Search results for: formic acid fuel cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7661

Search results for: formic acid fuel cell

131 Surface Acoustic Waves Nebulisation of Liposomes Manufactured in situ for Pulmonary Drug Delivery

Authors: X. King, E. Nazarzadeh, J. Reboud, J. Cooper

Abstract:

Pulmonary diseases, such as asthma, are generally treated by the inhalation of aerosols that has the advantage of reducing the off-target (e.g., toxicity) effects associated with systemic delivery in blood. Effective respiratory drug delivery requires a droplet size distribution between 1 and 5 µm. Inhalation of aerosols with wide droplet size distribution, out of this range, results in deposition of drug in not-targeted area of the respiratory tract, introducing undesired side effects on the patient. In order to solely deliver the drug in the lower branches of the lungs and release it in a targeted manner, a control mechanism to produce the aerosolized droplets is required. To regulate the drug release and to facilitate the uptake from cells, drugs are often encapsulated into protective liposomes. However, a multistep process is required for their formation, often performed at the formulation step, therefore limiting the range of available drugs or their shelf life. Using surface acoustic waves (SAWs), a pulmonary drug delivery platform was produced, which enabled the formation of defined size aerosols and the formation of liposomes in situ. SAWs are mechanical waves, propagating along the surface of a piezoelectric substrate. They were generated using an interdigital transducer on lithium niobate with an excitation frequency of 9.6 MHz at a power of 1W. Disposable silicon superstrates were etched using photolithography and dry etch processes to create an array of cylindrical through-holes with different diameters and pitches. Superstrates were coupled with the SAW substrate through water-based gel. As the SAW propagates on the superstrate, it enables nebulisation of a lipid solution deposited onto it. The cylindrical cavities restricted the formation of large drops in the aerosol, while at the same time unilamellar liposomes were created. SAW formed liposomes showed a higher monodispersity compared to the control sample, as well as displayed, a faster production rate. To test the aerosol’s size, dynamic light scattering and laser diffraction methods were used, both showing the size control of the aerosolised particles. The use of silicon superstate with cavity size of 100-200 µm, produced an aerosol with a mean droplet size within the optimum range for pulmonary drug delivery, containing the liposomes in which the medicine could be loaded. Additionally, analysis of liposomes with Cryo-TEM showed formation of vesicles with narrow size distribution between 80-100 nm and optimal morphology in order to be used for drug delivery. Encapsulation of nucleic acids in liposomes through the developed SAW platform was also investigated. In vitro delivery of siRNA and DNA Luciferase were achieved using A549 cell line, lung carcinoma from human. In conclusion, SAW pulmonary drug delivery platform was engineered, in order to combine multiple time consuming steps (formation of liposomes, drug loading, nebulisation) into a unique platform with the aim of specifically delivering the medicament in a targeted area, reducing the drug’s side effects.

Keywords: acoustics, drug delivery, liposomes, surface acoustic waves

Procedia PDF Downloads 101
130 Concept Mapping to Reach Consensus on an Antibiotic Smart Use Strategy Model to Promote and Support Appropriate Antibiotic Prescribing in a Hospital, Thailand

Authors: Phenphak Horadee, Rodchares Hanrinth, Saithip Suttiruksa

Abstract:

Inappropriate use of antibiotics has happened in several hospitals, Thailand. Drug use evaluation (DUE) is one strategy to overcome this difficulty. However, most community hospitals still encounter incomplete evaluation resulting overuse of antibiotics with high cost. Consequently, drug-resistant bacteria have been rising due to inappropriate antibiotic use. The aim of this study was to involve stakeholders in conceptualizing, developing, and prioritizing a feasible intervention strategy to promote and support appropriate antibiotic prescribing in a community hospital, Thailand. Study antibiotics included four antibiotics such as Meropenem, Piperacillin/tazobactam, Amoxicillin/clavulanic acid, and Vancomycin. The study was conducted for the 1-year period between March 1, 2018, and March 31, 2019, in a community hospital in the northeastern part of Thailand. Concept mapping was used in a purposive sample, including doctors (one was an administrator), pharmacists, and nurses who involving drug use evaluation of antibiotics. In-depth interviews for each participant and survey research were conducted to seek the problems for inappropriate use of antibiotics based on drug use evaluation system. Seventy-seven percent of DUE reported appropriate antibiotic prescribing, which still did not reach the goal of 80 percent appropriateness. Meropenem led other antibiotics for inappropriate prescribing. The causes of the unsuccessful DUE program were classified into three themes such as personnel, lack of public relation and communication, and unsupported policy and impractical regulations. During the first meeting, stakeholders (n = 21) expressed the generation of interventions. During the second meeting, participants who were almost the same group of people in the first meeting (n = 21) were requested to independently rate the feasibility and importance of each idea and to categorize them into relevant clusters to facilitate multidimensional scaling and hierarchical cluster analysis. The outputs of analysis included the idealist, cluster list, point map, point rating map, cluster map, and cluster rating map. All of these were distributed to participants (n = 21) during the third meeting to reach consensus on an intervention model. The final proposed intervention strategy included 29 feasible and crucial interventions in seven clusters: development of information technology system, establishing policy and taking it into the action plan, proactive public relations of the policy, action plan and workflow, in cooperation of multidisciplinary teams in drug use evaluation, work review and evaluation with performance reporting, promoting and developing professional and clinical skill for staff with training programs, and developing practical drug use evaluation guideline for antibiotics. These interventions are relevant and fit to several intervention strategies for antibiotic stewardship program in many international organizations such as participation of the multidisciplinary team, developing information technology to support antibiotic smart use, and communication. These interventions were prioritized for implementation over a 1-year period. Once the possibility of each activity or plan is set up, the proposed program could be applied and integrated into hospital policy after evaluating plans. Effectiveness of each intervention could be promoted to other community hospitals to promote and support antibiotic smart use.

Keywords: antibiotic, concept mapping, drug use evaluation, multidisciplinary teams

Procedia PDF Downloads 98
129 Targeting Apoptosis by Novel Adamantane Analogs as an Emerging Therapy for the Treatment of Hepatocellular Carcinoma Through EGFR, Bcl-2/BAX Cascade

Authors: Hanan M. Hassan, Laila Abouzeid, Lamya H. Al-Wahaibi, George S. G. Shehatou, Ali A. El-Emam

Abstract:

Cancer is a major public health problem and the second leading cause of death worldwide. In 2020, cancer diagnosis and treatment have been negatively affected by the coronavirus 2019 (COVID-19) pandemic. During the quarantine, because of the limited access to healthcare and avoiding exposure to COVID-19 as a contagious disease; patients of cancer suffered deferments in follow-up and treatment regimens leading to substantial worsening of disease, death, and increased healthcare costs. Thus, this study is designed to investigate the molecular mechanisms by which adamantne derivatives attenuate hepatocllular carcinoma experimentally and theoretically. There is a close association between increased resistance to anticancer drugs and defective apoptosis that considered a causative factor for oncogenesis. Cancer cells use different molecular pathways to inhibit apoptosis, BAX and Bcl-2 proteins have essential roles in the progression or inhibition of intrinsic apoptotic pathways triggered by mitochondrial dysfunction. Therefore, their balance ratio can promote the cellular apoptotic fate. In this study, the in vitro cytotoxic effects of seven synthetic adamantyl isothiorea derivatives were evaluated against five human tumor cell lines by MTT assay. Compounds 5 and 6 showed the best results, mostly against hepatocellular carcinoma (HCC). Hence, in vivo studies were performed in male Sprague-Dawley (SD) rats in which experimental hepatocellular carcinoma was induced with thioacetamide (TAA) (200 mg/kg, i.p., twice weekly) for 16 weeks. The most promising compounds, 5 and 6, were administered to treat liver cancer rats at a dose of 10 mg/kg/day for an additional two weeks, and the effects were compared with doxorubicin (DR), the anticancer drug. Hepatocellular carcinoma was evidenced by a dramatic increase in liver indices, oxidative stress markers, and immunohistochemical studies that were accompanied by a plethora of inflammatory mediators and alterations in the apoptotic cascade. Our results showed that treatment with adamantane derivatives 5 and 6 significantly suppressed fibrosis, inflammation, and other histopathological insults resulting in the diminished formation of hepatocyte tumorigenesis. Moreover, administration of the tested compounds resulted in amelioration of EGFR protein expression, upregulation of BAX, and lessening down of Bcl-2 levels that prove their role as apoptosis inducers. Also, the docking simulations performed for adamantane showed good fit and binding to the EGFR protein through hydrogen bond formation with conservative amino acids, which gives a shred of strong evidence for its hepatoprotective effect. In most analyses, the effects of compound 6 were more comparable to DR than compound 5. Our findings suggest that adamantane derivatives 5 and 6 are shown to have cytotoxic activity against HCC in vitro and in vivo, by more than one mechanism, possibly by inhibiting the TLR4-MyD88-NF-κB pathway and targeting EGFR signaling.

Keywords: adamantane, EGFR, HCC, apoptosis

Procedia PDF Downloads 129
128 Interdigitated Flexible Li-Ion Battery by Aerosol Jet Printing

Authors: Yohann R. J. Thomas, Sébastien Solan

Abstract:

Conventional battery technology includes the assembly of electrode/separator/electrode by standard techniques such as stacking or winding, depending on the format size. In that type of batteries, coating or pasting techniques are only used for the electrode process. The processes are suited for large scale production of batteries and perfectly adapted to plenty of application requirements. Nevertheless, as the demand for both easier and cost-efficient production modes, flexible, custom-shaped and efficient small sized batteries is rising. Thin-film, printable batteries are one of the key areas for printed electronics. In the frame of European BASMATI project, we are investigating the feasibility of a new design of lithium-ion battery: interdigitated planar core design. Polymer substrate is used to produce bendable and flexible rechargeable accumulators. Direct fully printed batteries lead to interconnect the accumulator with other electronic functions for example organic solar cells (harvesting function), printed sensors (autonomous sensors) or RFID (communication function) on a common substrate to produce fully integrated, thin and flexible new devices. To fulfill those specifications, a high resolution printing process have been selected: Aerosol jet printing. In order to fit with this process parameters, we worked on nanomaterials formulation for current collectors and electrodes. In addition, an advanced printed polymer-electrolyte is developed to be implemented directly in the printing process in order to avoid the liquid electrolyte filling step and to improve safety and flexibility. Results: Three different current collectors has been studied and printed successfully. An ink of commercial copper nanoparticles has been formulated and printed, then a flash sintering was applied to the interdigitated design. A gold ink was also printed, the resulting material was partially self-sintered and did not require any high temperature post treatment. Finally, carbon nanotubes were also printed with a high resolution and well defined patterns. Different electrode materials were formulated and printed according to the interdigitated design. For cathodes, NMC and LFP were efficaciously printed. For anodes, LTO and graphite have shown to be good candidates for the fully printed battery. The electrochemical performances of those materials have been evaluated in a standard coin cell with lithium-metal counter electrode and the results are similar with those of a traditional ink formulation and process. A jellified plastic crystal solid state electrolyte has been developed and showed comparable performances to classical liquid carbonate electrolytes with two different materials. In our future developments, focus will be put on several tasks. In a first place, we will synthesize and formulate new specific nano-materials based on metal-oxyde. Then a fully printed device will be produced and its electrochemical performance will be evaluated.

