Search results for: S1PR1 receptor protein
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2691

Search results for: S1PR1 receptor protein

2091 Site-Specific Delivery of Hybrid Upconversion Nanoparticles for Photo-Activated Multimodal Therapies of Glioblastoma

Authors: Yuan-Chung Tsai, Masao Kamimura, Kohei Soga, Hsin-Cheng Chiu

Abstract:

In order to enhance the photodynamic/photothermal therapeutic efficacy on glioblastoma, the functionized upconversion nanoparticles with the capability of converting the deep tissue penetrating near-infrared light into visible wavelength for activating photochemical reaction were developed. The drug-loaded nanoparticles (NPs) were obtained from the self-assembly of oleic acid-coated upconversion nanoparticles along with maleimide-conjugated poly(ethylene glycol)-cholesterol (Mal-PEG-Chol), as the NP stabilizer, and hydrophobic photosensitizers, IR-780 (for photothermal therapy, PTT) and mTHPC (for photodynamic therapy, PDT), in aqueous phase. Both the IR-780 and mTHPC were loaded into the hydrophobic domains within NPs via hydrophobic association. The peptide targeting ligand, angiopep-2, was further conjugated with the maleimide groups at the end of PEG adducts on the NP surfaces, enabling the affinity coupling with the low-density lipoprotein receptor-related protein-1 of tumor endothelial cells and malignant astrocytes. The drug-loaded NPs with the size of ca 80 nm in diameter exhibit a good colloidal stability in physiological conditions. The in vitro data demonstrate the successful targeting delivery of drug-loaded NPs toward the ALTS1C1 cells (murine astrocytoma cells) and the pronounced cytotoxicity elicited by combinational effect of PDT and PTT. The in vivo results show the promising brain orthotopic tumor targeting of drug-loaded NPs and sound efficacy for brain tumor dual-modality treatment. This work shows great potential for improving photodynamic/photothermal therapeutic efficacy of brain cancer.

Keywords: drug delivery, orthotopic brain tumor, photodynamic/photothermal therapies, upconversion nanoparticles

Procedia PDF Downloads 194
2090 Haematology and Serum Biochemical Profile of Laying Chickens Reared on Deep Litter System with or without Access to Grass or Legume Pasture under Humid Tropical Climate

Authors: E. Oke, A. O. Ladokun, J. O. Daramola, O. M. Onagbesan

Abstract:

There has been a growing interest on the effects of access to pasture on poultry health status. However, there is a paucity of data on the relative benefits of grass and legume pastures. An experiment was conducted to determine the effects of rearing systems {deep litter system (DL), deep litter with access to legumes (LP) or grass (GP) pastures} haematology and serum chemistry of ISA Brown layers. The study involved the use of two hundred and forty 12 weeks old pullets. The birds were reared until 60 weeks of age. Eighty birds were assigned to each treatment; each treatment had four replicates of 20 birds each. Blood samples (2.5 ml) were collected from the wing vein of two birds per replicate and serum chemistry and haematological parameters were determined. The results showed that there were no significant differences between treatments in all the parameters considered at 18 weeks of age. At 24 weeks old, the percentage of heterophyl (HET) in DL and LP were similar but higher than that of GP. The ratio of H:L was higher (P<0.05) in DL than those of LP and GP while LP and GP were comparable. At week 38 of age, the percentage of PCV in the birds in LP and GP were similar but the birds in DL had significantly lower level than that of GP. In the early production phase, serum total protein of the birds in LP was similar to that of GP but higher (P<0.05) than that of DL. At the peak production phase (week 38), the total protein in GP and DL were similar but significantly lower than that of LP. The albumin level in LP was greater (P<0.05) than GP but similar to that of DL. In the late production phase, the total protein in LP was significantly higher than that of DL but similar to that of GP. It was concluded that rearing chickens in either grass or legume pasture did not have deleterious effects on the health of laying chickens but improved some parameters including blood protein and HET/lymphocyte.

