Search results for: protein C
1581 Magnetic Field Effects on Seed Germination of Phaseolus Vulgaris, Early Seedling Growth, and Chemical Composition
Authors: Farzad Tofigh, Saeideh Najafi, Reza Heidari, Rashid Jamei
Abstract:
In order to study the effects of magnetic field on the root system and growth of Phaseolus vulgaris, an experiment was conducted in 2012. The possible involvement of magnetic field (MF) pretreatment in physiological factors of Phaseolus vulgaris was investigated. Seeds were subjected to 10 days with 1.8 mT of magnetic field for 1h per day. MF pretreatment decreased the plant height, fresh and dry weight, length of root and length of shoot, Chlorophyll a, Chlorophyll b and carotenoid in 10 days old seedling. In addition, activity of enzymes such as Catalase and Guaiacol peroxidase was decreased due to MF exposure. Also, the total Protein and DPPH content of the treated by magnetic field was not significantly changed in compare to control groups, while the flavonoid, Phenol and prolin content of the treated of the treated by magnetic field was significantly changed in compare to control groups. Lateral branches of roots and secondary roots increased with MF. The results suggest that pretreatment of this MF plays important roles in changes in crop productivity. In all cases there was observed a slight stimulating effect of the factors examined. The growth dynamics were weakened. The plants were shorter. Moreover, the effect of a magnetic field on the crop of Phaseolus vulgaris and its structure was small.Keywords: carotenoid, chlorophyll a, chlorophyll b, DPPH, enzymes, flavonoid, germination, growth, phenol, proline, protein, magnetic field
Procedia PDF Downloads 5031580 In-Situ Fabrication of ZnO PES Membranes for Treatment of Pharmaceuticals
Authors: Oranso T. Mahlangi, Bhekie B. Mamba
Abstract:
The occurrence of trace organic compounds (TOrCs) in water has raised health concerns for living organisms. The majority of TorCs, including pharmaceuticals and volatile organic compounds, are poorly monitored, partly due to the high cost of analysis and less strict water quality guidelines in South Africa. Therefore, the removal of TorCs is important to guarantee safe potable water. In this study, ZnO nanoparticles were fabricated in situ in polyethersulfone (PES) polymer solutions. This was followed by membrane synthesis using the phase inversion technique. Techniques such as FTIR, Raman, SEM, AFM, EDS, and contact angle measurements were used to characterize the membranes for several physicochemical properties. The membranes were then evaluated for their efficiency in treating pharmaceutical wastewater and resistance to organic (sodium alginate) and protein (bovine serum albumin) fouling. EDS micrographs revealed uniform distribution of ZnO nanoparticles within the polymer matrix, while SEM images showed uniform fingerlike structures. The addition of ZnO increased membrane roughness as well as hydrophilicity (which in turn improved water fluxes). The membranes poorly rejected monovalent and divalent salts (< 10%), making them resistant to flux decline due to concentration polarization effects. However, the membranes effectively removed carbamazepine, caffeine, sulfamethoxazole, ibuprofen, and naproxen by over 50%. ZnO PES membranes were resistant to organic and protein fouling compared to the neat membrane. ZnO PES ultrafiltration membranes may provide a solution in the reclamation of wastewater.Keywords: trace organic compounds, pharmaceuticals, membrane fouling, wastewater reclamation
Procedia PDF Downloads 1411579 Molecular Profiles of Microbial Etiologic Agents Forming Biofilm in Urinary Tract Infections of Pregnant Women by RTPCR Assay
Authors: B. Nageshwar Rao
Abstract:
Urinary tract infection (UTI) represents the most commonly acquired bacterial infection worldwide, with substantial morbidity, mortality, and economic burden. The objective of the study is to characterize the microbial profiles of uropathogenic in the obstetric population by RTPCR. Study design: An observational cross-sectional study was performed at a single tertiary health care hospital among 50 pregnant women with UTIs, including asymptomatic and symptomatic patients attending the outpatient department and inpatient department of Obstetrics and Gynaecology.Methods: Serotyping and genes detection of various uropathogens were studied using RTPCR. Pulse filed gel electrophoresis methods were used to determine the various genetic profiles. Results: The present study shows that CsgD protein, involved in biofilm formation in Escherichia coli, VIM1, IMP1 genes for Klebsiella were identified by using the RTPCR method. Our results showed that the prevalence of VIM1 and IMP1 genes and CsgD protein in E.coli showed a significant relationship between strong biofilm formation, and this may be due to the prevalence of specific genes. Finally, the genetic identification of RTPCR results for both bacteria was correlated with each other and concluded that the above uropathogens were common isolates in producing Biofilm in the pregnant woman suffering from urinary tract infection in our hospital observational study.Keywords: biofilms, Klebsiella, E.coli, urinary tract infection
Procedia PDF Downloads 1261578 Preventive Effect of Zinc on Nickel Hepatotoxicity and Nephrotoxicity in Albino (Wistar) Rats
Authors: Zine Kechrid, Samira Bouhalit
Abstract:
Aim: We studied the effect of intraperitonial zinc treatment on nickel sulphate-induced hepatotoxicity and nephrotoxicity in Wistar strain male albino rats. Materials and Methods: Liver and kidney dysfunction parameters represented by aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), blood glucose, serum total protein, serum urea, serum creatinine, and serum belurebin were estimated. Liver glutathione level, catalase and GPx activities were also determined in liver as indicators of oxidative damage. Result: Nickel treatment led to high serum glucose concentration and produced hepatotoxicity and nephrotoxicity characterized by increasing GPT, GOT and alkaline phosphatase activities, serum total protein, serum urea, serum creatinine and serum belurebin concentrations. In addition, liver glutathione level, catalase and GSH-Px activities diminished due to high lipid peroxidation. The simultaneous administration of zinc with nickel sulphate resulted in a remarkable improvement of the previous parameters compared with rats treated with nickel alone. Conclusion: In conclusion, nickel sulphate led to liver and kidney dysfunctions and hepatic lipid peroxidation in animals, but simultaneous treatment with zinc offers a relative protection against nickel induced hepatotoxicity, nephrotoxicity and lipid peroxidation.Keywords: nickel, zinc, rats, GOT, GPT, nephrotoxicity, hepatotoxicity
Procedia PDF Downloads 4511577 Preparation of Pegylated Interferon Alpha-2b with High Antiviral Activity Using Linear 20 KDa Polyethylene Glycol Derivative
Authors: Ehab El-Dabaa, Omnia Ali, Mohamed Abd El-Hady, Ahmed Osman
Abstract:
Recombinant human interferon alpha 2 (rhIFN-α2) is FDA approved for treatment of some viral and malignant diseases. Approved pegylated rhIFN-α2 drugs have highly improved pharmacokinetics, pharmacodynamics and therapeutic efficiency compared to native protein. In this work, we studied the pegylation of purified properly refolded rhIFN-α2b using linear 20kDa PEG-NHS (polyethylene glycol- N-hydroxysuccinimidyl ester) to prepare pegylated rhIFN-α2b with high stability and activity. The effect of different parameters like rhIFN-α2b final concentration, pH, rhIFN-α2b/PEG molar ratios and reaction time on the efficiency of pegylation (high percentage of monopegylated rhIFN-α2b) have been studied in small scale (100µl) pegylation reaction trials. Study of the percentages of different components of these reactions (mono, di, polypegylated rhIFN-α2b and unpegylated rhIFN-α2b) indicated that 2h is optimum time to complete the reaction. The pegylation efficiency increased at pH 8 (57.9%) by reducing the protein concentration to 1mg/ml and reducing the rhIFN-α2b/PEG ratio to 1:2. Using larger scale pegylation reaction (65% pegylation efficiency), ion exchange chromatography method has been optimized to prepare and purify the monopegylated rhIFN-α2b with high purity (96%). The prepared monopegylated rhIFN-α2b had apparent Mwt of approximately 65 kDa and high in vitro antiviral activity (2.1x10⁷ ± 0.8 x10⁷ IU/mg). Although it retained approximately 8.4 % of the antiviral activity of the unpegylated rhIFN-α2b, its activity is high compared to other pegylated rhIFN-α2 developed by using similar approach or higher molecular weight branched PEG.Keywords: antiviral activity, rhIFN-α2b, pegylation, pegylation efficiency
Procedia PDF Downloads 1791576 In silico Designing and Insight into Antimalarial Potential of Chalcone-Quinolinylpyrazole Hybrids by Preclinical Study in Mice
Authors: Deepika Saini, Sandeep Jain, Ajay Kumar
Abstract:
The quinoline scaffold is one of the most widely studied in the discovery of derivatives with various heterocyclic moieties due to its potential antimalarial activities. In the present study, a chalcone series of quinoline derivatives clubbed with pyrazole were synthesized to evaluate their antimalarial property by in vitro schizont maturation inhibition assay against both chloroquine sensitive, 3D7 and chloroquine resistant, RKL9 strain of Plasmodium falciparum. Further, top five compounds were studied for in vivo preclinical study for antimalarial potential against P. berghei in Swiss albino mice. To understand the mechanism of synthesized analogues, they were screened computationally by molecular docking techniques. Compounds were docked into the active site of a protein receptor, Plasmodium falciparum Cysteine Protease Falcipain-2. The compounds were successfully synthesized, and structural confirmation was performed by FTIR, 1H-NMR, mass spectrometry and elemental analysis. In vitro study suggested that the compounds 5b, 5g, 5l, 5s and 5u possessed best antimalarial activity and further tested for in vivo screening. Compound 5u (CH₃ on both rings) with EC₅₀ 0.313 & 0.801 µg/ml against CQ-S & CQ-R strains of P. falciparum respectively and 78.01% suppression of parasitemia. The molecular docking studies of the compounds helped in understanding the mechanism of action against falcipain-2. The present study reveals the binding signatures of the synthesized ligands within the active site of the protein, and it explains the results from in vitro study in their EC₅₀ values and percentage parasitemia.Keywords: antimalarial activity, chalcone, docking, quinoline
Procedia PDF Downloads 4091575 Nutritional Value and Forage Quality Indicators in Some Rangeland’s Species at Different Vegetation Forms
Authors: Reza Dehghani Bidgoli
Abstract:
Information on different rangeland plants’ nutritive values at various phonological stages is important in rangelands management. This information helps rangeland managers to choose proper grazing times to achieve higher animal performance without detrimental effects on the rangeland vegetations. Effects of various plant parts’ phonological stages and vegetation types on reserve carbohydrates and forage quality indicators were investigated during the 2009 and 2010. Plant samples were collected in a completely randomized block (CRB) design. The species included, grasses (Secale montanum and Festuco ovina), forbs (Lotus corniculatus and Sanguisorba minor), and shrubs (Kochia prosterata and Salsola rigida). Aerial plant parts’ samples were oven-dried at 80oC for 24 hours, then analyzed for soluble carbohydrates, crude protein (CP), acid detergent fiber (ADF), dry matter digestible (DMD), and metabolizable energy (ME). Results showed that plants at the seedling stage had more reserve carbohydrates and from the three vegetation types (grass, forbs, and shrub), forbs contained more soluble carbohydrates compared to the other two (grasses and shrubs). Differences in soluble carbohydrate contents of different species at various phonological stages in 2 years were statistically significant. The forage quality indicators (CP, ADF, DMD, and ME) in different species, in different vegetation types, in the 2 years were statistically significant, except for the CP.Keywords: grazing, soluble carbohydrate, protein, fiber, metabolizeable energy
Procedia PDF Downloads 2831574 Proteomics Application in Disease Diagnosis and Reproduction İmprovement in Cow
Authors: Abdollah Sobhani, Hossein Vaseghi-Dodaran
Abstract:
Proteomics is defined as the study of the component of a cell, tissue and biological fluid. This technique has the potential to identify protein biomarkers of a disease states. In this study which was performed on bovine ovarian follicular cysts (BOFC), eight proteins are over expressed in BOFC that these proteins could be useful biomarkers for BOFC. The difference between serum proteome pattern cows affected by postpartum endometritis with healthy cows revealed that concentrations orosomucoid was decreased in endometritis. The comparison proteome of brucella abortus between laboratory adapted strains and clinical isolates could be useful to better understand this disease and vaccine development. Proteomics experiments identified new proteins and pathways that may be important in future hypothesis-driven studies of glucocorticoid-induced immunosuppression. Understanding the molecular mechanisms of effective parameters on male fertility is essential for obtaining high reproductive efficiency by decreasing cost and time. The investigations on proteome of high fertility spermatozoa indicated that expression of some proteins such as casein kinase 2 (CKII) prime poly peptide and tyrosine kinase in high fertility spermatozoa was higher compared to low fertility spermatozoa. Also, some evidence has indicated that variation in protein types and amounts in seminal fluid regulates fertility indexes in dairy bull. In conclusion, proteomics is a useful technique for discovering drugs, vaccine development, and diagnosis disease by biomarkers and improvement of reproduction efficiency.Keywords: proteomics, reproduction, biomarker, immunity
Procedia PDF Downloads 4121573 The Proximate Composition and Phytochemical Screening of Momordica Balsamina (Balsam Apple) Fruit and Leaves
Authors: Viruska Jaichand, John Jason Mellem, Viresh Mohanlall
Abstract:
Malnutrition is a global issue that affects both children and adults, irrespective of their socio-economic status. It is, therefore, important to find various means to tackle malnutrition. This is especially important as undernutrition and overnutrition can be linked to a variety of non-communicable diseases (NCDs). This study aimed to gather more insight into the nutritional and phytochemical quality of Momordica balsamina leaves and fruit (fruit pericarp, fruit flesh and seeds). Results showed that Momordica balsamina had a nutritional composition that would be advantageous to the human diet. The nutritional quality is verified by the presence of a high protein percentage across all samples (19.72%-29.08%), with the leaves containing the highest protein content (29.08%±0.77). There was also a low-fat content present across all samples, which ranged from 1.03% to 2.40%. The ash content indicated the presence of total minerals to be adequate (2.93%-21.16%), where the pericarp had the highest ash quantity (21.16%±0.09). The moisture levels were low (7.11%-13.40%). Momordica balsamina seeds had the highest carbohydrate content (67.84%±0.30). Rich in the major phytoconstituents, Momordica balsamina extracts were found to contain alkaloids, saponins, cardiac glycosides, steroids and triterpenoids. Based on these findings, it can thus be said that the incorporation of Momordica balsamina into an individual’s diet could prevent diseases associated with malnutrition, as well as it could be used to supplement the human diet in managing certain NCDs. Even though there were a number of bioactive compounds detected, further studies which would correlate the phytochemical constituents detected in Momordica balsamina and its effectiveness in treating various diseases are recommended.Keywords: momordica balsamina, nutrients, proximate composition, bioactive compounds, phytoconstituents
Procedia PDF Downloads 751572 Characterization of a Lipolytic Enzyme of Pseudomonas nitroreducens Isolated from Mealworm's Gut
Authors: Jung-En Kuan, Whei-Fen Wu
Abstract:
In this study, a symbiotic bacteria from yellow mealworm's (Tenebrio molitor) mid-gut was isolated with characteristics of growth on minimal-tributyrin medium. After a PCR-amplification of its 16s rDNA, the resultant nucleotide sequences were then analyzed by schemes of the phylogeny trees. Accordingly, it was designated as Pseudomonas nitroreducens D-01. Next, by searching the lipolytic enzymes in its protein data bank, one of those potential lipolytic α/β hydrolases was identified, again using PCR-amplification and nucleotide-sequencing methods. To construct an expression of this lipolytic gene in plasmids, the target-gene primers were then designed, carrying the C-terminal his-tag sequences. Using the vector pET21a, a recombinant lipolytic hydrolase D gene with his-tag nucleotides was successfully cloned into it, of which the lipolytic D gene is under a control of the T7 promoter. After transformation of the resultant plasmids into Eescherichia coli BL21 (DE3), an IPTG inducer was used for the induction of the recombinant proteins. The protein products were then purified by metal-ion affinity column, and the purified proteins were found capable of forming a clear zone on tributyrin agar plate. Shortly, its enzyme activities were determined by degradation of p-nitrophenyl ester(s), and the substantial yellow end-product, p-nitrophenol, was measured at O.D.405 nm. Specifically, this lipolytic enzyme efficiently targets p-nitrophenyl butyrate. As well, it shows the most reactive activities at 40°C, pH 8 in potassium phosphate buffer. In thermal stability assays, the activities of this enzyme dramatically drop when the temperature is above 50°C. In metal ion assays, MgCl₂ and NH₄Cl induce the enzyme activities while MnSO₄, NiSO₄, CaCl₂, ZnSO₄, CoCl₂, CuSO₄, FeSO₄, and FeCl₃ reduce its activities. Besides, NaCl has no effects on its enzyme activities. Most organic solvents decrease the activities of this enzyme, such as hexane, methanol, ethanol, acetone, isopropanol, chloroform, and ethyl acetate. However, its enzyme activities increase when DMSO exists. All the surfactants like Triton X-100, Tween 80, Tween 20, and Brij35 decrease its lipolytic activities. Using Lineweaver-Burk double reciprocal methods, the function of the enzyme kinetics were determined such as Km = 0.488 (mM), Vmax = 0.0644 (mM/min), and kcat = 3.01x10³ (s⁻¹), as well the total efficiency of kcat/Km is 6.17 x10³ (mM⁻¹/s⁻¹). Afterwards, based on the phylogenetic analyses, this lipolytic protein is classified to type IV lipase by its homologous conserved region in this lipase family.Keywords: enzyme, esterase, lipotic hydrolase, type IV
Procedia PDF Downloads 1331571 Identification of Potential Small Molecule Regulators of PERK Kinase
Authors: Ireneusz Majsterek, Dariusz Pytel, J. Alan Diehl
Abstract:
PKR-like ER kinase (PERK) is serine/threonie endoplasmic reticulum (ER) transmembrane kinase activated during ER-stress. PERK can activate signaling pathways known as unfolded protein response (UPR). Attenuation of translation is mediated by PERK via phosphorylation of eukaryotic initiation factor 2α (eIF2α), which is necessary for translation initiation. PERK activation also directly contributes to activation of Nrf2 which regulates expression of anti-oxidant enzymes. An increased phosphorylation of eIF2α has been reported in Alzheimer disease (AD) patient hippocampus, indicating that PERK is activated in this disease. Recent data have revealed activation of PERK signaling in non-Hodgkins lymphomas. Results also revealed that loss of PERK limits mammary tumor cell growth in vitro and in vivo. Consistent with these observations, activation of UPR in vitro increases levels of the amyloid precursor protein (APP), the peptide from which beta-amyloid plaques (AB) fragments are derived. Finally, proteolytic processing of APP, including the cleavages that produce AB, largely occurs in the ER, and localization coincident with PERK activity. Thus, we expect that PERK-dependent signaling is critical for progression of many types of diseases (human cancer, neurodegenerative disease and other). Therefore, modulation of PERK activity may be a useful therapeutic target in the treatment of different diseases that fail to respond to traditional chemotherapeutic strategies, including Alzheimer’s disease. Our goal will be to developed therapeutic modalities targeting PERK activity.Keywords: PERK kinase, small molecule inhibitor, neurodegenerative disease, Alzheimer’s disease
Procedia PDF Downloads 4831570 Influence of Protein Malnutrition and Different Stressful Conditions on Aluminum-Induced Neurotoxicity in Rats: Focus on the Possible Protection Using Epigallocatechin-3-Gallate
Authors: Azza A. Ali, Asmaa Abdelaty, Mona G. Khalil, Mona M. Kamal, Karema Abu-Elfotuh
Abstract:
Background: Aluminium (Al) is known as a neurotoxin environmental pollutant that can cause certain diseases as Dementia, Alzheimer's disease, and Parkinsonism. It is widely used in antacid drugs as well as in food additives and toothpaste. Stresses have been linked to cognitive impairment; Social isolation (SI) may exacerbate memory deficits while protein malnutrition (PM) increases oxidative damage in cortex, hippocampus and cerebellum. The risk of cognitive decline may be lower by maintaining social connections. Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea and has antioxidant, anti-inflammatory and anti-atherogenic effects as well as health-promoting effects in CNS. Objective: To study the influence of different stressful conditions as social isolation, electric shock (EC) and inadequate Nutritional condition as PM on neurotoxicity induced by Al in rats as well as to investigate the possible protective effect of EGCG in these stressful and PM conditions. Methods: Rats were divided into two major groups; protected group which was daily treated during three weeks of the experiment by EGCG (10 mg/kg, IP) or non-treated. Protected and non-protected groups included five subgroups as following: One normal control received saline and four Al toxicity groups injected daily for three weeks by ALCl3 (70 mg/kg, IP). One of them served as Al toxicity model, two groups subjected to different stresses either by isolation as mild stressful condition (SI-associated Al toxicity model) or by electric shock as high stressful condition (EC- associated Al toxicity model). The last was maintained on 10% casein diet (PM -associated Al toxicity model). Isolated rats were housed individually in cages covered with black plastic. Biochemical changes in the brain as acetyl cholinesterase (ACHE), Aβ, brain derived neurotrophic factor (BDNF), inflammatory mediators (TNF-α, IL-1β), oxidative parameters (MDA, SOD, TAC) were estimated for all groups. Histopathological changes in different brain regions were also evaluated. Results: Rats exposed to Al for three weeks showed brain neurotoxicity and neuronal degenerations. Both mild (SI) and high (EC) stressful conditions as well as inadequate nutrition (PM) enhanced Al-induced neurotoxicity and brain neuronal degenerations; the enhancement induced by stresses especially in its higher conditions (ES) was more pronounced than that of inadequate nutritional conditions (PM) as indicated by the significant increase in Aβ, ACHE, MDA, TNF-α, IL-1β together with the significant decrease in SOD, TAC, BDNF. On the other hand, EGCG showed more pronounced protection against hazards of Al in both stressful conditions (SI and EC) rather than in PM .The protective effects of EGCG were indicated by the significant decrease in Aβ, ACHE, MDA, TNF-α, IL-1β together with the increase in SOD, TAC, BDNF and confirmed by brain histopathological examinations. Conclusion: Neurotoxicity and brain neuronal degenerations induced by Al were more severe with stresses than with PM. EGCG can protect against Al-induced brain neuronal degenerations in all conditions. Consequently, administration of EGCG together with socialization as well as adequate protein nutrition is advised especially on excessive Al-exposure to avoid the severity of its neuronal toxicity.Keywords: environmental pollution, aluminum, social isolation, protein malnutrition, neuronal degeneration, epigallocatechin-3-gallate, rats
Procedia PDF Downloads 3911569 A Molecular Modelling Approach for Identification of Lead Compound from Rhizomes of Glycosmis Pentaphylla for Skin Cancer Treatment
Authors: Rahul Shrivastava, Manish Tripathi, Mohmmad Yasir, Shailesh Singh
Abstract:
Life style changes and depletion in atmospheric ozone layer in recent decades lead to increase in skin cancer including both melanoma and nonmelanomas. Natural products which were obtained from different plant species have the potential of anti skin cancer activity. In regard of this, present study focuses the potential effect of Glycosmis pentaphylla against anti skin cancer activity. Different Phytochemical constituents which were present in the roots of Glycosmis pentaphylla were identified and were used as ligands after sketching of their structures with the help of ACD/Chemsketch. These ligands are screened for their anticancer potential with proteins which are involved in skin cancer effects with the help of pyrx software. After performing docking studies, results reveal that Noracronycine secondary metabolite of Glycosmis pentaphylla shows strong affinity of their binding energy with Ribosomal S6 Kinase 2 (2QR8) protein. Ribosomal S6 Kinase 2 (2QR8) has an important role in the cell proliferation and transformation mediated through by N-terminal kinase domain and was induced by the tumour promoters such as epidermal growth factor. It also plays a key role in the neoplastic transformation of human skin cells and in skin cancer growth. Noracronycine interact with THR-493 and MET-496 residue of Ribosomal S6 Kinase 2 protein with binding energy ΔG = -8.68 kcal/mole. Thus on the basis of this study we can say that Noracronycine which present in roots of Glycosmis pentaphylla can be used as lead compound against skin cancer.Keywords: glycosmis pentaphylla, pyrx, ribosomal s6 kinase, skin cancer
Procedia PDF Downloads 3031568 YHV-Responsive Gene Expression under the Influence of PmRelish Regulation
Authors: Suwattana Visetnan, Premruethai Supungul, Sureerat Tang, Ikuo Hirono, Anchalee Tassanakajon, Vichien Rimphanitchayakit
Abstract:
In animals, infection by Gram-negative bacteria and certain viruses activates the Imd signaling pathway wherein the a NF-κB transcription factor, Relish, is a key regulatory protein for the synthesis of antimicrobial proteins. Infection by yellow head virus (YHV) activates the Imd pathway. To investigate the expression of genes involved in YHV infection and under the influence of PmRelish regulation, RNA interference and suppression subtractive hybridization (SSH) are employed. The genes in forward library expressed in shrimp after YHV infection and under the activity of PmRelish were obtained by subtracting the cDNAs from YHV-infected and PmRelish-knockdown shrimp with cDNAs from YHV-infected shrimp. Opposite subtraction gave a reverse library whereby an alternative set of genes under YHV infection and no PmRelish expression was obtained. Sequencing of 252 and 99 cDNA clones from the respective forward and reverse libraries were done and annotated through blast search against the GenBank sequences. Genes involved in defense and homeostasis were abundant in both libraries, 31% and 23% in the forward and reverse libraries, respectively. They were predominantly antimicrobial proteins, proteinases and proteinase inhibitors. The expression of antimicrobial protein genes, ALFPm3, crustinPm1, penaeidin3 and penaeidin5 were tested under PmRelish silencing and Gram-negative bacterium V. harveyi infection. Together with the results previously reported, the expression of penaeidin5 and also penaeidin3 but not ALFPm3 and crustinPm1 were under the regulation of PmRelish in the Imd pathway.Keywords: relish, yellow head virus, penaeus monodon, antimicrobial proteins
Procedia PDF Downloads 2121567 Insights Into Serotonin-Receptor Binding and Stability via Molecular Dynamics Simulations: Key Residues for Electrostatic Interactions and Signal Transduction
Authors: Arunima Verma, Padmabati Mondal
Abstract:
Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT₁ᴮ receptor (5-HT₁ᴮ R) via electrostatic interactions. An end-point free energy calculation method (MM-PBSA) determines the stability of the 5-HT1B R due to serotonin binding. The single-point mutation of the polar or charged amino acid residues (Asp129, Thr134) on the binding sites and the calculation of binding free energy validate the importance of these residues in the stability of the serotonin-receptor complex. Principal component analysis indicates the serotonin-bound 5-HT1BR is more stabilized than the apo-receptor in terms of dynamical changes. The difference dynamic cross-correlations map shows the correlation between the transmembrane and mini-Go, which indicates signal transduction happening between mini-Go and the receptor. Allosteric communication reveals the key nodes for signal transduction in 5-HT1BR. These results provide useful insights into the signal transduction pathways and mutagenesis study to regulate the functionality of the complex. The developed protocols can be applied to study local non-covalent interactions and long-range allosteric communications in any protein-ligand system for computer-aided drug design.Keywords: allostery, CADD, MD simulations, MM-PBSA
Procedia PDF Downloads 871566 Histone Deacetylases Inhibitor - Valproic Acid Sensitizes Human Melanoma Cells for alkylating agent and PARP inhibitor
Authors: Małgorzata Drzewiecka, Tomasz Śliwiński, Maciej Radek
Abstract:
The inhibition of histone deacetyles (HDACs) holds promise as a potential anti-cancer therapy because histone and non-histone protein acetylation is frequently disrupted in cancer, leading to cancer initiation and progression. Additionally, histone deacetylase inhibitors (HDACi) such as class I HDAC inhibitor - valproic acid (VPA) have been shown to enhance the effectiveness of DNA-damaging factors, such as cisplatin or radiation. In this study, we found that, using of VPA in combination with talazoparib (BMN-637 – PARP1 inhibitor – PARPi) and/or Dacarabazine (DTIC - alkylating agent) resulted in increased DNA double strand break (DSB) and reduced survival (while not affecting primary melanocytes )and proliferation of melanoma cells. Furthermore, pharmacologic inhibition of class I HDACs sensitizes melanoma cells to apoptosis following exposure to DTIC and BMN-637. In addition, inhibition of HDAC caused sensitization of melanoma cells to dacarbazine and BMN-637 in melanoma xenografts in vivo. At the mRNA and protein level histone deacetylase inhibitor downregulated RAD51 and FANCD2. This study provides that combining HDACi, alkylating agent and PARPi could potentially enhance the treatment of melanoma, which is known for being one of the most aggressive malignant tumors. The findings presented here point to a scenario in which HDAC via enhancing the HR-dependent repair of DSBs created during the processing of DNA lesions, are essential nodes in the resistance of malignant melanoma cells to methylating agent-based therapies.Keywords: melanoma, hdac, parp inhibitor, valproic acid
Procedia PDF Downloads 821565 Improving the Utilization of Telfairia occidentalis Leaf Meal with Cellulase-Glucanase-Xylanase Combination and Selected Probiotic in Broiler Diets
Authors: Ayodeji Fasuyi
Abstract:
Telfairia occidentalis is a leafy vegetable commonly grown in the tropics for nutritional benefits. The use of enzymes and probiotics is becoming prominent due to the ban on antibiotics as growth promoters in many parts of the world. It is conceived that with enzymes and probiotics additives, fibrous leafy vegetables can be incorporated into poultry feeds as protein source. However, certain antinutrients were also found in the leaves of Telfairia occidentalis. Four broiler starter and finisher diets were formulated for the two phases of the broiler experiments. A mixture of fiber degrading enzymes, Roxazyme G2 (combination of cellulase, glucanase and xylanase) and probiotics (Turbotox), a growth promoter, were used in broiler diets at 1:1. The Roxazyme G2/Turbotox mixtures were used in diets containing four varying levels of Telfairia occidentalis leaf meal (TOLM) at 0, 10, 20 and 30%. Diets 1 were standard broiler diets without TOLM and Roxazyme G2 and Turbotox additives. Diets 2, 3 and 4 had enzymes and probiotics additives. Certain mineral elements such as Ca, P, K, Na, Mg, Fe, Mn, Cu and Zn were found in notable quantities viz. 2.6 g/100 g, 1.2 g/100 g, 6.2 g/100 g, 5.1 g/100 g, 4.7 g/100 g, 5875 ppm, 182 ppm, 136 ppm and 1036 ppm, respectively. Phytin, phytin-P, oxalate, tannin and HCN were also found in ample quantities viz. 189.2 mg/100 g, 120.1 mg/100 g, 80.7 mg/100 g, 43.1 mg/100 g and 61.2 mg/100 g, respectively. The average weight gain was highest at 46.3 g/bird/day for birds on 10% TOLM diet but similar (P > 0.05) to 46.2 g/bird/day for birds on 20% TOLM. The feed conversion ratio (FCR) of 2.27 was the lowest and optimum for birds on 10% TOLM although similar (P > 0.05) to 2.29 obtained for birds on 20% TOLM. FCR of 2.61 was the highest at 2.61 for birds on 30% TOLM diet. The lowest FCR of 2.27 was obtained for birds on 10% TOLM diet although similar (P > 0.05) to 2.29 for birds on 20% TOLM diet. Most carcass characteristics and organ weights were similar (P > 0.05) for the experimental birds on the different diets except for kidney, gizzard and intestinal length. The values for kidney, gizzard and intestinal length were significantly higher (P < 0.05) for birds on the TOLM diets. The nitrogen retention had the highest value of 72.37 ± 0.10% for birds on 10% TOLM diet although similar (P > 0.05) to 71.54 ± 1.89 obtained for birds on the control diet without TOLM and enzymes/probiotics mixture. There was evidence of a better utilization of TOLM as a plant protein source. The carcass characteristics and organ weights all showed evidence of uniform tissue buildup and muscles development particularly in diets containing 10% of TOLM level. There was also better nitrogen utilization in birds on the 10% TOLM diet. Considering the cheap cost of TOLM, it is envisaged that its introduction into poultry feeds as a plant protein source will ultimately reduce the cost of poultry feeds.Keywords: Telfairia occidentalis leaf meal, enzymes, probiotics, additives
Procedia PDF Downloads 1391564 Medical Nutritional Therapy in Human Immunodeficiency Virus Infection with Tuberculosis and Severe Malnutrition: A Case Report
Authors: Lista Andriyati, Nurpudji A Taslim
Abstract:
The human immunodeficiency virus (HIV) patients have potential nutritional and metabolic problems. HIV is a virus that attacks cells T helper and impairs the function of immune cells. Infected individuals gradually become immunodeficient, results in increased susceptibility to a wide range of infections such as tuberculosis (TB). Malnutrition has destructive effects on the immune system and host defense mechanisms. Effective and proper nutritional therapies are important to improve medical outcomes and quality of life, which is associated with functional improvement. A case of 38-years old man admitted to hospital with loss of consciousness and was diagnosed HIV infection and relapse lung TB with severe malnutrition, fever, oral candidiasis, anemia (6.3 g/dL), severe hypoalbuminemia (1.9 g/dL), severe hypokalemia (2.2 mmol/L), immune depletion (1085 /µL) and elevated liver enzyme (ALT 1198/AST 375 U/L). Nutritional intervention by giving 2300 kcal of energy, protein 2 g/IBW/day, carbohydrate 350 g, fat 104 g through enteral and parenteral nutrition. Supplementations administered are zinc, vitamin A, vitamin B1, vitamin B6, vitamin B12, vitamin C, vitamin D, and snakehead fish extract high content of protein albumin (Pujimin®). After 46 days, there are clinical and metabolic improvement in Hb (6.3 to 11.2 g/dL), potassium (2.2 to 3.4 mmol/L), albumin (1.9 to 2.3 g/dL), ALT 1198 to 47/AST 375 to 68 U/L) and improved awareness. In conclusion, nutritional therapy in HIV infection with adequate macronutrients and micronutrients fulfillment and immunonutrition is very important to avoid cachexia and to improve nutritional status and immune disfunction.Keywords: HIV, hypoalbuminemia, malnutrition, tuberculosis
Procedia PDF Downloads 1301563 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging
Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen
Abstract:
Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques
Procedia PDF Downloads 1001562 Effects of Egg Yolk Peptide on the Retardation of Bone Growth Induced by Low-Calcium Diets
Authors: Kang-Hyun Leem, Myung-Gyou Kim, Hye Kyung Kim
Abstract:
Eggs have long been an important contributor to the nutritional quality of the human, and recognized as a very valuable source of proteins for human nutrition. Egg yolk is composed of various important chemical substances for human health. Growth means not only the increase of body weight but also the elongation of height and the enlargement of each organ's anatomical and morphological size. A calcium shortage causes the growth retardation on the body growth. In this study, we examined the therapeutic effects of egg yolk peptide (EYP) on the retardation of the longitudinal bone growth induced by low-calcium diet (0.05%) in adolescent rats. Low calcium diets were administrated for 15 days. During the last five days, calcium and/or vitamin D and/or EYP were administrated. The body weights, longitudinal bone growth rates, the heights of growth plates, and bone morphogenetic protein (BMP)-2 and insulin-like growth factor (IGF)-1 expressions were measured using histochemical analysis. Low calcium diets caused the significant reduction in body weight gains and the longitudinal bone growth. The heights of growth plates and the expressions of BMP-2 and IGF-1 showed the impairment of body growth as well. Calcium and/or vitamin D administration could not significantly increase the longitudinal bone growth. However, calcium, vitamin D, and EYP administration significantly increased the bone growth, the growth plate height, and BMP-2 and IGF-1 expressions. These results suggest that EYP enhances the longitudinal bone growth in the calcium and/or vitamin D deficiency and it could be a promising agent for the treatment of children suffering from malnutrition.Keywords: egg yolk peptide, low-calcium diet, longitudinal bone growth, morphogenetic protein-2, insulin-like growth factor-1, vitamin D
Procedia PDF Downloads 4491561 Biochemical Characteristics and Microstructure of Ice Cream Prepared from Fresh Cream
Authors: S. Baississe, S. Godbane, A. Lekbir
Abstract:
The objective of our work is to develop an ice cream from a fermented cream, skim milk and other ingredients and follow the evolution of its physicochemical properties, biochemical and microstructure of the products obtained. Our cream is aerated with the manufacturing steps start with a homogenizing follow different ingredients by heating to 40°C emulsion, the preparation is then subjected to a heat treatment at 65°C for 30 min, before being stored in the cold at 4°C for a few hours. This conservation promotes crystallization of the material during the globular stage of maturation of the cream. The emulsifying agent moves gradually absorbed on the surface of fat globules homogeneous, which results in reduced protein stability. During the expansion, the collusion of destabilizing fat globules in the aqueous phase favours their coalescence. During the expansion, the collusion of destabilized fat globules in the aqueous phase favours their coalescence. The stabilizing agent increases the viscosity of the aqueous phase and the drainage limit interaction with the proteins of the aqueous phase and the protein absorbed on fat globules. The cutting improved organoleptic property of our cream is made by the use of three dyes and aromas. The products obtained undergo physicochemical analyses (pH, conductivity and acidity), biochemical (moisture, % dry matter and fat in %), and finally in the microscopic observation of the microstructure and the results obtained by analysis of the image processing software. The results show a remarkable evolution of physicochemical properties (pH, conductivity and acidity), biochemical (moisture, fat and non-fat) and microstructure of the products developed in relation to the raw material (skim milk) and the intermediate product (fermented cream).Keywords: ice cream, sour cream, physicochemical, biochemical, microstructure
Procedia PDF Downloads 2091560 Impacts of Sociological Dynamics on Entomophagy Practice and Food Security in Nigeria
Authors: O. B. Oriolowo, O. J. John
Abstract:
Empirical findings have shown insects to be nutritious and good source of food for man. However, human food preferences are not only determined by nutritional values of food consumed but, more importantly, by sociology and economic pressure. This study examined the interrelation between science and sociology in sustaining the acceptance of entomophagy among college students to combat food insecurity. A twenty items five Likert scale, College Students Entomophagy Questionnaire (CSEQ), was used to elucidate information from the respondents. The reliability coefficient was obtained to be 0.91 using Spearman-Brown Prophecy formula. Three research questions and three hypotheses were raised. Also, quantitative nutritional analysis of few insects and some established conventional protein sources were undertaking in order to compare their nutritional status. The data collected were analyzed using descriptive statistics of percentages and inferential statistics of correlation and Analysis of Variance (ANOVA). The results obtained showed that entomophagy has cultural heritage among different tribes in Nigeria and is an acceptable practice; it cuts across every social stratum and is practiced among both major religions. Moreover, insects compared favourably in term of nutrient contents when compared with the conventional animal protein sources analyzed. However, there is a gradual decline in the practice of entomophagy among students, which may be attributed to the influence of western civilization. This study, therefore, recommended an intensification of research and enlightenment of people on the usefulness of entomophagy so as to preserve its cultural heritage as well as boost human food security.Keywords: entomophagy, food security, malnutrition, poverty alleviation, sociology
Procedia PDF Downloads 1211559 Growth and Yield Assessment of Two Types of Sorghum-Sudangrass Hybrids as Affected by Deficit Irrigation
Authors: A. Abbas Khalaf, L. Issazadeh, Z. Arif Abdullah, J. Hassanpour
Abstract:
In order to evaluate the growth and yield properties of two Sorghum-Sudangrass hybrids under different irrigation levels, an investigation was done in the experiment site of Collage of Agriculture, University of Duhok, Kurdistan region of Iraq (36°5´38⸗ N, 42°52´02⸗ E) in the years 2015-16. The experiment was conducted under Randomized Complete Block Design (RCBD) with three replications, which main factor was irrigation treatments (I100, I75 and I50) according to evaporation pan class A and type of Sorghum-Sudangrass hybrids (KH12SU9001, G1) and (KH12SU9002, G2) were factors of subplots. The parameters studied were: plant height (cm), number of green leaves per plant; leaf area (m2/m2), stem thickness (mm), percent of protein, fresh and dry biomass (ton.ha-1) and also crop water productivity. The results of variance analysis showed that KH12SU9001 variety had more amount of leaf area, percent of protein, fresh and dry biomass yield in comparison to KH12SU9002 variety. By comparing effects of irrigation levels on vegetative growth and yield properties, results showed that amount of plant height, fresh and dry biomass weight was decreased by decreasing irrigation level from full irrigation regime to 5 o% of irrigation level. Also, results of crop water productivity (CWP) indicated that improvement in quantity of irrigation would impact fresh and dry biomass yield significantly. Full irrigation regime was recorded the highest level of CWP (1.28-1.29 kg.m-3).Keywords: deficit irrigation, growth, sorghum-sudangrass hybrid, yield
Procedia PDF Downloads 1411558 Effects of Microbiological and Physicochemical Processes on the Quality of Complementary Foods Based on Maize (Zea mays) Fortification with Bambara Groundnut (Vigna subterranea)
Authors: T. I. Mbata, M. J. Ikenebomeh
Abstract:
Background: The study was aim at formulating a complementary foods based on maize and bambara groundnut with a view of reducing malnutrition in low income families. Protein-energy malnutrition is a major health challenge attributed to the inappropriate complementary feeding practices, low nutritional quality of traditional complementary foods and high cost of quality protein-based complementary foods. Methods: The blends 70% maize, 30% bambara groundnut were evaluated for proximate analyses, minerals, amino acids profile, and antinutritional factors, using proprietary formula (‘Nutrend’) as standard. Antinutritional factors, amino acids, microbiological properties and sensory attributes were determined using standard methods. Results; For Protein, the results were 15.0% for roasted bambara groundnut maize germinated flour (RBMGF), 13.80% for cooked bambara groundnut maize germinated flour (CBMGF), 15.18% for soaked bambara groundnut maize germinated flour (SBMGF); values for maize flour and nutrend had 10.4% and 23.21% respectively. With respect to energy value, RBMGF, CBMGF, SBMGF, maize flour and nutrend had 494.9, 327.58, 356.49, 366.8 and 467.2 kcal respectively. The percentages of total essential amino acids in the composition of the blends were 36.9%, 40.7% and 38.9% for CBMGF, SBMGF and RBMGF, respectively, non-essential amino acids contents were 63.1%, 59.3% and 61.1% for CBMGF, SBMGF and RBMGF respectively. The mineral content, that is, calcium, potassium, magnesium and sodium, of formulated samples were higher than those obtained for maize flour and Nutrend. The antinutrient composition of RBMGF and CBMGF were lower than of SBMGF. The rats fed with the control diet exhibited better growth performance such as feed intake (1527 g) and body weight gain (93.8 g). For the microbial status, microflora gradually changed from gram negative enteric bacteria, molds, lactic acid bacteria and yeast to be dominated by gram positive lactic acid bacteria (LAB) and yeasts. Yeasts and LAB growth counts in the complementary food varied between 4.44 and 7.36 log cfu/ml. LAB number increased from 5.40 to 7.36 log cfu/ml during fermentation. Yeasts increased from 4.44 to 5.60 log cfu/ml. Organoleptic evaluation revealed that the foods were well accepted. Conclusion: Based on the findings the application of bambara groundnut fortification to traditional foods can promote the nutritional quality of African maize - based traditional foods with acceptable rheological and cooking qualities.Keywords: bambara groundnut, maize, fortification, complementary food
Procedia PDF Downloads 3581557 Determination of Proximate, Mineral, and Heavy Metal Contents of Fish from the Lower River Niger at Agenebode, Edo State, Nigeria
Authors: Agbugui M. O., Inobeme A.
Abstract:
Fish constitutes a vital component of human diets due to their rich nutritional compositions. They serve as a remarkable source of proteins, vitamins, and fatty acids, which are indispensable for the effective growth and development of humans. The need to explore the nutritional compositions of various species of fish in different water bodies becomes paramount. Presently, consumer concern is not just on food's nutritional value but also on the safety level. Environmental contamination by heavy metals has become an issue of pressing concern in recent times. Heavy metals, due to their ubiquitous nature, are found in various water bodies as they are released from various anthropogenic activities. This work investigated the proximate compositions, mineral contents, and heavy metals concentrations of four different species of fish (P. annectens, L. niloticus, G. niloticus, and H. niloticus) collected from the lower Niger at Agenebode using standard procedures. The highest protein contents were in Gymnarchus niloticus (37.32%), while the least was in Heterotis niloticus (20.41%). Protopterus annectens had the highest carbohydrate content (34.55%), while Heterotis niloticus had the least (12.24%). The highest lipid content (14.41%) was in Gymnarchus niloticus. The highest concentration of potassium was 21.00 ppm. The concentrations of heavy metals in ppm ranged from 0.01 – 1.4 (Cd), 0.07 – 2.89 (Pb), 0.02 – 16.4 (Hg), 0.88 – 5.1 (Cu) and 1.2 – 8.23 (Zn). The concentrations of Hg, Cd and Pb in some of the samples investigated were higher than the permissible limits based on international standards. There is a pressing need for further study focusing on various species of animals and plants in the area due to the alarming contents of these metals; remedial measures could also be ensured for safety.Keywords: trace metals, nutritional value, human health, crude protein, lipid content
Procedia PDF Downloads 951556 Surface Characterization and Femtosecond-Nanosecond Transient Absorption Dynamics of Bioconjugated Gold Nanoparticles: Insight into the Warfarin Drug-Binding Site of Human Serum Albumin
Authors: Osama K. Abou-Zied, Saba A. Sulaiman
Abstract:
We studied the spectroscopy of 25-nm diameter gold nanoparticles (AuNPs), coated with human serum albumin (HSA) as a model drug carrier. The morphology and coating of the AuNPs were examined using transmission electron microscopy and dynamic light scattering. Resonance energy transfer from the sole tryptophan of HSA (Trp214) to the AuNPs was observed in which the fluorescence quenching of Trp214 is dominated by a static mechanism. Using fluorescein (FL) to probe the warfarin drug-binding site in HSA revealed the unchanged nature of the binding cavity on the surface of the AuNPs, indicating the stability of the protein structure on the metal surface. The transient absorption results of the surface plasmonic resonance (SPR) band of the AuNPs show three ultrafast dynamics that are involved in the relaxation process after excitation at 460 nm. The three decay components were assigned to the electron-electron (~ 400 fs), electron-phonon (~ 2.0 ps) and phonon-phonon (200–250 ps) interactions. These dynamics were not changed upon coating the AuNPs with HSA which indicates the chemical and physical stability of the AuNPs upon bioconjugation. Binding of FL in HSA did not have any measurable effect on the bleach recovery dynamics of the SPR band, although both FL and AuNPs were excited at 460 nm. The current study is important for a better understanding of the physical and dynamical properties of protein-coated metal nanoparticles which are expected to help in optimizing their properties for critical applications in nanomedicine.Keywords: gold nanoparticles, human serum albumin, fluorescein, femtosecond transient absorption
Procedia PDF Downloads 3331555 Fatty Acids and Inflammatory Protein Biomarkers in Freshly Frozen Plasma Samples from Patients with and without COVID-19
Authors: Alaa Hamed Habib
Abstract:
The Coronavirus disease 2019 (COVID-19) is a viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and associated with systemic inflammation. Inflammation is an important process that follows infection and facilitates the repair of damaged tissue. Polyunsaturated fatty acids play an important role in the inflammatory process. These lipids can target transcription factors to modulate gene expression and protein function. Here, we evaluated whether differences in basal levels of different types of biomarkers can be detected in freshly frozen plasma samples from patients with and without COVID19. Fatty acid methyl ester (FAME) analysis showed a decrease in arachidic acid and myristic acid, but an increase in caprylic acid, palmitic acid, and eicosenoic acid in the plasma of COVID-19 patients compared to non-COVID19 patients. Multiple chemokines, including IP-10, MCP-1, and MIP-1 beta, were increased in the COVID-19 group compared to the non-COVID-19 group. Similarly, cytokines including IL-1 alpha and IL-8, and cell adhesion and inflammatory response markers including ICAM-1 and E-selectin were greater in the plasma of COVID-19 patients compared to non-COVID-19 patients. A baseline signature of specific polyunsaturated fatty acids, cytokines, and chemokines present in the plasma after COVID-19 viral infection may serve as biomarkers that can be useful in various applications, including determination of the severity of infection, an indication of disease prognosis and consideration for therapeutic options.Keywords: MARKS, COVID 19, UEVS NON COVIDS, kidneys, nanoparticles