Keywords: high resolution digital printing, lithium-ion battery, nanomaterials, solid-state electrolytes

Procedia PDF Downloads 225
127 Integrative Omics-Portrayal Disentangles Molecular Heterogeneity and Progression Mechanisms of Cancer

Authors: Binder Hans

Abstract:

Cancer is no longer seen as solely a genetic disease where genetic defects such as mutations and copy number variations affect gene regulation and eventually lead to aberrant cell functioning which can be monitored by transcriptome analysis. It has become obvious that epigenetic alterations represent a further important layer of (de-)regulation of gene activity. For example, aberrant DNA methylation is a hallmark of many cancer types, and methylation patterns were successfully used to subtype cancer heterogeneity. Hence, unraveling the interplay between different omics levels such as genome, transcriptome and epigenome is inevitable for a mechanistic understanding of molecular deregulation causing complex diseases such as cancer. This objective requires powerful downstream integrative bioinformatics methods as an essential prerequisite to discover the whole genome mutational, transcriptome and epigenome landscapes of cancer specimen and to discover cancer genesis, progression and heterogeneity. Basic challenges and tasks arise ‘beyond sequencing’ because of the big size of the data, their complexity, the need to search for hidden structures in the data, for knowledge mining to discover biological function and also systems biology conceptual models to deduce developmental interrelations between different cancer states. These tasks are tightly related to cancer biology as an (epi-)genetic disease giving rise to aberrant genomic regulation under micro-environmental control and clonal evolution which leads to heterogeneous cellular states. Machine learning algorithms such as self organizing maps (SOM) represent one interesting option to tackle these bioinformatics tasks. The SOMmethod enables recognizing complex patterns in large-scale data generated by highthroughput omics technologies. It portrays molecular phenotypes by generating individualized, easy to interpret images of the data landscape in combination with comprehensive analysis options. Our image-based, reductionist machine learning methods provide one interesting perspective how to deal with massive data in the discovery of complex diseases, gliomas, melanomas and colon cancer on molecular level. As an important new challenge, we address the combined portrayal of different omics data such as genome-wide genomic, transcriptomic and methylomic ones. The integrative-omics portrayal approach is based on the joint training of the data and it provides separate personalized data portraits for each patient and data type which can be analyzed by visual inspection as one option. The new method enables an integrative genome-wide view on the omics data types and the underlying regulatory modes. It is applied to high and low-grade gliomas and to melanomas where it disentangles transversal and longitudinal molecular heterogeneity in terms of distinct molecular subtypes and progression paths with prognostic impact.

Keywords: integrative bioinformatics, machine learning, molecular mechanisms of cancer, gliomas and melanomas

Procedia PDF Downloads 125
126 Conceptual Methods of Mitigating Matured Urban Tree Roots Surviving in Conflicts Growth within Built Environment: A Review

Authors: Mohd Suhaizan Shamsuddin

Abstract:

Urbanization exacerbates the environment quality and pressures of matured urban trees' growth and development in changing environment. The growth of struggled matured urban tree-roots by spreading within the existences of infrastructures, resulting in large damage to the structured and declined growth. Many physiological growths declined or damages by the present and installations of infrastructures within and nearby root zone. Afford to remain both matured urban tree and infrastructures as a service provider causes damage and death, respectively. Inasmuch, spending more expenditure on fixing both or removing matured urban trees as risky to the future environment as the mitigation methods to reduce the problems are unconcerned. This paper aims to explain mitigation method practices of reducing the encountered problems of matured urban tree-roots settling and infrastructures while modified urban soil to sustain at an optimum level. Three categories capturing encountered conflicts growth of matured urban tree-roots growth within and nearby infrastructures by mitigating the problems of limited soil spaces, poor soil structures and soil space barrier installations and maintenance. The limited soil space encountered many conflicts and identified six methods that mitigate the survival tree-roots, such as soil volume/mounding, soil replacement/amendment for the radial trench, soil spacing-root bridge, root tunneling, walkway/pavement rising/diverted, and suspended pavement. The limited soil spaces are mitigation affords of inadequate soil-roots and spreading root settling and modification of construction soil media since the barrier existed and installed in root trails or zones. This is the reason for enabling tree-roots spreading and finds adequate sources (nutrients, water uptake and oxygen), spaces and functioning to stability stand of root anchorage since the matured tree grows larger. The poor soil structures were identified as three methods to mitigate soil materials' problems, and fewer soil voids comprise skeletal soil, structural soil, and soil cell. Mitigation of poor soil structure is altering the existing and introducing new structures by modifying the quantities and materials ratio allowing more voids beneath for roots spreading by considering the above structure of foot and vehicle traffics functioning or load-bearing. The soil space barrier installations and maintenance recognized to sustain both infrastructures and tree-roots grown in limited spaces and its benefits, the root barrier installations and root pruning are recommended. In conclusion, these recommended methods attempt to mitigate the present problems encountered at a particular place and problems among tree-roots and infrastructures exist. The combined method is the best way to alleviates the conflicts since the recognized conflicts are between tree-roots and man-made while the urban soil is modified. These presenting methods are most considered to sustain the matured urban trees' lifespan growth in the urban environment.

Keywords: urban tree-roots, limited soil spaces, poor soil structures, soil space barrier and maintenance

Procedia PDF Downloads 171
125 Biocompatible Hydrogel Materials Containing Cytostatics for Cancer Treatment

Authors: S. Kudlacik-Kramarczyk, M. Kedzierska, B. Tyliszczak

Abstract:

Recently, the continuous development of medicine and related sciences has been observed. Particular emphasis is directed on the development of biomaterials, i.e., non-toxic, biocompatible and biodegradable materials that may improve the effectiveness of treatment as well as the comfort of patients. This is particularly important in the case of cancer treatment. Currently, there are many methods of cancer treatment based primarily on chemotherapy and the surgical removal of the tumor, but it is worth noting that these therapies also cause many side effects. Among women, the most common cancer is breast cancer. It may be completely cured, but the consequence of treatment is partial or complete breast mastectomy and radiation therapy, which results in severe skin burns. The skin of the patient after radiation therapy is very burned, and therefore requires intensive care and high frequency of dressing changes. The traditional dressing adheres to the burn wounds and does not absorb adequate amount of exudate from injuries and the patient is forced to change the dressing every 2 hours. Therefore, the main purpose was to develop an innovative combination of dressing material with drug carriers that may be used in anti-cancer therapy. The innovation of this solution is the combination of these two products into one system, i.e., a transdermal system with the possibility of a controlled release of the drug- cytostatic. Besides, the possibility of modifying the hydrogel matrix with aloe vera juice provides this material with new features favorable from the point of view of healing processes of burn wounds resulting from the radiation therapy. In this study, hydrogel materials containing protein spheres with the active substance have been obtained as a result of photopolymerization process. The reaction mixture consisting of the protein (albumin) spheres incorporated with cytostatic, chitosan, adequate crosslinking agent and photoinitiator has been subjected to the UV radiation for 2 minutes. Prepared materials have been subjected to the numerous studies including the analysis of cytotoxicity using murine fibroblasts L929. Analysis was conducted based on the mitochondrial activity test (MTT reduction assay) which involves the determining the number of cells characterized by proper metabolism. Hydrogel materials obtained using different amount of crosslinking agents have been subjected to the cytotoxicity analysis. According to the standards, tested material is defined as cytotoxic when the viability of cells after 24 h incubation with this material is lower than 70%. In the research, hydrogel polymer materials containing protein spheres incorporated with the active substance, i.e. a cytostatic, have been developed. Such a dressing may support the treatment of cancer due to the content of the anti-cancer drug - cytostatic, and may also provide a soothing effect on the healing of the burn wounds resulted from the radiation therapy due to the content of aloe vera juice in the hydrogel matrix. Based on the conducted cytotoxicity studies, it may be concluded that the obtained materials do not adversely affect the tested cell lines, therefore they can be subjected to more advanced analyzes.

Keywords: hydrogel polymers, cytostatics, drug carriers, cytotoxicity

Procedia PDF Downloads 113
124 Is Brain Death Reversal Possible in Near Future: Intrathecal Sodium Nitroprusside (SNP) Superfusion in Brain Death Patients=The 10,000 Fold Effect

Authors: Vinod Kumar Tewari, Mazhar Husain, Hari Kishan Das Gupta

Abstract:

Background: Primary or secondary brain death is also accompanied with vasospasm of the perforators other than tissue disruption & further exaggerates the anoxic damage, in the form of neuropraxia. In normal conditions the excitatory impulse propagates as anterograde neurotransmission (ANT) and at the level of synapse, glutamate activates NMDA receptors on postsynaptic membrane. Nitric oxide (NO) is produced by Nitric oxide Synthetase (NOS) in postsynaptic dendride or cell body and travels backwards across a chemical synapse to bind to the axon terminal of a presynaptic neuron for regulation of ANT this process is called as the retrograde neurotransmission (RNT). Thus the primary function of NO is RNT and the purpose of RNT is regulation of chemical neurotransmission at synapse. For this reason, RNT allows neural circuits to create feedback loops. The haem is the ligand binding site of NO receptor (sGC) at presynaptic membrane. The affinity of haem exhibits > 10,000-fold excess for NO than Oxygen (THE 10,000 FOLD EFFECT). In pathological conditions ANT, normal synaptic activity including RNT is absent. NO donors like sodium nitroprusside (SNP) releases NO by activating NOS at the level of postsynaptic area. NO now travels backwards across a chemical synapse to bind to the haem of NO receptor at axon terminal of a presynaptic neuron as in normal condition. NO now acts as impulse generator (at presynaptic membrane) thus bypasses the normal ANT. Also the arteriolar perforators are having Nitric Oxide Synthetase (NOS) at the adventitial side (outer border) on which sodium nitroprusside (SNP) acts; causing release of Nitric Oxide (NO) which vasodilates the perforators causing gush of blood in brain’s tissue and reversal of brain death. Objective: In brain death cases we only think for various transplantations but this study being a pilot study reverses some criteria of brain death by vasodilating the arteriolar perforators. To study the effect of intrathecal sodium nitroprusside (IT SNP) in cases of brain death in which: 1. Retrograde transmission = assessed by the hyperacute timings of reversal 2. The arteriolar perforator vasodilatation caused by NO and the maintenance of reversal of brain death reversal. Methods: 35 year old male, who became brain death after head injury and has not shown any signs of improvement after every maneuver for 6 hours, a single superfusion done by SNP via transoptic canal route for quadrigeminal cistern and cisternal puncture for IV ventricular with SNP done. Results: He showed spontaneous respiration (7 bouts) with TCD studies showing start of pulsations of various branches of common carotid arteries. Conclusions: In future we can give this SNP via transoptic canal route and in IV ventricle before declaring the body to be utilized for transplantations or dead or in broader way we can say that in near future it is possible to revert back from brain death or we have to modify our criterion.

