian patients, epidermal growth factor, mutation, prognosis

Procedia PDF Downloads 57
364 Establishment and Characterization of a Dentigerous Cyst Cell Line

Authors: Muñiz-Lino Marcos Agustín, Vazquez Borbolla Jessica, Licéaga-Escalera Carlos

Abstract:

The ectomesenchymal tissues involved in tooth development and their remnants are the origin of different odontogenic lesions, including tumors and cysts of the jaws, with a wide range of clinical behaviors. Dentigerous cyst (DC) represents approximately 20% of all cases of odontogenic cysts, and it has been demonstrated that it can develop benign and malignant odontogenic tumors. DC is characterized by bone destruction of the area surrounding the crown of a tooth which has not erupted and it contain is liquid. The treatment of odontogenic tumors and cysts usually are partial or total removal of the jaw, causing important secondary co-morbidities. However, molecules implicated in DC pathogenesis as well in its development to odontogenic tumors remains unknown. A cellular model may be useful to study these molecules, but that model has not been established yet. Here, we reported the establishment of a cell culture derived from a dentigerous cyst. This cell line was named DeCy-1. In spite of its ectomesenchymal morphology, DeCy-1 cells express epithelial markers such as cytokeratins 5, 6, and 8. Furthermore, these cells express the ODAM protein, which is present in odontogenesis and in dental follicle, indicating that DeCy-1 cells derived from odontogenic epithelium. Analysis by electron microscopy of this cell line showed that it has a high vesicular activity, suggesting that DeCy-1 could secrete molecules that may be involved in DC pathogenesis. Thus, secreted proteins were analyzed by PAGE-SDS, where we observed approximately 11 bands. In addition, the capacity of these secretions to degrade proteins was analyzed by gelatin substrate zymography. A degradation band of about 62 kDa was found in these assays. Western blot assays suggested that the matrix metalloproteinase 2 (MMP-2) is responsible of this protease activity. Thus, our results indicate that the establishment of a cell line derived from DC is a useful in vitro model to study the biology of this odontogenic lesion and its participation in the development of odontogenic tumors.

Keywords: dentigerous cyst, MMP20, cancer, cell culture

Procedia PDF Downloads 117
363 The Systems Biology Verification Endeavor: Harness the Power of the Crowd to Address Computational and Biological Challenges

Authors: Stephanie Boue, Nicolas Sierro, Julia Hoeng, Manuel C. Peitsch

Abstract:

Systems biology relies on large numbers of data points and sophisticated methods to extract biologically meaningful signal and mechanistic understanding. For example, analyses of transcriptomics and proteomics data enable to gain insights into the molecular differences in tissues exposed to diverse stimuli or test items. Whereas the interpretation of endpoints specifically measuring a mechanism is relatively straightforward, the interpretation of big data is more complex and would benefit from comparing results obtained with diverse analysis methods. The sbv IMPROVER project was created to implement solutions to verify systems biology data, methods, and conclusions. Computational challenges leveraging the wisdom of the crowd allow benchmarking methods for specific tasks, such as signature extraction and/or samples classification. Four challenges have already been successfully conducted and confirmed that the aggregation of predictions often leads to better results than individual predictions and that methods perform best in specific contexts. Whenever the scientific question of interest does not have a gold standard, but may greatly benefit from the scientific community to come together and discuss their approaches and results, datathons are set up. The inaugural sbv IMPROVER datathon was held in Singapore on 23-24 September 2016. It allowed bioinformaticians and data scientists to consolidate their ideas and work on the most promising methods as teams, after having initially reflected on the problem on their own. The outcome is a set of visualization and analysis methods that will be shared with the scientific community via the Garuda platform, an open connectivity platform that provides a framework to navigate through different applications, databases and services in biology and medicine. We will present the results we obtained when analyzing data with our network-based method, and introduce a datathon that will take place in Japan to encourage the analysis of the same datasets with other methods to allow for the consolidation of conclusions.

Keywords: big data interpretation, datathon, systems toxicology, verification

Procedia PDF Downloads 262
362 Correlation of Structure and Antiviral Activity of Alkaloids of Polygonum L. Plants Growing in Kazakhstan

Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina

Abstract:

Currently to treat infectious diseases bioactive substances of plant origin having fewer side effects than synthetic medicines and medicines similar to natural components of a human body by the structure and action, become very important. One of the groups of secondary metabolites of the plants - alkaloids can be related the number of the most promising sources of medicines of plant origin. Currently, the structure of more than 7500 compounds has been identified. Analyzing the scope of research in the field of chemistry, pharmacology and technology of alkaloids, we can make a conclusion about that there is no system approach during the research of relation structure-activity on different groups of these substances. It is connected not only with a complex structure of their molecules, but also with insufficient information on the nature of their effect on organs, tissues and other targets in organism. The purpose of this research was to identify pharmacophore groups in the structure of alkaloids of endemic Polygonum L. plants growing in Kazakhstan responsible for their antiviral action. To isolate alkaloids pharmacopoeian methods were used. Antiviral activity of alkaloids of Polygonum L. plants was researched in the Institute of Microbiology and Virology of the Ministry of Education and Science of the Republic of Kazakhstan. Virus-inhibiting properties of compounds were studies in experiments with ortho- and paramyxoviruses on the model of chick-embryos. Anti-viral properties were determined using ‘screening test’ method designed to neutralization of a virus at the amount of 100EID50 with set concentrations of medicines. The difference of virus titer compared to control group was deemed as the criterion of antiviral action. It has been established that Polygonum L. alkaloids has high antiviral effect to influenza and parainfluenza viruses. The analysis of correlation of the structure and antiviral activity of alkaloids allowed identifying the main pharmacophore groups, among which the most important are glycosidation, the presence of carbonyl and hydroxyl groups, molecular weight and molecular size.

Keywords: alkaloids, antiviral, bioactive substances, isolation, pharmacophore groups, Polygonum L.

Procedia PDF Downloads 421