Procedia PDF Downloads 121554 Biochemical Effects of Low Dose Dimethyl Sulfoxide on HepG2 Liver Cancer Cell Line
Authors: Esra Sengul, R. G. Aktas, M. E. Sitar, H. Isan
Abstract:
Hepatocellular carcinoma (HCC) is a hepatocellular tumor commonly found on the surface of the chronic liver. HepG2 is the most commonly used cell type in HCC studies. The main proteins remaining in the blood serum after separation of plasma fibrinogen are albumin and globulin. The fact that the albumin showed hepatocellular damage and reflect the synthesis capacity of the liver was the main reason for our use. Alpha-Fetoprotein (AFP) is an albumin-like structural embryonic globulin found in the embryonic cortex, cord blood, and fetal liver. It has been used as a marker in the follow-up of tumor growth in various malign tumors and in the efficacy of surgical-medical treatments, so it is a good protein to look at with albumins. We have seen the morphological changes of dimethyl sulfoxide (DMSO) on HepG2 and decided to investigate its biochemical effects. We examined the effects of DMSO, which is used in cell cultures, on albumin, AFP and total protein at low doses. Material Method: Cell Culture: Medium was prepared in cell culture using Dulbecco's Modified Eagle Media (DMEM), Fetal Bovine Serum Dulbecco's (FBS), Phosphate Buffered Saline and trypsin maintained at -20 ° C. Fixation of Cells: HepG2 cells, which have been appropriately developed at the end of the first week, were fixed with acetone. We stored our cells in PBS at + 4 ° C until the fixation was completed. Area Calculation: The areas of the cells are calculated in the ImageJ (IJ). Microscope examination: The examination was performed with a Zeiss Inverted Microscope. Daytime photographs were taken at 40x, 100x 200x and 400x. Biochemical Tests: Protein (Total): Serum sample was analyzed by a spectrophotometric method in autoanalyzer. Albumin: Serum sample was analyzed by a spectrophotometric method in autoanalyzer. Alpha-fetoprotein: Serum sample was analyzed by ECLIA method. Results: When liver cancer cells were cultured in medium with 1% DMSO for 4 weeks, a significant difference was observed when compared with the control group. As a result, we have seen that DMSO can be used as an important agent in the treatment of liver cancer. Cell areas were reduced in the DMSO group compared to the control group and the confluency ratio increased. The ability to form spheroids was also significantly higher in the DMSO group. Alpha-fetoprotein was lower than the values of an ordinary liver cancer patient and the total protein amount increased to the reference range of the normal individual. Because the albumin sample was below the specimen value, the numerical results could not be obtained on biochemical examinations. We interpret all these results as making DMSO a caretaking aid. Since each one was not enough alone we used 3 parameters and the results were positive when we refer to the values of a normal healthy individual in parallel. We hope to extend the study further by adding new parameters and genetic analyzes, by increasing the number of samples, and by using DMSO as an adjunct agent in the treatment of liver cancer.Keywords: hepatocellular carcinoma, HepG2, dimethyl sulfoxide, cell culture, ELISA
Procedia PDF Downloads 1361553 Molecular Characterization and Identification of C-Type Lectin in Red Palm Weevil, Rhynchophorus ferrugineus Oliver
Authors: Hafiza Javaria Ashraf, Xinghong Wang, Zhanghong Shi, Youming Hou
Abstract:
Insect’s innate immunity depends on a variety of defense responses for the recognition of invading pathogens. Pathogen recognition involves particular proteins known as pattern recognition receptors (PRRs). These PRRs interact with pathogen-associated molecular patterns (PAMPs) present on the surface of pathogens to distinguish between self and non-self. C-type lectins (CTLs) belong to a superfamily of PPRs which involved in insect immunity and defense mechanism. Rhynchophorus ferrugineus Olivier is a devastating pest of Palm cultivations in China. Although studies on R. ferrugineus immune mechanism and host defense have conducted, however, the role of CTL in immune responses of R. ferrugineus remains elusive. Here, we report RfCTL, which is a secreted protein containing a single-CRD domain. The open reading frame (ORF) of CTL is 226 bp, which encodes a putative protein of 168 amino acids. Transcript expression analysis revealed that RfCTL highly expressed in immune-related tissues, i.e., hemolymph and fat body. The abundance of RfCTL in the gut and fat body dramatically increased upon Staphylococcus aureus and Escherichia coli bacterial challenges, suggesting a role in defense against gram-positive and gram-negative bacterial infection. Taken together, we inferred that RfCTL might be involved in the immune defense of R. ferrugineus and established a solid foundation for future studies on R. ferrugineus CTL domain proteins for better understanding of insect immunity.Keywords: biological invasion, c-type lectin, insect immunity, Rhynchophorus ferrugineus Oliver
Procedia PDF Downloads 1581552 The Study of Spray Drying Process for Skimmed Coconut Milk
Authors: Jaruwan Duangchuen, Siwalak Pathaveerat
Abstract:
Coconut (Cocos nucifera) belongs to the family Arecaceae. Coconut juice and meat are consumed as food and dessert in several regions of the world. Coconut juice contains low proteins, and arginine is the main amino acid content. Coconut meat is the endosperm of coconut that has nutritional value. It composes of carbohydrate, protein and fat. The objective of this study is utilization of by-products from the virgin coconut oil extraction process by using the skimmed coconut milk as a powder. The skimmed coconut milk was separated from the coconut milk in virgin coconut oil extraction process that consists approximately of protein 6.4%, carbohydrate 7.2%, dietary fiber 0.27 %, sugar 6.27%, fat 3.6 % and moisture content of 86.93%. This skimmed coconut milk can be made to powder for value - added product by using spray drying. The factors effect to the yield and properties of dry skimmed coconut milk in spraying process are inlet, outlet air temperature and the maltodextrin concentration. The percentage of maltodextrin content (15, 20%), outlet air temperature (80 ºC, 85 ºC, 90 ºC) and inlet air temperature (190 ºC, 200 ºC, 210 ºC) were conducted to the skimmed coconut milk spray drying process. The spray dryer was kept air flow rate (0.2698 m3 /s). The result that shown 2.22 -3.23% of moisture content, solubility, bulk density (0.4-0.67g/mL), solubility, wettability (4.04 -19.25 min) for solubility in the water, color, particle size were analyzed for the powder samples. The maximum yield (18.00%) of spray dried coconut milk powder was obtained at 210 °C of temperature, 80°C of outlet temperature and 20% maltodextrin for 27.27 second for drying time. For the amino analysis shown that the high amino acids are Glutamine (16.28%), Arginine (10.32%) and Glycerin (9.59%) by using HPLP method (UV detector).Keywords: skimmed coconut milk, spray drying, virgin coconut oil process (VCO), maltodextrin
Procedia PDF Downloads 336