Keywords: brain death, intrathecal sodium nitroprusside, TCD studies, perforators, vasodilatations, retrograde transmission, 10, 000 fold effect

Procedia PDF Downloads 377
123 Role of Functional Divergence in Specific Inhibitor Design: Using γ-Glutamyltranspeptidase (GGT) as a Model Protein

Authors: Ved Vrat Verma, Rani Gupta, Manisha Goel

Abstract:

γ-glutamyltranspeptidase (GGT: EC 2.3.2.2) is an N-terminal nucleophile hydrolase conserved in all three domains of life. GGT plays a key role in glutathione metabolism where it catalyzes the breakage of the γ-glutamyl bonds and transfer of γ-glutamyl group to water (hydrolytic activity) or amino acids or short peptides (transpeptidase activity). GGTs from bacteria, archaea, and eukaryotes (human, rat and mouse) are homologous proteins sharing >50% sequence similarity and conserved four layered αββα sandwich like three dimensional structural fold. These proteins though similar in their structure to each other, are quite diverse in their enzyme activity: some GGTs are better at hydrolysis reactions but poor in transpeptidase activity, whereas many others may show opposite behaviour. GGT is known to be involved in various diseases like asthma, parkinson, arthritis, and gastric cancer. Its inhibition prior to chemotherapy treatments has been shown to sensitize tumours to the treatment. Microbial GGT is known to be a virulence factor too, important for the colonization of bacteria in host. However, all known inhibitors (mimics of its native substrate, glutamate) are highly toxic because they interfere with other enzyme pathways. However, a few successful efforts have been reported previously in designing species specific inhibitors. We aim to leverage the diversity seen in GGT family (pathogen vs. eukaryotes) for designing specific inhibitors. Thus, in the present study, we have used DIVERGE software to identify sites in GGT proteins, which are crucial for the functional and structural divergence of these proteins. Since, type II divergence sites vary in clade specific manner, so type II divergent sites were our focus of interest throughout the study. Type II divergent sites were identified for pathogen vs. eukaryotes clusters and sites were marked on clade specific representative structures HpGGT (2QM6) and HmGGT (4ZCG) of pathogen and eukaryotes clade respectively. The crucial divergent sites within 15 A radii of the binding cavity were highlighted, and in-silico mutations were performed on these sites to delineate the role of these sites on the mechanism of catalysis and protein folding. Further, the amino acid network (AAN) analysis was also performed by Cytoscape to delineate assortative mixing for cavity divergent sites which could strengthen our hypothesis. Additionally, molecular dynamics simulations were performed for wild complexes and mutant complexes close to physiological conditions (pH 7.0, 0.1 M ionic strength and 1 atm pressure) and the role of putative divergence sites and structural integrities of the homologous proteins have been analysed. The dynamics data were scrutinized in terms of RMSD, RMSF, non-native H-bonds and salt bridges. The RMSD, RMSF fluctuations of proteins complexes are compared, and the changes at protein ligand binding sites were highlighted. The outcomes of our study highlighted some crucial divergent sites which could be used for novel inhibitors designing in a species-specific manner. Since, for drug development, it is challenging to design novel drug by targeting similar protein which exists in eukaryotes, so this study could set up an initial platform to overcome this challenge and help to deduce the more effective targets for novel drug discovery.

Keywords: γ-glutamyltranspeptidase, divergence, species-specific, drug design

Procedia PDF Downloads 248
122 Oil and Proteins of Sardine (Sardina Pilchardus) Compared with Casein or Mixture of Vegetable Oils Improves Dyslipidemia and Reduces Inflammation and Oxidative Stress in Hypercholesterolemic and Obese Rats

Authors: Khelladi Hadj Mostefa, Krouf Djamil, Taleb-Dida Nawel

Abstract:

Background: Obesity results from a prolonged imbalance between energy intake and energy expenditure, as depending on basal metabolic rate. Oils and proteins from sea have important therapeutic (such as obesity and hypercholesterolemia) and antioxidant effects. Sardine are a widely consumed fish in the Mediterranean region. Its consumption provides humans with various nutrients such as oils (rich in omega 3 plyunsaturated fatty acids)) and proteins. Methods: Sardine oil (SO) and sardine proteins (SP) were extracted and purified. Mixture of vegetable oils (olive-walnut-sunflower) were prepared from oils produced in Algeria. Eighteen wistar rats are fed a high fat diet enriched with 1% cholesterol for 30 days to induce obesity and hypercholesterolemia. The rats are divided into 3 groups. The first group consumes 20% sardine protein combined with 5% sardine oil (38% SFA (saturated fatty acids), 31% MIFA (monounsaturated fatty acids) and 31% PIFA (polyunsaturated fatty acids)) (SPso). The second group consumes 20% sardine protein combined with 5% of a mixture of vegetable oils (VO) containing 13% SFA, 58% MIFA and 29% PIFA (PSvo), and the third group consuming 20% casein combined with 5% of the mixture of vegetable oils and serves as a semi-synthetic reference (CASvo). Body weights and glycaemia are measured weekly After 28 days of experimentation, the rats are sacrificed, the blood and the liver removed. Serum assays of total cholesterol (TC) and triglycerides (TG) were performed by enzymatic colorimetric methods. Evaluation of lipid peroxidation was performed by assaying thiobarbituric acid reactive species (TBARS) and hydroperoxides values. The protein oxidation was performed by assaying carbonyl derivatives values. Finally, evaluation of antioxidant defense is made by measuring the activity of antioxidant enzymes, the superoxide dismutase (SOD) and the catalase (CAT).Results: After 28 days, the body weight (BW) of the rats increased significantly in SPso and SPvo groups compared to CAS group, by +11% and 7%, respectively. Cholesterolemia (TC) increased significantly in the SPso and SPvo groups compared to the CAS group (P<0.01), while triglyceridemia (TG) decreased significantly in the SPso group compared to SPvo and CAS groups (P<0.01). Albumin (marker of inflammation) increased in the PSs group compared to SPvo and CAS groups by +35% and +13%, respectively. The serum TBARS levels are -40% lower in SPso group compared to SPvo group, and they are -80% and -76% lower in SPso compared to SPvo and CAS groups, respectively. The level of carbonyls derivatives in the serum and liver are significantly reduced in the SPso group compared to the SPvo and CAS groups. Superoxide dismutase (SOD) activity decreased in liver of SPso group compared to SPvo group (P<0.01). While that of CAT is increased in liver tissue of SPso group compared to SPvo group (P<0.01). Conclusion: Sardine oil combined with sardine protein has a hypotriglyceridemic effect, reduces body weight, attenuates inflammation and seems to protect against lipid peroxidation and protein oxidation and increases antioxidant defense in hypercholesterolemic and obese rats. This could be in favor of a protective effect against obesity and cardiovascular diseases.

Keywords: rat, obesity, hypercholesterolemia, sardine protein, sardine oil, vegetable oils mixture, lipid peroxidation, protein oxidation, antioxidant defense

Procedia PDF Downloads 42
121 Application of the Carboxylate Platform in the Consolidated Bioconversion of Agricultural Wastes to Biofuel Precursors

Authors: Sesethu G. Njokweni, Marelize Botes, Emile W. H. Van Zyl

Abstract:

An alternative strategy to the production of bioethanol is by examining the degradability of biomass in a natural system such as the rumen of mammals. This anaerobic microbial community has higher cellulolytic activities than microbial communities from other habitats and degrades cellulose to produce volatile fatty acids (VFA), methane and CO₂. VFAs have the potential to serve as intermediate products for electrochemical conversion to hydrocarbon fuels. In vitro mimicking of this process would be more cost-effective than bioethanol production as it does not require chemical pre-treatment of biomass, a sterile environment or added enzymes. The strategies of the carboxylate platform and the co-cultures of a bovine ruminal microbiota from cannulated cows were combined in order to investigate and optimize the bioconversion of agricultural biomass (apple and grape pomace, citrus pulp, sugarcane bagasse and triticale straw) to high value VFAs as intermediates for biofuel production in a consolidated bioprocess. Optimisation of reactor conditions was investigated using five different ruminal inoculum concentrations; 5,10,15,20 and 25% with fixed pH at 6.8 and temperature at 39 ˚C. The ANKOM 200/220 fiber analyser was used to analyse in vitro neutral detergent fiber (NDF) disappearance of the feedstuffs. Fresh and cryo-frozen (5% DMSO and 50% glycerol for 3 months) rumen cultures were tested for the retainment of fermentation capacity and durability in 72 h fermentations in 125 ml serum vials using a FURO medical solutions 6-valve gas manifold to induce anaerobic conditions. Fermentation of apple pomace, triticale straw, and grape pomace showed no significant difference (P > 0.05) in the effect of 15 and 20 % inoculum concentrations for the total VFA yield. However, high performance liquid chromatographic separation within the two inoculum concentrations showed a significant difference (P < 0.05) in acetic acid yield, with 20% inoculum concentration being the optimum at 4.67 g/l. NDF disappearance of 85% in 96 h and total VFA yield of 11.5 g/l in 72 h (A/P ratio = 2.04) for apple pomace entailed that it was the optimal feedstuff for this process. The NDF disappearance and VFA yield of DMSO (82% NDF disappearance and 10.6 g/l VFA) and glycerol (90% NDF disappearance and 11.6 g/l VFA) stored rumen also showed significantly similar degradability of apple pomace with lack of treatment effect differences compared to a fresh rumen control (P > 0.05). The lack of treatment effects was a positive sign in indicating that there was no difference between the stored samples and the fresh rumen control. Retaining of the fermentation capacity within the preserved cultures suggests that its metabolic characteristics were preserved due to resilience and redundancy of the rumen culture. The amount of degradability and VFA yield within a short span was similar to other carboxylate platforms that have longer run times. This study shows that by virtue of faster rates and high extent of degradability, small scale alternatives to bioethanol such as rumen microbiomes and other natural fermenting microbiomes can be employed to enhance the feasibility of biofuels large-scale implementation.

