Search results for: epigenome
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6

Search results for: epigenome

6 DNA Methylation Score Development for In utero Exposure to Paternal Smoking Using a Supervised Machine Learning Approach

Authors: Cristy Stagnar, Nina Hubig, Diana Ivankovic

Abstract:

The epigenome is a compelling candidate for mediating long-term responses to environmental effects modifying disease risk. The main goal of this research is to develop a machine learning-based DNA methylation score, which will be valuable in delineating the unique contribution of paternal epigenetic modifications to the germline impacting childhood health outcomes. It will also be a useful tool in validating self-reports of nonsmoking and in adjusting epigenome-wide DNA methylation association studies for this early-life exposure. Using secondary data from two population-based methylation profiling studies, our DNA methylation score is based on CpG DNA methylation measurements from cord blood gathered from children whose fathers smoked pre- and peri-conceptually. Each child’s mother and father fell into one of three class labels in the accompanying questionnaires -never smoker, former smoker, or current smoker. By applying different machine learning algorithms to the accessible resource for integrated epigenomic studies (ARIES) sub-study of the Avon longitudinal study of parents and children (ALSPAC) data set, which we used for training and testing of our model, the best-performing algorithm for classifying the father smoker and mother never smoker was selected based on Cohen’s κ. Error in the model was identified and optimized. The final DNA methylation score was further tested and validated in an independent data set. This resulted in a linear combination of methylation values of selected probes via a logistic link function that accurately classified each group and contributed the most towards classification. The result is a unique, robust DNA methylation score which combines information on DNA methylation and early life exposure of offspring to paternal smoking during pregnancy and which may be used to examine the paternal contribution to offspring health outcomes.

Keywords: epigenome, health outcomes, paternal preconception environmental exposures, supervised machine learning

Procedia PDF Downloads 185
5 Identification of Body Fluid at the Crime Scene by DNA Methylation Markers for Use in Forensic Science

Authors: Shirin jalili, Hadi Shirzad, Mahasti Modarresi, Samaneh Nabavi, Somayeh Khanjani

Abstract:

Identifying the source tissue of biological material found at crime scenes can be very informative in a number of cases. Despite their usefulness, current visual, catalytic, enzymatic, and immunologic tests for presumptive and confirmatory tissue identification are applicable only to a subset of samples, might suffer limitations such as low specificity, lack of sensitivity, and are substantially impacted by environmental insults. In addition their results are operator-dependent. Recently the possibility of discriminating body fluids using mRNA expression differences in tissues has been described but lack of long term stability of that Molecule and the need to normalize samples for each individual are limiting factors. The use of DNA should solve these issues because of its long term stability and specificity to each body fluid. Cells in the human body have a unique epigenome, which includes differences in DNA methylation in the promoter of genes. DNA methylation, which occurs at the 5′-position of the cytosine in CpG dinucleotides, has great potential for forensic identification of body fluids, because tissue-specific patterns of DNA methylation have been demonstrated, and DNA is less prone to degradation than proteins or RNA. Previous studies have reported several body fluid-specific DNA methylation markers.The presence or absence of a methyl group on the 5’ carbon of the cytosine pyridine ring in CpG dinucleotide regions called ‘CpG islands’ dictates whether the gene is expressed or silenced in the particular body fluid. Were described methylation patterns at tissue specific differentially methylated regions (tDMRs) to be stable and specific, making them excellent markers for tissue identification. The results demonstrate that methylation-based tissue identification is more than a proof-of-concept. The methodology holds promise as another viable forensic DNA analysis tool for characterization of biological materials.

Keywords: DNA methylation, forensic science, epigenome, tDMRs

Procedia PDF Downloads 429
4 Integrative Omics-Portrayal Disentangles Molecular Heterogeneity and Progression Mechanisms of Cancer

Authors: Binder Hans

Abstract:

Cancer is no longer seen as solely a genetic disease where genetic defects such as mutations and copy number variations affect gene regulation and eventually lead to aberrant cell functioning which can be monitored by transcriptome analysis. It has become obvious that epigenetic alterations represent a further important layer of (de-)regulation of gene activity. For example, aberrant DNA methylation is a hallmark of many cancer types, and methylation patterns were successfully used to subtype cancer heterogeneity. Hence, unraveling the interplay between different omics levels such as genome, transcriptome and epigenome is inevitable for a mechanistic understanding of molecular deregulation causing complex diseases such as cancer. This objective requires powerful downstream integrative bioinformatics methods as an essential prerequisite to discover the whole genome mutational, transcriptome and epigenome landscapes of cancer specimen and to discover cancer genesis, progression and heterogeneity. Basic challenges and tasks arise ‘beyond sequencing’ because of the big size of the data, their complexity, the need to search for hidden structures in the data, for knowledge mining to discover biological function and also systems biology conceptual models to deduce developmental interrelations between different cancer states. These tasks are tightly related to cancer biology as an (epi-)genetic disease giving rise to aberrant genomic regulation under micro-environmental control and clonal evolution which leads to heterogeneous cellular states. Machine learning algorithms such as self organizing maps (SOM) represent one interesting option to tackle these bioinformatics tasks. The SOMmethod enables recognizing complex patterns in large-scale data generated by highthroughput omics technologies. It portrays molecular phenotypes by generating individualized, easy to interpret images of the data landscape in combination with comprehensive analysis options. Our image-based, reductionist machine learning methods provide one interesting perspective how to deal with massive data in the discovery of complex diseases, gliomas, melanomas and colon cancer on molecular level. As an important new challenge, we address the combined portrayal of different omics data such as genome-wide genomic, transcriptomic and methylomic ones. The integrative-omics portrayal approach is based on the joint training of the data and it provides separate personalized data portraits for each patient and data type which can be analyzed by visual inspection as one option. The new method enables an integrative genome-wide view on the omics data types and the underlying regulatory modes. It is applied to high and low-grade gliomas and to melanomas where it disentangles transversal and longitudinal molecular heterogeneity in terms of distinct molecular subtypes and progression paths with prognostic impact.

Keywords: integrative bioinformatics, machine learning, molecular mechanisms of cancer, gliomas and melanomas

Procedia PDF Downloads 148
3 Aberrant Genome‐Wide DNA Methylation Profiles of Peripheral Blood Mononuclear Cells from Patients Hospitalized with COVID-19

Authors: Inam Ridha, Christine L. Kuryla, Madhuranga Thilakasiri Madugoda Ralalage Don, Norman J. Kleiman, Yunro Chung, Jin Park, Vel Murugan, Joshua LaBaer

Abstract:

To date, more than 275 million people worldwide have been diagnosed with COVID-19 and the rapid spread of the omicron variant suggests many millions more will soon become infected. Many infections are asymptomatic, while others result in mild to moderate illness. Unfortunately, some infected individuals exhibit more serious symptoms including respiratory distress, thrombosis, cardiovascular disease, multi-organ failure, cognitive difficulties, and, in roughly 2% of cases, death. Studies indicate other coronaviruses can alter the host cell's epigenetic profile and lead to alterations in the immune response. To better understand the mechanism(s) by which SARS-CoV-2 infection causes serious illness, DNA methylation profiles in peripheral blood mononuclear cells (PBMCs) from 90 hospitalized severely ill COVID-19 patients were compared to profiles from uninfected control subjects. Exploratory epigenome-wide DNA methylation analyses were performed using multiplexed methylated DNA immunoprecipitation (MeDIP) followed by pathway enrichment analysis. The findings demonstrated significant DNA methylation changes in infected individuals as compared to uninfected controls. Pathway analysis indicated that apoptosis, cell cycle control, Toll-like receptors (TLR), cytokine interactions, and T cell differentiation were among the most affected metabolic processes. In addition, changes in specific gene methylation were compared to SARS-CoV-2 induced changes in RNA expression using published RNA-seq data from 3 patients with severe COVID-19. These findings demonstrate significant correlations between differentially methylated and differentially expressed genes in a number of critical pathways.

Keywords: COVID19, epigenetics, DNA mathylation, viral infection

Procedia PDF Downloads 180
2 High-Throughput Artificial Guide RNA Sequence Design for Type I, II and III CRISPR/Cas-Mediated Genome Editing

Authors: Farahnaz Sadat Golestan Hashemi, Mohd Razi Ismail, Mohd Y. Rafii

Abstract:

A huge revolution has emerged in genome engineering by the discovery of CRISPR (clustered regularly interspaced palindromic repeats) and CRISPR-associated system genes (Cas) in bacteria. The function of type II Streptococcus pyogenes (Sp) CRISPR/Cas9 system has been confirmed in various species. Other S. thermophilus (St) CRISPR-Cas systems, CRISPR1-Cas and CRISPR3-Cas, have been also reported for preventing phage infection. The CRISPR1-Cas system interferes by cleaving foreign dsDNA entering the cell in a length-specific and orientation-dependant manner. The S. thermophilus CRISPR3-Cas system also acts by cleaving phage dsDNA genomes at the same specific position inside the targeted protospacer as observed in the CRISPR1-Cas system. It is worth mentioning, for the effective DNA cleavage activity, RNA-guided Cas9 orthologs require their own specific PAM (protospacer adjacent motif) sequences. Activity levels are based on the sequence of the protospacer and specific combinations of favorable PAM bases. Therefore, based on the specific length and sequence of PAM followed by a constant length of target site for the three orthogonals of Cas9 protein, a well-organized procedure will be required for high-throughput and accurate mining of possible target sites in a large genomic dataset. Consequently, we created a reliable procedure to explore potential gRNA sequences for type I (Streptococcus thermophiles), II (Streptococcus pyogenes), and III (Streptococcus thermophiles) CRISPR/Cas systems. To mine CRISPR target sites, four different searching modes of sgRNA binding to target DNA strand were applied. These searching modes are as follows: i) coding strand searching, ii) anti-coding strand searching, iii) both strand searching, and iv) paired-gRNA searching. The output of such procedure highlights the power of comparative genome mining for different CRISPR/Cas systems. This could yield a repertoire of Cas9 variants with expanded capabilities of gRNA design, and will pave the way for further advance genome and epigenome engineering.

Keywords: CRISPR/Cas systems, gRNA mining, Streptococcus pyogenes, Streptococcus thermophiles

Procedia PDF Downloads 257
1 Differentially Expressed Protein Biomarkers in Early and Advanced Stage Young Triple-Negative Breast Cancer Patients

Authors: Shamim Mushtaq, Moazzam Shahid

Abstract:

Breast cancer (BC) claims the lives of half a million women every year and is the most common cause of death in the developing world. In 2019, it was estimated that BC alone accounts for 15% of all cancer deaths in younger women (aged < 45 years old) with advanced-stage lung metastasis. According to the World Health Organization & International Union against Cancer, in Asia, a high number of cancer-related deaths will be observed in 2020, whereas the burden will be reduced in Western countries due to awareness about the disease, better health facilities and advanced treatments. In the last 15 years, it has been reported that the incidence of BC has increased by 1.1% among Asian compared to the US population from 2003 to 2012. To date, several BC biological subtypes have been reported so far, which are associated with different treatment responses. The heterogeneity and diversity of BC reflected these different subtypes, including Luminal A (23.7% prevalence) and B (38.8% prevalence) that have pathological estrogen receptor (ER+)-positive tumors, the human epidermal growth factor receptor 2 (HER2) (11.2% prevalence) and triple-negative breast cancer (TNBC) (25% prevalence). According to Shaukat Khanum Memorial Cancer Hospital and Research Centre – Pakistan, ten years of data showed that among 636 BC patients, 30.5% had TNBC who were <40 years of age, which is an extremely alarming situation. Therefore, there is a dire need to explore and develop therapeutic targets for the treatment of early TNBC. Since the last decade, unfortunately, there has been little success in understanding the complexity of TNBC and in discovering new biological therapeutic targets. However, conventional chemotherapy is the only choice of treatment for TNBC patients. Many investigators revealed advances in multi-omics (multiple "omes", e.g., genome, proteome, transcriptome, epigenome, and microbiome) which were later identified as actionable targets and increased prevalence in TNBC patients. However, various drugs have been identified so far which are related to a particular diagnostic and prognostic biomarker. For example, Epidermal growth factor receptor ( EGFR or ErbB-1), HER-2/neu (ErbB-2), HER-3 (ErbB-3), and HER-4 (ErbB-4). Protein Transglin-2 (TAGLN 2 ) and Profilins-1 (Pfn-1 ) are the ubiquitously expressed large family of proteins present in all eukaryotes, enabling actin cytoskeletal reorganization. It is known that the oncogenic transformation of cells is accompanied by alteration in the actin cytoskeleton. There are causal connections between altered expression of actin cytoskeletal regulators and cancer progression. Our case-control study identified TAGLN-2 and Pfn-1 proteins in TNBC blood by mass spectrometry. Both TAGLN-2 and Pfn-1 proteins are differentially expressed in early and advanced stages of TNBS patients, which could be potential predictors or therapeutic targets for TNBC.

Keywords: TNBC, blood biomarkers, mass spectrometry, qPCR, ELISA

Procedia PDF Downloads 43