Keywords: agricultural wastes, carboxylate platform, rumen microbiome, volatile fatty acids

Procedia PDF Downloads 109
120 Effect of Toxic Metals Exposure on Rat Behavior and Brain Morphology: Arsenic, Manganese

Authors: Tamar Bikashvili, Tamar Lordkipanidze, Ilia Lazrishvili

Abstract:

Heavy metals remain one of serious environmental problems due to their toxic effects. The effect of arsenic and manganese compounds on rat behavior and neuromorphology was studied. Wistar rats were assigned to four groups: rats in control group were given regular water, while rats in other groups drank water with final manganese concentration of 10 mg/L (group A), 20 mg/L (group B) and final arsenic concentration 68 mg/L (group C), respectively, for a month. To study exploratory and anxiety behavior and also to evaluate aggressive performance in “home cage” rats were tested in “Open Field” and to estimate learning and memory status multi-branched maze was used. Statistically significant increase of motor and oriental-searching activity in experimental groups was revealed by an open field test, which was expressed in increase of number of lines crossed, rearing and hole reflexes. Obtained results indicated the suppression of fear in rats exposed to manganese. Specifically, this was estimated by the frequency of getting to the central part of the open field. Experiments revealed that 30-day exposure to 10 mg/ml manganese did not stimulate aggressive behavior in rats, while exposure to the higher dose (20 mg/ml), 37% of initially non-aggressive animals manifested aggressive behavior. Furthermore, 25% of rats were extremely aggressive. Obtained data support the hypothesis that excess manganese in the body is one of the immediate causes of enhancement of interspecific predatory aggressive and violent behavior in rats. It was also discovered that manganese intoxication produces non-reversible severe learning disability and insignificant, reversible memory disturbances. Studies of rodents exposed to arsenic also revealed changes in the learning process. As it is known, the distribution of metal ions differs in various brain regions. The principle manganese accumulation was observed in the hippocampus and in the neocortex, while arsenic was predominantly accumulated in nucleus accumbens, striatum, and cortex. These brain regions play an important role in the regulation of emotional state and motor activity. Histopathological analyzes of brain sections illustrated two morphologically distinct altered phenotypes of neurons: (1) shrunk cells with indications of apoptosis - nucleus and cytoplasm were very difficult to be distinguished, the integrity of neuronal cytoplasm was not disturbed; and (2) swollen cells - with indications of necrosis. Pyknotic nucleus, plasma membrane disruption and cytoplasmic vacuoles were observed in swollen neurons and they were surrounded by activated gliocytes. It’s worth to mention that in the cortex the majority of damaged neurons were apoptotic while in subcortical nuclei –neurons were mainly necrotic. Ultrastructural analyses demonstrated that all cell types in the cortex and the nucleus caudatus represent destructed mitochondria, widened neurons’ vacuolar system profiles, increased number of lysosomes and degeneration of axonal endings.

Keywords: arsenic, manganese, behavior, learning, neuron

Procedia PDF Downloads 339
119 Biosurfactants Produced by Antarctic Bacteria with Hydrocarbon Cleaning Activity

Authors: Claudio Lamilla, Misael Riquelme, Victoria Saez, Fernanda Sepulveda, Monica Pavez, Leticia Barrientos

Abstract:

Biosurfactants are compounds synthesized by microorganisms that show various chemical structures, including glycolipids, lipopeptides, polysaccharide-protein complex, phospholipids, and fatty acids. These molecules have attracted attention in recent years due to the amphipathic nature of these compounds, which allows their application in various activities related to emulsification, foaming, detergency, wetting, dispersion and solubilization of hydrophobic compounds. Microorganisms that produce biosurfactants are ubiquitous, not only present in water, soil, and sediments but in extreme conditions of pH, salinity or temperature such as those present in Antarctic ecosystems. Due to this, it is of interest to study biosurfactants producing bacterial strains isolated from Antarctic environments, with the potential to be used in various biotechnological processes. The objective of this research was to characterize biosurfactants produced by bacterial strains isolated from Antarctic environments, with potential use in biotechnological processes for the cleaning of sites contaminated with hydrocarbons. The samples were collected from soils and sediments in the South Shetland Islands and the Antarctic Peninsula, during the Antarctic Research Expedition INACH 2016, from both pristine and human occupied areas (influenced). The bacteria isolation was performed from solid R2A, M1 and LB media. The selection of strains producing biosurfactants was done by hemolysis test on blood agar plates (5%) and blue agar (CTAB). From 280 isolates, it was determined that 10 bacterial strains produced biosurfactants after stimulation with different carbon sources. 16S rDNA taxonomic markers, using the universal primers 27F-1492R, were used to identify these bacterias. Biosurfactants production was carried out in 250 ml flasks using Bushnell Hass liquid culture medium enriched with different carbon sources (olive oil, glucose, glycerol, and hexadecane) during seven days under constant stirring at 20°C. Each cell-free supernatant was characterized by physicochemical parameters including drop collapse, emulsification and oil displacement, as well as stability at different temperatures, salinity, and pH. In addition, the surface tension of each supernatant was quantified using a tensiometer. The strains with the highest activity were selected, and the production of biosurfactants was stimulated in six liters of culture medium. Biosurfactants were extracted from the supernatants with chloroform methanol (2:1). These biosurfactants were tested against crude oil and motor oil, to evaluate their displacement activity (detergency). The characterization by physicochemical properties of 10 supernatants showed that 80% of them produced the drop collapse, 60% had stability at different temperatures, and 90% had detergency activity in motor and olive oil. The biosurfactants obtained from two bacterial strains showed a high activity of dispersion of crude oil and motor oil with halos superior to 10 cm. We can conclude that bacteria isolated from Antarctic soils and sediments provide biological material of high quality for the production of biosurfactants, with potential applications in the biotechnological industry, especially in hydrocarbons -contaminated areas such as petroleum.

Keywords: antarctic, bacteria, biosurfactants, hydrocarbons

Procedia PDF Downloads 259
118 Synthesis by Mechanical Alloying and Characterization of FeNi₃ Nanoalloys

Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz

Abstract:

There is a growing interest on the synthesis and characterization of nanoalloys since the unique chemical, and physical properties of nanoalloys can be tuned and, consequently, new structural motifs can be created by varying the type of constituent elements, atomic and magnetic ordering, as well as size and shape of the nanoparticles. Due to the fine size effects, magnetic nanoalloys have considerable attention with their enhanced mechanical, electrical, optical and magnetic behavior. As an important magnetic nanoalloy, the novel application area of Fe-Ni based nanoalloys is expected to be widened in the chemical, aerospace industry and magnetic biomedical applications. Noble metals have been using in biomedical applications for several years because of their surface plasmon properties. In this respect, iron-nickel nanoalloys are promising materials for magnetic biomedical applications because they show novel properties such as superparamagnetism and surface plasmon resonance property. Also, there is great attention for the usage Fe-Ni based nanoalloys as radar absorbing materials in aerospace and stealth industry due to having high Curie temperature, high permeability and high saturation magnetization with good thermal stability. In this study, FeNi₃ bimetallic nanoalloys were synthesized by mechanical alloying in a planetary high energy ball mill. In mechanical alloying, micron size powders are placed into the mill with milling media. The powders are repeatedly deformed, fractured and alloyed by high energy collision under the impact of balls until the desired composition and particle size is achieved. The experimental studies were carried out in two parts. Firstly, dry mechanical alloying with high energy dry planetary ball milling was applied to obtain FeNi₃ nanoparticles. Secondly, dry milling was followed by surfactant-assisted ball milling to observe the surfactant and solvent effect on the structure, size, and properties of the FeNi₃ nanoalloys. In the first part, the powder sample of iron-nickel was prepared according to the 1:3 iron to nickel ratio to produce FeNi₃ nanoparticles and the 1:10 powder to ball weight ratio. To avoid oxidation during milling, the vials had been filled with Ar inert gas before milling started. The powders were milled for 80 hours in total and the synthesis of the FeNi₃ intermetallic nanoparticles was succeeded by mechanical alloying in 40 hours. Also, regarding the particle size, it was found that the amount of nano-sized particles raised with increasing milling time. In the second part of the study, dry milling of the Fe and Ni powders with the same stoichiometric ratio was repeated. Then, to prevent agglomeration and to obtain smaller sized nanoparticles with superparamagnetic behavior, surfactants and solvent are added to the system, after 40-hour milling time, with the completion of the mechanical alloying. During surfactant-assisted ball milling, heptane was used as milling medium, and as surfactants, oleic acid and oleylamine were used in the high energy ball milling processes. The characterization of the alloyed particles in terms of microstructure, morphology, particle size, thermal and magnetic properties with respect to milling time was done by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, vibrating-sample magnetometer, and differential scanning calorimetry.

Keywords: iron-nickel systems, magnetic nanoalloys, mechanical alloying, nanoalloy characterization, surfactant-assisted ball milling

Procedia PDF Downloads 158
117 Oblique Radiative Solar Nano-Polymer Gel Coating Heat Transfer and Slip Flow: Manufacturing Simulation

Authors: Anwar Beg, Sireetorn Kuharat, Rashid Mehmood, Rabil Tabassum, Meisam Babaie

Abstract:

Nano-polymeric solar paints and sol-gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics of such sol gels, the present article presents a mathematical and computational study of the steady, two-dimensional, non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol gels under radiative heat flux. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The Tiwari-Das nanofluid model is deployed which features a volume fraction for the nanoparticle concentration. This approach also features a Maxwell-Garnet model for the nanofluid thermal conductivity. The conservation equations for mass, normal and tangential momentum and energy (heat) are normalized via appropriate transformations to generate a multi-degree, ordinary differential, non-linear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge-Kutta-Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a Variational Iterative Method (VIM) utilizing Langrangian multipliers. The impact of key emerging dimensionless parameters i.e. obliqueness parameter, radiation-conduction Rosseland number (Rd), thermal slip parameter (α), viscosity parameter (m), nanoparticles volume fraction (ϕ) on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures. With greater volume fraction of copper nanoparticles temperature and thermal boundary layer thickness is elevated. Streamlines are found to be skewed markedly towards the left with positive obliqueness parameter.

Keywords: non-orthogonal stagnation-point heat transfer, solar nano-polymer coating, MATLAB numerical quadrature, Variational Iterative Method (VIM)

Procedia PDF Downloads 114
116 Addressing the Biocide Residue Issue in Museum Collections Already in the Planning Phase: An Investigation Into the Decontamination of Biocide Polluted Museum Collections Using the Temperature and Humidity Controlled Integrated Contamination Manageme

Authors: Nikolaus Wilke, Boaz Paz

Abstract:

Museum staff, conservators, restorers, curators, registrars, art handlers but potentially also museum visitors are often exposed to the harmful effects of biocides, which have been applied to collections in the past for the protection and preservation of cultural heritage. Due to stable light, moisture, and temperature conditions, the biocidal active ingredients were preserved for much longer than originally assumed by chemists, pest controllers, and museum scientists. Given the requirements to minimize the use and handling of toxic substances and the obligations of employers regarding safe working environments for their employees, but also for visitors, the museum sector worldwide needs adequate decontamination solutions. Today there are millions of contaminated objects in museums. This paper introduces the results of a systematic investigation into the reduction rate of biocide contamination in various organic materials that were treated with the humidity and temperature controlled ICM (Integrated Contamination Management) method. In the past, collections were treated with a wide range, at times even with a combination of toxins, either preventively or to eliminate active insect or fungi infestations. It was only later that most of those toxins were recognized as CMR (cancerogenic mutagen reprotoxic) substances. Among them were numerous chemical substances that are banned today because of their toxicity. While the biocidal effect of inorganic salts such as arsenic (arsenic(III) oxide), sublimate (mercury(II) chloride), copper oxychloride (basic copper chloride) and zinc chloride was known very early on, organic tar distillates such as paradichlorobenzene, carbolineum, creosote and naphthalene were increasingly used from the 19th century onwards, especially as wood preservatives. With the rapid development of organic synthesis chemistry in the 20th century and the development of highly effective warfare agents, pesticides and fungicides, these substances were replaced by chlorogenic compounds (e.g. γ-hexachlorocyclohexane (lindane), dichlorodiphenyltrichloroethane (DDT), pentachlorophenol (PCP), hormone-like derivatives such as synthetic pyrethroids (e.g., permethrin, deltamethrin, cyfluthrin) and phosphoric acid esters (e.g., dichlorvos, chlorpyrifos). Today we know that textile artifacts (costumes, uniforms, carpets, tapestries), wooden objects, herbaria, libraries, archives and historical wall decorations made of fabric, paper and leather were also widely treated with toxic inorganic and organic substances. The migration (emission) of pollutants from the contaminated objects leads to continuous (secondary) contamination and accumulation in the indoor air and dust. It is important to note that many of mentioned toxic substances are also material-damaging; they cause discoloration and corrosion. Some, such as DDT, form crystals, which in turn can cause micro tectonic, destructive shifting, for example, in paint layers. Museums must integrate sustainable solutions to address the residual biocide problems already in the planning phase. Gas and dust phase measurements and analysis must become standard as well as methods of decontamination.

Keywords: biocides, decontamination, museum collections, toxic substances in museums

Procedia PDF Downloads 92
115 Chemical, Biochemical and Sensory Evaluation of a Quadrimix Complementary Food Developed from Sorghum, Groundnut, Crayfish and Pawpaw Blends

Authors: Ogechi Nzeagwu, Assumpta Osuagwu, Charlse Nkwoala

Abstract:

Malnutrition in infants due to poverty, poor feeding practices, and high cost of commercial complementary foods among others is a concern in developing countries. The study evaluated the proximate, vitamin and mineral compositions, antinutrients and functional properties, biochemical, haematological and sensory evaluation of complementary food made from sorghum, groundnut, crayfish and paw-paw flour blends using standard procedures. The blends were formulated on protein requirement of infants (18 g/day) using Nutrisurvey linear programming software in ratio of sorghum(S), groundnut(G), crayfish(C) and pawpaw(P) flours as 50:25:10:15(SGCP1), 60:20:10:10 (SGCP2), 60:15:15:10 (SGCP3) and 60:10:20:10 (SGCP4). Plain-pap (fermented maize flour)(TCF) and cerelac (commercial complementary food) served as basal and control diets. Thirty weanling male albino rats aged 28-35 days weighing 33-60 g were purchased and used for the study. The rats after acclimatization were fed with gruel produced with the experimental diets and the control with water ad libitum daily for 35days. Effect of the blends on lipid profile, blood glucose, haematological (RBC, HB, PCV, MCV), liver and kidney function and weight gain of the rats were assessed. Acceptability of the gruel was conducted at the end of rat feeding on forty mothers of infants’ ≥ 6 months who gave their informed consent to participate using a 9 point hedonic scale. Data was analyzed for means and standard deviation, analysis of variance and means were separated using Duncan multiple range test and significance judged at 0.05, all using SPSS version 22.0. The results indicated that crude protein, fibre, ash and carbohydrate of the formulated diets were either comparable or higher than values in cerelac. The formulated diets (SGCP1- SGCP4) were significantly (P>0.05) higher in vitamin A and thiamin compared to cerelac. The iron content of the formulated diets SGCP1- SGCP4 (4.23-6.36 mg/100) were within the recommended iron intake of infants (0.55 mg/day). Phytate (1.56-2.55 mg/100g) and oxalate (0.23-0.35 mg/100g) contents of the formulated diets were within the permissible limits of 0-5%. In functional properties, bulk density, swelling index, % dispersibility and water absorption capacity significantly (P<0.05) increased and compared favourably with cerelac. The essential amino acids of the formulated blends were within the amino acid profile of the FAO/WHO/UNU reference protein for children 0.5 -2 years of age. Urea concentration of rats fed with SGCP1-SGCP4 (19.48 mmol/L),(23.76 mmol/L),(24.07 mmol/L),(23.65 mmol/L) respectively was significantly higher than that of rat fed cerelac (16.98 mmol/L); however, plain pap had the least value (9.15 mmol/L). Rats fed with SGCP1-SGCP4 (116 mg/dl), (119 mg/dl), (115 mg/dl), (117 mg/dl) respectively had significantly higher glucose levels those fed with cerelac (108 mg/dl). Liver function parameters (AST, ALP and ALT), lipid profile (triglyceride, HDL, LDL, VLDL) and hematological parameters of rats fed with formulated diets were within normal range. Rats fed SGCP1 gained more weight (90.45 g) than other rats fed with SGCP2-SGCP4 (71.65 g, 79.76 g, 75.68 g), TCF (20.13 g) and cerelac (59.06 g). In all the sensory attributes, the control was preferred with respect to the formulated diets. The formulated diets were generally adequate and may likely have potentials to meet nutrient requirements of infants as complementary food.

Keywords: biochemical, chemical evaluation, complementary food, quadrimix

Procedia PDF Downloads 140
114 Colocalization Analysis to Understand Yttrium Uptake in Saxifraga paniculata Using Complementary Imaging Technics

Authors: Till Fehlauer, Blanche Collin, Bernard Angeletti, Andrea Somogyi, Claire Lallemand, Perrine Chaurand, Cédric Dentant, Clement Levard, Jerome Rose

Abstract:

Over the last decades, yttrium (Y) has gained importance in high-tech applications. It is an essential part of alloys and compounds used for lasers, displays, or cell phones, for example. Due to its chemical similarities with the lanthanides, Y is often considered a rare earth element (REE). Despite their increased usage, the environmental behavior of REEs remains poorly understood. Especially regarding their interactions with plants, many uncertainties exist. On the one hand, Y is known to have a negative effect on root development and germination, but on the other hand, it appears to promote plant growth at low concentrations. In order to understand these phenomena, a precise knowledge is necessary about how Y is absorbed by the plant and how it is handled once inside the organism. Contradictory studies exist, stating that due to a similar ionic radius, Y and the other REEs might be absorbed through Ca²⁺-channels, while others suspect that Y has a shared pathway with Al³⁺. In this study, laser ablation coupled ICP-MS, and synchrotron-based micro-X-ray fluorescence (µXRF, beamline Nanoscopium, SOLEIL, France) have been used in order to localize Y within the plant tissue and identify associated elements. The plant used in this study is Saxifraga paniculata, a rugged alpine plant that has shown an affinity for Y in previous studies (in prep.). Furthermore, Saxifraga paniculata performs guttation, which means that it possesses phloem sap secreting openings on the leaf surface that serve to regulate root pressure. These so-called hydathodes could provide special insights in elemental transport in plants. The plants have been grown on Y doped soil (500mg/kg DW) for four months. The results showed that Y was mainly concentrated in the roots of Saxifraga paniculata (260 ± 85mg/kg), and only a small amount was translocated to the leaves (10 ± 7.8mg/kg). µXRF analysis indicated that within the root transects, the majority of Y remained in the epidermis and hardly penetrated the stele. Laser ablation coupled ICP-MS confirmed this finding and showed a positive correlation in the roots between Y, Fe, Al, and to a lesser extent Ca. In the stem transect, Y was mainly detected in a hotspot of approximately 40µm in diameter situated in the endodermis area. Within the stem and especially in the hotspot, Y was highly colocalized with Al and Fe. Similar-sized Y hotspots have been detected in/on the leaves. All of them were strongly colocalized with Al and Fe, except for those situated within the hydathodes, which showed no colocalization with any of the measured elements. Accordingly, a relation between Y and Ca during root uptake remains possible, whereas a correlation to Fe and Al appears to be dominant in the aerial parts, suggesting common storage compartments, the formation of complexes, or a shared pathway during translocation.

Keywords: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Phytoaccumulation, Rare earth elements, Saxifraga paniculata, Synchrotron-based micro-X-ray fluorescence, Yttrium

Procedia PDF Downloads 128
113 Mathematical Modeling of Avascular Tumor Growth and Invasion

Authors: Meitham Amereh, Mohsen Akbari, Ben Nadler

Abstract:

Cancer has been recognized as one of the most challenging problems in biology and medicine. Aggressive tumors are a lethal type of cancers characterized by high genomic instability, rapid progression, invasiveness, and therapeutic resistance. Their behavior involves complicated molecular biology and consequential dynamics. Although tremendous effort has been devoted to developing therapeutic approaches, there is still a huge need for new insights into the dark aspects of tumors. As one of the key requirements in better understanding the complex behavior of tumors, mathematical modeling and continuum physics, in particular, play a pivotal role. Mathematical modeling can provide a quantitative prediction on biological processes and help interpret complicated physiological interactions in tumors microenvironment. The pathophysiology of aggressive tumors is strongly affected by the extracellular cues such as stresses produced by mechanical forces between the tumor and the host tissue. During the tumor progression, the growing mass displaces the surrounding extracellular matrix (ECM), and due to the level of tissue stiffness, stress accumulates inside the tumor. The produced stress can influence the tumor by breaking adherent junctions. During this process, the tumor stops the rapid proliferation and begins to remodel its shape to preserve the homeostatic equilibrium state. To reach this, the tumor, in turn, upregulates epithelial to mesenchymal transit-inducing transcription factors (EMT-TFs). These EMT-TFs are involved in various signaling cascades, which are often associated with tumor invasiveness and malignancy. In this work, we modeled the tumor as a growing hyperplastic mass and investigated the effects of mechanical stress from surrounding ECM on tumor invasion. The invasion is modeled as volume-preserving inelastic evolution. In this framework, principal balance laws are considered for tumor mass, linear momentum, and diffusion of nutrients. Also, mechanical interactions between the tumor and ECM is modeled using Ciarlet constitutive strain energy function, and dissipation inequality is utilized to model the volumetric growth rate. System parameters, such as rate of nutrient uptake and cell proliferation, are obtained experimentally. To validate the model, human Glioblastoma multiforme (hGBM) tumor spheroids were incorporated inside Matrigel/Alginate composite hydrogel and was injected into a microfluidic chip to mimic the tumor’s natural microenvironment. The invasion structure was analyzed by imaging the spheroid over time. Also, the expression of transcriptional factors involved in invasion was measured by immune-staining the tumor. The volumetric growth, stress distribution, and inelastic evolution of tumors were predicted by the model. Results showed that the level of invasion is in direct correlation with the level of predicted stress within the tumor. Moreover, the invasion length measured by fluorescent imaging was shown to be related to the inelastic evolution of tumors obtained by the model.

Keywords: cancer, invasion, mathematical modeling, microfluidic chip, tumor spheroids

Procedia PDF Downloads 93
112 Somatic Delusional Disorder Subsequent to Phantogeusia: A Case Report

Authors: Pedro Felgueiras, Ana Miguel, Nélson Almeida, Raquel Silva

Abstract:

Objective: Through the study of a clinical case of delusional somatic disorder secondary to phantogeusia, we aim to highlight the importance of considering psychosomatic conditions in differential diagnosis, as well as to emphasize the complexity of its comprehension, treatment, and respective impact on patients’ functioning. Methods: Bearing this in mind, we conducted a critical analysis of a case series based on patient observations, clinical data, and complementary diagnostic methods, as well as a non-systematic review of the literature on the subject. Results: A 61-year-old female patient with no history of psychiatric conditions. Family psychiatric history of mood disorder (depression), with psychotic features found in her mother. Medical history of many comorbidities affecting different organ systems (endocrine, gastrointestinal, genitourinary, ophthalmological). Documented neuroticism traits of personality. The patient’s family described a persistent concern about several physical symptoms across her life, with a continuous effort to obtain explanations about any sensation out of her normal perception. Since being subjected to endoscopy in 2018, she started complaints of persistent phantogeusia (acid taste) and developed excessive thoughts, feelings, and behaviors associated with this somatic symptom. The patient was evaluated by several medical specialties, and an extensive panel of medical exams was carried out, excluding any disease. Besides all the investigation and with no evidence of disease signs, acute anxiety, time, and energy dispended to this symptom culminated in severe psychosocial impairment. The patient was admitted to a psychiatric ward for investigation and treatment of this clinical picture, leading to the diagnosis of the delusional somatic disorder. In order to exclude the acute organic etiology of this psychotic disorder, an analytic panel was carried out with no abnormal results. In the context of a psychotic clinical picture, a CT scan was performed, which revealed a right cortical vascular lesion. Neuropsychological evaluation was made, with the description of cognitive functioning being globally normative. During treatment with an antipsychotic (pimozide), a complete remission of the somatic delusion was associated with the disappearance of gustative perception disturbance. In follow-up, a relapse of gustative sensation was documented, and her thoughts and speech were dominated by concerns about multiple somatic symptoms. Conclusion: In terms of abnormal bodily sensations, the oral cavity is one of the frequent sites of delusional disorder. Patients with these gustatory perception distortions complain about unusual sensations without corresponding abnormal findings in the oral area. Its pathophysiology has not been fully elucidated yet. In terms of its comprehensive psychopathology, this case was hypothesized as a paranoid development of a delusional somatic disorder triggered by a post-invasive procedure phantogeusia (which is described as a possible side effect of an endoscopy) in a patient with an anankastic personality. This case presents interesting psychopathology, reinforcing the complexity of psychosomatic disorders in terms of their etiopathogenesis, clinical treatment, and long-term prognosis.

Keywords: psychosomatics, delusional somatic disorder, phantogeusia, paranoid development

Procedia PDF Downloads 102
111 Development of Biosensor Chip for Detection of Specific Antibodies to HSV-1

Authors: Zatovska T. V., Nesterova N. V., Baranova G. V., Zagorodnya S. D.

Abstract:

In recent years, biosensor technologies based on the phenomenon of surface plasmon resonance (SPR) are becoming increasingly used in biology and medicine. Their application facilitates exploration in real time progress of binding of biomolecules and identification of agents that specifically interact with biologically active substances immobilized on the biosensor surface (biochips). Special attention is paid to the use of Biosensor analysis in determining the antibody-antigen interaction in the diagnostics of diseases caused by viruses and bacteria. According to WHO, the diseases that are caused by the herpes simplex virus (HSV), take second place (15.8%) after influenza as a cause of death from viral infections. Current diagnostics of HSV infection include PCR and ELISA assays. The latter allows determination the degree of immune response to viral infection and respective stages of its progress. In this regard, the searches for new and available diagnostic methods are very important. This work was aimed to develop Biosensor chip for detection of specific antibodies to HSV-1 in the human blood serum. The proteins of HSV1 (strain US) were used as antigens. The viral particles were accumulated in cell culture MDBK and purified by differential centrifugation in cesium chloride density gradient. Analysis of the HSV1 proteins was performed by polyacrylamide gel electrophoresis and ELISA. The protein concentration was measured using De Novix DS-11 spectrophotometer. The device for detection of antigen-antibody interactions was an optoelectronic two-channel spectrometer ‘Plasmon-6’, using the SPR phenomenon in the Krechman optical configuration. It was developed at the Lashkarev Institute of Semiconductor Physics of NASU. The used carrier was a glass plate covered with 45 nm gold film. Screening of human blood serums was performed using the test system ‘HSV-1 IgG ELISA’ (GenWay, USA). Development of Biosensor chip included optimization of conditions of viral antigen sorption and analysis steps. For immobilization of viral proteins 0.2% solution of Dextran 17, 200 (Sigma, USA) was used. Sorption of antigen took place at 4-8°C within 18-24 hours. After washing of chip, three times with citrate buffer (pH 5,0) 1% solution of BSA was applied to block the sites not occupied by viral antigen. It was found direct dependence between the amount of immobilized HSV1 antigen and SPR response. Using obtained biochips, panels of 25 positive and 10 negative for the content of antibodies to HSV-1 human sera were analyzed. The average value of SPR response was 185 a.s. for negative sera and from 312 to. 1264 a.s. for positive sera. It was shown that SPR data were agreed with ELISA results in 96% of samples proving the great potential of SPR in such researches. It was investigated the possibility of biochip regeneration and it was shown that application of 10 mM NaOH solution leads to rupture of intermolecular bonds. This allows reuse the chip several times. Thus, in this study biosensor chip for detection of specific antibodies to HSV1 was successfully developed expanding a range of diagnostic methods for this pathogen.

Keywords: biochip, herpes virus, SPR

Procedia PDF Downloads 404
110 Altered Proteostasis Contributes to Skeletal Muscle Atrophy during Chronic Hypobaric Hypoxia: An Insight into Signaling Mechanisms

Authors: Akanksha Agrawal, Richa Rathor, Geetha Suryakumar

Abstract:

Muscle represents about ¾ of the body mass, and a healthy muscular system is required for human performance. A healthy muscular system is dynamically balanced via the catabolic and anabolic process. High altitude associated hypoxia altered this redox balance via producing reactive oxygen and nitrogen species that ultimately modulates protein structure and function, hence, disrupts proteostasis or protein homeostasis. The mechanism by which proteostasis is clinched includes regulated protein translation, protein folding, and protein degradation machinery. Perturbation in any of these mechanisms could increase proteome imbalance in the cellular processes. Altered proteostasis in skeletal muscle is likely to be responsible for contributing muscular atrophy in response to hypoxia. Therefore, we planned to elucidate the mechanism involving altered proteostasis leading to skeletal muscle atrophy under chronic hypobaric hypoxia. Material and Methods-Male Sprague Dawley rats weighing about 200-220 were divided into five groups - Control (Normoxic animals), 1d, 3d, 7d and 14d hypobaric hypoxia exposed animals. The animals were exposed to simulated hypoxia equivalent to 282 torr pressure (equivalent to an altitude of 7620m, 8% oxygen) at 25°C. On completion of chronic hypobaric hypoxia (CHH) exposure, rats were sacrificed, muscle was excised and biochemical, histopathological and protein synthesis signaling were studied. Results-A number of changes were observed with the CHH exposure time period. ROS was increased significantly on 07 and 14 days which were attributed to protein oxidation via damaging muscle protein structure by oxidation of amino acids moiety. The oxidative damage to the protein further enhanced the various protein degradation pathways. Calcium activated cysteine proteases and other intracellular proteases participate in protein turnover in muscles. Therefore, we analysed calpain and 20S proteosome activity which were noticeably increased at CHH exposure as compared to control group representing enhanced muscle protein catabolism. Since inflammatory markers (myokines) affect protein synthesis and triggers degradation machinery. So, we determined inflammatory pathway regulated under hypoxic environment. Other striking finding of the study was upregulation of Akt/PKB translational machinery that was increased on CHH exposure. Akt, p-Akt, p70 S6kinase, and GSK- 3β expression were upregulated till 7d of CHH exposure. Apoptosis related markers, caspase-3, caspase-9 and annexin V was also increased on CHH exposure. Conclusion: The present study provides evidence of disrupted proteostasis under chronic hypobaric hypoxia. A profound loss of muscle mass is accompanied by the muscle damage leading to apoptosis and cell death under CHH. These cellular stress response pathways may play a pivotal role in hypobaric hypoxia induced skeletal muscle atrophy. Further research in these signaling pathways will lead to development of therapeutic interventions for amelioration of hypoxia induced muscle atrophy.

Keywords: Akt/PKB translational machinery, chronic hypobaric hypoxia, muscle atrophy, protein degradation

Procedia PDF Downloads 250
109 Experimental Research of Canine Mandibular Defect Construction with the Controlled Meshy Titanium Alloy Scaffold Fabricated by Electron Beam Melting Combined with BMSCs-Encapsulating Chitosan Hydrogel

Authors: Wang Hong, Liu Chang Kui, Zhao Bing Jing, Hu Min

Abstract:

Objection We observed the repairment effection of canine mandibular defect with meshy Ti6Al4V scaffold fabricated by electron beam melting (EBM) combined with bone marrow mesenchymal stem cells (BMMSCs) encapsulated in chitosan hydrogel. Method Meshy titanium scaffolds were prepared by EBM of commercial Ti6Al4V power. The length of scaffolds was 24 mm, the width was 5 mm and height was 8mm. The pore size and porosity were evaluated by scanning electron microscopy (SEM). Chitosan /Bio-Oss hydrogel was prepared by chitosan, β- sodium glycerophosphate and Bio-Oss power. BMMSCs were harvested from canine iliac crests. BMMSCs were seeded in titanium scaffolds and encapsulated in Chitosan /Bio-Oss hydrogel. The validity of BMMSCs was evaluated by cell count kit-8 (CCK-8). The osteogenic differentiation ability was evaluated by alkaline phosphatase (ALP) activity and gene expression of OC, OPN and CoⅠ. Combination were performed by injecting BMMSCs/ Chitosan /Bio-Oss hydrogel into the meshy Ti6Al4V scaffolds and solidified. 24 mm long box-shaped bone defects were made at the mid-portion of mandible of adult beagles. The defects were randomly filled with BMMSCs/ Chitosan/Bio-Oss + titanium, Chitosan /Bio-Oss+titanium, titanium alone. Autogenous iliac crests graft as control group in 3 beagles. Radionuclide bone imaging was used to monitor the new bone tissue at 2, 4, 8 and 12 weeks after surgery. CT examination was made on the surgery day and 4 weeks, 12 weeks and 24 weeks after surgery. The animals were sacrificed in 4, 12 and 24 weeks after surgery. The bone formation were evaluated by histology and micro-CT. Results: The pores of the scaffolds was interconnected, the pore size was about 1 mm, the average porosity was about 76%. The pore size of the hydrogel was 50-200μm and the average porosity was approximately 90%. The hydrogel were solidified under the condition of 37℃in 10 minutes. The validity and the osteogenic differentiation ability of BMSCs were not affected by titanium scaffolds and hydrogel. Radionuclide bone imaging shown an increasing tendency of the revascularization and bone regeneration was observed in all the groups at 2, 4, 8 weeks after operation, and there were no changes at 12weeks.The tendency was more obvious in the BMMSCs/ Chitosan/Bio-Oss +titanium group and autogenous group. CT, Micro-CT and histology shown that new bone formed increasingly with the time extend. There were more new bone regenerated in BMMSCs/ Chitosan /Bio-Oss + titanium group and autogenous group than the other two groups. At 24 weeks, the autogenous group was achieved bone union. The BMSCs/ Chitosan /Bio-Oss group was seen extensive new bone formed around the scaffolds and more new bone inside of the central pores of scaffolds than Chitosan /Bio-Oss + titanium group and titanium group. The difference was significantly. Conclusion: The titanium scaffolds fabricated by EBM had controlled porous structure, good bone conduction and biocompatibility. Chitosan /Bio-Oss hydrogel had injectable plasticity, thermosensitive property and good biocompatibility. The meshy Ti6Al4V scaffold produced by EBM combined BMSCs encapsulated in chitosan hydrogel had good capacity on mandibular bone defect repair.

Keywords: mandibular reconstruction, tissue engineering, electron beam melting, titanium alloy

Procedia PDF Downloads 422
108 Formulation of a Submicron Delivery System including a Platelet Lysate to Be Administered in Damaged Skin

Authors: Sergio A. Bernal-Chavez, Sergio Alcalá-Alcalá, Doris A. Cerecedo-Mercado, Adriana Ganem-Rondero

Abstract:

The prevalence of people with chronic wounds has increased dramatically by many factors including smoking, obesity and chronic diseases, such as diabetes, that can slow the healing process and increase the risk of becoming chronic. Because of this situation, the improvement of chronic wound treatments is a necessity, which has led to the scientific community to focus on improving the effectiveness of current therapies and the development of new treatments. The wound formation is a physiological complex process, which is characterized by an inflammatory stage with the presence of proinflammatory cells that create a proteolytic microenvironment during the healing process, which includes the degradation of important growth factors and cytokines. This decrease of growth factors and cytokines provides an interesting strategy for wound healing if they are administered externally. The use of nanometric drug delivery systems, such as polymer nanoparticles (NP), also offers an interesting alternative around dermal systems. An interesting strategy would be to propose a formulation based on a thermosensitive hydrogel loaded with polymeric nanoparticles that allows the inclusion and application of a platelet lysate (PL) on damaged skin, with the aim of promoting wound healing. In this work, NP were prepared by a double emulsion-solvent evaporation technique, using polylactic-co-glycolic acid (PLGA) as biodegradable polymer. Firstly, an aqueous solution of PL was emulsified into a PLGA organic solution, previously prepared in dichloromethane (DCM). Then, this disperse system (W/O) was poured into a polyvinyl alcohol (PVA) solution to get the double emulsion (W/O/W), finally the DCM was evaporated by magnetic stirring resulting in the NP formation containing PL. Once the NP were obtained, these systems were characterized by morphology, particle size, Z-potential, encapsulation efficiency (%EE), physical stability, infrared spectrum, calorimetric studies (DSC) and in vitro release profile. The optimized nanoparticles were included in a thermosensitive gel formulation of Pluronic® F-127. The gel was prepared by the cold method at 4 °C and 20% of polymer concentration. Viscosity, sol-gel phase transition, time of no flow solid-gel at wound temperature, changes in particle size by temperature-effect using dynamic light scattering (DLS), occlusive effect, gel degradation, infrared spectrum and micellar point by DSC were evaluated in all gel formulations. PLGA NP of 267 ± 10.5 nm and Z-potential of -29.1 ± 1 mV were obtained. TEM micrographs verified the size of NP and evidenced their spherical shape. The %EE for the system was around 99%. Thermograms and in infrared spectra mark the presence of PL in NP. The systems did not show significant changes in the parameters mentioned above, during the stability studies. Regarding the gel formulation, the transition sol-gel occurred at 28 °C with a time of no flow solid-gel of 7 min at 33°C (common wound temperature). Calorimetric, DLS and infrared studies corroborated the physical properties of a thermosensitive gel, such as the micellar point. In conclusion, the thermosensitive gel described in this work, contains therapeutic amounts of PL and fulfills the technological properties to be used in damaged skin, with potential application in wound healing and tissue regeneration.

Keywords: growth factors, polymeric nanoparticles, thermosensitive hydrogels, tissue regeneration

Procedia PDF Downloads 153
107 Vascular Targeted Photodynamic Therapy Monitored by Real-Time Laser Speckle Imaging

Authors: Ruth Goldschmidt, Vyacheslav Kalchenko, Lilah Agemy, Rachel Elmoalem, Avigdor Scherz

Abstract:

Vascular Targeted Photodynamic therapy (VTP) is a new modality for selective cancer treatment that leads to the complete tumor ablation. A photosensitizer, a bacteriochlorophyll derivative in our case, is first administered to the patient and followed by the illumination of the tumor area, by a near-IR laser for its photoactivation. The photoactivated drug releases reactive oxygen species (ROS) in the circulation, which reacts with blood cells and the endothelium leading to the occlusion of the blood vasculature. If the blood vessels are only partially closed, the tumor may recover, and cancer cells could survive. On the other hand, excessive treatment may lead to toxicity of healthy tissues nearby. Simultaneous VTP monitoring and image processing independent of the photoexcitation laser has not yet been reported, to our knowledge. Here we present a method for blood flow monitoring, using a real-time laser speckle imaging (RTLSI) in the tumor during VTP. We have synthesized over the years a library of bacteriochlorophyll derivatives, among them WST11 and STL-6014. Both are water soluble derivatives that are retained in the blood vasculature through their partial binding to HSA. WST11 has been approved in Mexico for VTP treatment of prostate cancer at a certain drug dose, and time/intensity of illumination. Application to other bacteriochlorophyll derivatives or other cancers may require different treatment parameters (such as light/drug administration). VTP parameters for STL-6014 are still under study. This new derivative mainly differs from WST11 by its lack of the central Palladium, and its conjugation to an Arg-Gly-Asp (RGD) sequence. RGD is a tumor-specific ligand that is used for targeting the necrotic tumor domains through its affinity to αVβ3 integrin receptors. This enables the study of cell-targeted VTP. We developed a special RTLSI module, based on Labview software environment for data processing. The new module enables to acquire raw laser speckle images and calculate the values of the laser temporal statistics of time-integrated speckles in real time, without additional off-line processing. Using RTLSI, we could monitor the tumor’s blood flow following VTP in a CT26 colon carcinoma ear model. VTP with WST11 induced an immediate slow down of the blood flow within the tumor and a complete final flow arrest, after some sporadic reperfusions. If the irradiation continued further, the blood flow stopped also in the blood vessels of the surrounding healthy tissue. This emphasizes the significance of light dose control. Using our RTLSI system, we could prevent any additional healthy tissue damage by controlling the illumination time and restrict blood flow arrest within the tumor only. In addition, we found that VTP with STL-6014 was the most effective when the photoactivation was conducted 4h post-injection, in terms of tumor ablation success in-vivo and blood vessel flow arrest. In conclusion, RTSLI application should allow to optimize VTP efficacy vs. toxicity in both the preclinical and clinical arenas.

Keywords: blood vessel occlusion, cancer treatment, photodynamic therapy, real time imaging

Procedia PDF Downloads 202
106 The 5-HT1A Receptor Biased Agonists, NLX-101 and NLX-204, Elicit Rapid-Acting Antidepressant Activity in Rat Similar to Ketamine and via GABAergic Mechanisms

Authors: A. Newman-Tancredi, R. Depoortère, P. Gruca, E. Litwa, M. Lason, M. Papp

Abstract:

The N-methyl-D-aspartic acid (NMDA) receptor antagonist, ketamine, can elicit rapid-acting antidepressant (RAAD) effects in treatment-resistant patients, but it requires parenteral co-administration with a classical antidepressant under medical supervision. In addition, ketamine can also produce serious side effects that limit its long-term use, and there is much interest in identifying RAADs based on ketamine’s mechanism of action but with safer profiles. Ketamine elicits GABAergic interneuron inhibition, glutamatergic neuron stimulation, and, notably, activation of serotonin 5-HT1A receptors in the prefrontal cortex (PFC). Direct activation of the latter receptor subpopulation with selective ‘biased agonists’ may therefore be a promising strategy to identify novel RAADs and, consistent with this hypothesis, the prototypical cortical biased agonist, NLX-101, exhibited robust RAAD-like activity in the chronic mild stress model of depression (CMS). The present study compared the effects of a novel, selective 5-HT1A receptor-biased agonist, NLX-204, with those of ketamine and NLX-101. Materials and methods: CMS procedure was conducted on Wistar rats; drugs were administered either intraperitoneally (i.p.) or by bilateral intracortical microinjection. Ketamine: 10 mg/kg i.p. or 10 µg/side in PFC; NLX-204 and NLX-101: 0.08 and 0.16 mg/kg i.p. or 16 µg/side in PFC. In addition, interaction studies were carried out with systemic NLX-204 or NLX-101 (each at 0.16 mg/kg i.p.) in combination with intracortical WAY-100635 (selective 5-HT1A receptor antagonist; 2 µg/side) or muscimol (GABA-A receptor agonist, 12.5 ng/side). Anhedonia was assessed by CMS-induced decrease in sucrose solution consumption; anxiety-like behavior was assessed using the Elevated Plus Maze (EPM), and cognitive impairment was assessed by the Novel Object Recognition (NOR) test. Results: A single administration of NLX-204 was sufficient to reverse the CMS-induced deficit in sucrose consumption, similarly to ketamine and NLX-101. NLX-204 also reduced CMS-induced anxiety in the EPM and abolished CMS-induced NOR deficits. These effects were maintained (EPM and NOR) or enhanced (sucrose consumption) over a subsequent 2-week period of treatment. The anti-anhedonic response of the drugs was also maintained for several weeks Following treatment discontinuation, suggesting that they had sustained effects on neuronal networks. A single PFC administration of NLX-204 reversed deficient sucrose consumption, similarly to ketamine and NLX-101. Moreover, the anti-anhedonic activities of systemic NLX-204 and NLX 101 were abolished by coadministration with intracortical WAY-100635 or muscimol. Conclusions: (i) The antidepressant-like activity of NLX-204 in the rat CMS model was as rapid as that of ketamine or NLX-101, supporting targeting cortical 5-HT1A receptors with selective, biased agonists to achieve RAAD effects. (ii)The anti-anhedonic activity of systemic NLX-204 was mimicked by local administration of the compound in the PFC, confirming the involvement of cortical circuits in its RAAD-like effects. (iii) Notably, the effects of systemic NLX-204 and NLX-101 were abolished by PFC administration of muscimol, indicating that they act by (indirectly) eliciting a reduction in cortical GABAergic neurotransmission. This is consistent with ketamine’s mechanism of action and suggests that there are converging NMDA and 5-HT1A receptor signaling cascades in PFC underlying the RAAD-like activities of ketamine and NLX-204. Acknowledgements: The study was financially supported by NCN grant no. 2019/35/B/NZ7/00787.

Keywords: depression, ketamine, serotonin, 5-HT1A receptor, chronic mild stress

Procedia PDF Downloads 85
105 Wear Resistance in Dry and Lubricated Conditions of Hard-anodized EN AW-4006 Aluminum Alloy

Authors: C. Soffritti, A. Fortini, E. Baroni, M. Merlin, G. L. Garagnani

Abstract:

Aluminum alloys are widely used in many engineering applications due to their advantages such ashigh electrical and thermal conductivities, low density, high strength to weight ratio, and good corrosion resistance. However, their low hardness and poor tribological properties still limit their use in industrial fields requiring sliding contacts. Hard anodizing is one of the most common solution for overcoming issues concerning the insufficient friction resistance of aluminum alloys. In this work, the tribological behavior ofhard-anodized AW-4006 aluminum alloys in dry and lubricated conditions was evaluated. Three different hard-anodizing treatments were selected: a conventional one (HA) and two innovative golden hard-anodizing treatments (named G and GP, respectively), which involve the sealing of the porosity of anodic aluminum oxides (AAO) with silver ions at different temperatures. Before wear tests, all AAO layers were characterized by scanning electron microscopy (VPSEM/EDS), X-ray diffractometry, roughness (Ra and Rz), microhardness (HV0.01), nanoindentation, and scratch tests. Wear tests were carried out according to the ASTM G99-17 standard using a ball-on-disc tribometer. The tests were performed in triplicate under a 2 Hz constant frequency oscillatory motion, a maximum linear speed of 0.1 m/s, normal loads of 5, 10, and 15 N, and a sliding distance of 200 m. A 100Cr6 steel ball10 mm in diameter was used as counterpart material. All tests were conducted at room temperature, in dry and lubricated conditions. Considering the more recent regulations about the environmental hazard, four bio-lubricants were considered after assessing their chemical composition (in terms of Unsaturation Number, UN) and viscosity: olive, peanut, sunflower, and soybean oils. The friction coefficient was provided by the equipment. The wear rate of anodized surfaces was evaluated by measuring the cross-section area of the wear track with a non-contact 3D profilometer. Each area value, obtained as an average of four measurements of cross-section areas along the track, was used to determine the wear volume. The worn surfaces were analyzed by VPSEM/EDS. Finally, in agreement with DoE methodology, a statistical analysis was carried out to identify the most influencing factors on the friction coefficients and wear rates. In all conditions, results show that the friction coefficient increased with raising the normal load. Considering the wear tests in dry sliding conditions, irrespective of the type of anodizing treatments, metal transfer between the mating materials was observed over the anodic aluminum oxides. During sliding at higher loads, the detachment of the metallic film also caused the delamination of some regions of the wear track. For the wear tests in lubricated conditions, the natural oils with high percentages of oleic acid (i.e., olive and peanut oils) maintained high friction coefficients and low wear rates. Irrespective of the type of oil, smallmicrocraks were visible over the AAO layers. Based on the statistical analysis, the type of anodizing treatment and magnitude of applied load were the main factors of influence on the friction coefficient and wear rate values. Nevertheless, an interaction between bio-lubricants and load magnitude could occur during the tests.

Keywords: hard anodizing treatment, silver ions, bio-lubricants, sliding wear, statistical analysis

Procedia PDF Downloads 117
104 Assessment of Cytogenetic Damage as a Function of Radiofrequency Electromagnetic Radiations Exposure Measured by Electric Field Strength: A Gender Based Study

Authors: Ramanpreet, Gursatej Gandhi

Abstract:

Background: Dependence on electromagnetic radiations involved in communication and information technologies has incredibly increased in the personal and professional world. Among the numerous radiations, sources are fixed site transmitters, mobile phone base stations, and power lines beside indoor devices like cordless phones, WiFi, Bluetooth, TV, radio, microwave ovens, etc. Rather there is the continuous emittance of radiofrequency radiations (RFR) even to those not using the devices from mobile phone base stations. The consistent and widespread usage of wireless devices has build-up electromagnetic fields everywhere. In fact, the radiofrequency electromagnetic field (RF-EMF) has insidiously become a part of the environment and like any contaminant may pose to be health-hazardous requiring assessment. Materials and Methods: In the present study, cytogenetic damage was assessed using the Buccal Micronucleus Cytome (BMCyt) assay as a function of radiation exposure after Institutional Ethics Committee clearance of the study and written voluntary informed consent from the participants. On a pre-designed questionnaire, general information lifestyle patterns (diet, physical activity, smoking, drinking, use of mobile phones, internet, Wi-Fi usage, etc.) genetic, reproductive (pedigrees) and medical histories were recorded. For this, 24 hour-personal exposimeter measurements (PEM) were recorded for unrelated 60 healthy adults (40 cases residing in the vicinity of mobile phone base stations since their installation and 20 controls residing in areas with no base stations). The personal exposimeter collects information from all the sources generating EMF (TETRA, GSM, UMTS, DECT, and WLAN) as total RF-EMF uplink and downlink. Findings: The cases (n=40; 23-90 years) and the controls (n=20; 19-65 years) matched for alcohol drinking, smoking habits, and mobile and cordless phone usage. The PEM in cases (149.28 ± 8.98 mV/m) revealed significantly higher (p=0.000) electric field strength compared to the recorded value (80.40 ± 0.30 mV/m) in controls. The GSM 900 uplink (p=0.000), GSM 1800 downlink (p=0.000),UMTS (both uplink; p=0.013 and downlink; p=0.001) and DECT (p=0.000) electric field strength were significantly elevated in the cases as compared to controls. The electric field strength in the cases was significantly from GSM1800 (52.26 ± 4.49mV/m) followed by GSM900 (45.69 ± 4.98mV/m), UMTS (25.03 ± 3.33mV/m), DECT (18.02 ± 2.14mV/m) and was least from WLAN (8.26 ± 2.35mV/m). The higher significantly (p=0.000) increased exposure to the cases was from GSM (97.96 ± 6.97mV/m) in comparison to UMTS, DECT, and WLAN. The frequencies of micronuclei (1.86X, p=0.007), nuclear buds (2.95X, p=0.002) and cell death parameter (condensed chromatin cells) were significantly (1.75X, p=0.007) elevated in cases compared to that in controls probably as a function of radiofrequency radiation exposure. Conclusion: In the absence of other exposure(s), any cytogenetic damage if unrepaired is a cause of concern as it can cause malignancy. Larger sample size with the clinical assessment will prove more insightful of such an effect.

Keywords: Buccal micronucleus cytome assay, cytogenetic damage, electric field strength, personal exposimeter

Procedia PDF Downloads 139
103 Treatment Process of Sludge from Leachate with an Activated Sludge System and Extended Aeration System

Authors: A. Chávez, A. Rodríguez, F. Pinzón

Abstract:

Society is concerned about measures of environmental, economic and social impacts generated in the solid waste disposal. These places of confinement, also known as landfills, are locations where problems of pollution and damage to human health are reduced. They are technically designed and operated, using engineering principles, storing the residue in a small area, compact it to reduce volume and covering them with soil layers. Problems preventing liquid (leachate) and gases produced by the decomposition of organic matter. Despite planning and site selection for disposal, monitoring and control of selected processes, remains the dilemma of the leachate as extreme concentration of pollutants, devastating soil, flora and fauna; aggressive processes requiring priority attention. A biological technology is the activated sludge system, used for tributaries with high pollutant loads. Since transforms biodegradable dissolved and particulate matter into CO2, H2O and sludge; transform suspended and no Settleable solids; change nutrients as nitrogen and phosphorous; and degrades heavy metals. The microorganisms that remove organic matter in the processes are in generally facultative heterotrophic bacteria, forming heterogeneous populations. Is possible to find unicellular fungi, algae, protozoa and rotifers, that process the organic carbon source and oxygen, as well as the nitrogen and phosphorus because are vital for cell synthesis. The mixture of the substrate, in this case sludge leachate, molasses and wastewater is maintained ventilated by mechanical aeration diffusers. Considering as the biological processes work to remove dissolved material (< 45 microns), generating biomass, easily obtained by decantation processes. The design consists of an artificial support and aeration pumps, favoring develop microorganisms (denitrifying) using oxygen (O) with nitrate, resulting in nitrogen (N) in the gas phase. Thus, avoiding negative effects of the presence of ammonia or phosphorus. Overall the activated sludge system includes about 8 hours of hydraulic retention time, which does not prevent the demand for nitrification, which occurs on average in a value of MLSS 3,000 mg/L. The extended aeration works with times greater than 24 hours detention; with ratio of organic load/biomass inventory under 0.1; and average stay time (sludge age) more than 8 days. This project developed a pilot system with sludge leachate from Doña Juana landfill - RSDJ –, located in Bogota, Colombia, where they will be subjected to a process of activated sludge and extended aeration through a sequential Bach reactor - SBR, to be dump in hydric sources, avoiding ecological collapse. The system worked with a dwell time of 8 days, 30 L capacity, mainly by removing values of BOD and COD above 90%, with initial data of 1720 mg/L and 6500 mg/L respectively. Motivating the deliberate nitrification is expected to be possible commercial use diffused aeration systems for sludge leachate from landfills.

Keywords: sludge, landfill, leachate, SBR

Procedia PDF Downloads 249
102 The Stability of Vegetable-Based Synbiotic Drink during Storage

Authors: Camelia Vizireanu, Daniela Istrati, Alina Georgiana Profir, Rodica Mihaela Dinica

Abstract:

Globally, there is a great interest in promoting the consumption of fruit and vegetables to improve health. Due to the content of essential compounds such as antioxidants, important amounts of fruits and vegetables should be included in the daily diet. Juices are good sources of vitamins and can also help increase overall fruit and vegetable consumption. Starting from this trend (introduction into the daily diet of vegetables and fruits) as well as the desire to diversify the range of functional products for both adults and children, a fermented juice was made using probiotic microorganisms based on root vegetables, with potential beneficial effects in the diet of children, vegetarians and people with lactose intolerance. The three vegetables selected for this study, red beet, carrot, and celery bring a significant contribution to functional compounds such as carotenoids, flavonoids, betalain, vitamin B and C, minerals and fiber. By fermentation, the functional value of the vegetable juice increases due to the improved stability of these compounds. The combination of probiotic microorganisms and vegetable fibers resulted in a nutrient-rich synbiotic product. The stability of the nutritional and sensory qualities of the obtained synbiotic product has been tested throughout its shelf life. The evaluation of the physico-chemical changes of the synbiotic drink during storage confirmed that: (i) vegetable juice enriched with honey and vegetable pulp is an important source of nutritional compounds, especially carbohydrates and fiber; (ii) microwave treatment used to inhibit pathogenic microflora did not significantly affect nutritional compounds in vegetable juice, vitamin C concentration remained at baseline and beta-carotene concentration increased due to increased bioavailability; (iii) fermentation has improved the nutritional quality of vegetable juice by increasing the content of B vitamins, polyphenols and flavonoids and has a good antioxidant capacity throughout the shelf life; (iv) the FTIR and Raman spectra have highlighted the results obtained using physicochemical methods. Based on the analysis of IR absorption frequencies, the most striking bands belong to the frequencies 3330 cm⁻¹, 1636 cm⁻¹ and 1050 cm⁻¹, specific for groups of compounds such as polyphenols, carbohydrates, fatty acids, and proteins. Statistical data processing revealed a good correlation between the content of flavonoids, betalain, β-carotene, ascorbic acid and polyphenols, the fermented juice having a stable antioxidant activity. Also, principal components analysis showed that there was a negative correlation between the evolution of the concentration of B vitamins and antioxidant activity. Acknowledgment: This study has been founded by the Francophone University Agency, Project Réseau régional dans le domaine de la santé, la nutrition et la sécurité alimentaire (SaIN), No. at Dunarea de Jos University of Galati 21899/ 06.09.2017 and by the Sectorial Operational Programme Human Resources Development of the Romanian Ministry of Education, Research, Youth and Sports trough the Financial Agreement POSDRU/159/1.5/S/132397 ExcelDOC.

Keywords: bioactive compounds, fermentation, synbiotic drink from vegetables, stability during storage

Procedia PDF Downloads 135