Keywords: rearing systems, stylosanthes, cynodon serum chemistry, haematology, hen

Procedia PDF Downloads 327
2089 Entry Inhibitors Are Less Effective at Preventing Cell-Associated HIV-2 Infection than HIV-1

Authors: A. R. Diniz, P. Borrego, I. Bártolo, N. Taveira

Abstract:

Cell-to-cell transmission plays a critical role in the spread of HIV-1 infection in vitro and in vivo. Inhibition of HIV-1 cell-associated infection by antiretroviral drugs and neutralizing antibodies (NAbs) is more difficult compared to cell-free infection. Limited data exists on cell-associated infection by HIV-2 and its inhibition. In this work, we determined the ability of entry inhibitors to inhibit HIV-1 and HIV-2 cell-to cell fusion as a proxy to cell-associated infection. We developed a method in which Hela-CD4-cells are first transfected with a Tat expressing plasmid (pcDNA3.1+/Tat101) and infected with recombinant vaccinia viruses expressing either the HIV-1 (vPE16: from isolate HTLV-IIIB, clone BH8, X4 tropism) or HIV-2 (vSC50: from HIV-2SBL/ISY, R5 and X4 tropism) envelope glycoproteins (M.O.I.=1 PFU/cell).These cells are added to TZM-bl cells. When cell-to-cell fusion (syncytia) occurs the Tat protein diffuses to the TZM-bl cells activating the expression of a reporter gene (luciferase). We tested several entry inhibitors including the fusion inhibitors T1249, T20 and P3, the CCR5 antagonists MVC and TAK-779, the CXCR4 antagonist AMD3100 and several HIV-2 neutralizing antibodies (Nabs). All compounds inhibited HIV-1 and HIV-2 cell fusion albeit to different levels. Maximum percentage of HIV-2 inhibition (MPI) was higher for fusion inhibitors (T1249- 99.8%; P3- 95%, T20-90%) followed by co-receptor antagonists (MVC- 63%; TAK-779- 55%; AMD3100- 45%). NAbs from HIV-2 infected patients did not prevent cell fusion up to the tested concentration of 4μg/ml. As for HIV-1, MPI reached 100% with TAK-779 and T1249. For the other antivirals, MPIs were: P3-79%; T20-75%; AMD3100-61%; MVC-65%.These results are consistent with published data. Maraviroc had the lowest IC50 both for HIV-2 and HIV-1 (IC50 HIV-2= 0.06 μM; HIV-1=0.0076μM). Highest IC50 were observed with T20 for HIV-2 (3.86μM) and with TAK-779 for HIV-1 (12.64μM). Overall, our results show that entry inhibitors in clinical use are less effective at preventing Env mediated cell-to-cell-fusion in HIV-2 than in HIV-1 which suggests that cell-associated HIV-2 infection will be more difficult to inhibit compared to HIV-1. The method described here will be useful to screen for new HIV entry inhibitors.

Keywords: cell-to-cell fusion, entry inhibitors, HIV, NAbs, vaccinia virus

Procedia PDF Downloads 309
2088 Inducible Trans-Encapsidation System for Temporal Separation of Hepatitis C Virus Life Cycle

Authors: Ovidiu Vlaicu, Leontina Banica, Dan Otelea, Andrei-Jose Petrescu, Costin-Ioan Popescu

Abstract:

Hepatitis C Virus (HCV) infects 170 million peoples worldwide. Major advances have been made recently in HCV standard of care with interferon-free therapy being already approved. Despite major progress in HCV therapy, the genotype associated treatment efficacy and toxicity still represent issues to address. To identify endogenous factors involved in different stages of HCV life cycle, we have developed a trans-packaging system for HCV subgenomic replicons lacking core protein gene. Huh7 cells were used to generate a packaging cell line expressing the core protein in an inducible manner. The core packaging cell line was able to trans-complemented various subgenomic replicons to secret infectious trans-complemented HCV particles (HCV-TCP). Further, we constructed subgenomic replicons with foreign epitopes suitable for immunoaffinity purification or fluorescence microscopy studies. We have shown that the insertion has not effects on the efficacy of trans-complementation yielding similar titers to the control subgenomic replicon. This system will be a valuable tool in studying pre- and post-assembly events in HCV life cycle and for the fast identification of HCV assembly inhibitors.

Keywords: assembly inhibitors, core protein, HCV, trans-complementation

Procedia PDF Downloads 292
2087 Novel Molecular Mechanisms Involved in Macrophage Phenotypic Polarization

Authors: Mansi Srivastava, Uzma Saqib, Adnan Naim, Anjali Roy, Dongfang Liu, Deepak Bhatnagar, Ravinder Ravinder, Mirza S. Baig

Abstract:

Macrophages polarize to proinflammatory M1 or anti-inflammatory M2 states with distinct physiological functions. This transition within the M1 to M2 phenotypes decides the nature, duration, and severity of an inflammatory response. However, inspite of a substantial understanding of the fate of these phenotypes, the underlying molecular mechanisms are not well understood. We have investigated the role of Neuronal nitric oxide synthase (NOS1) mediated regulation of Activator protein 1 (AP-1) transcription factor in macrophages as a critical effector of macrophage phenotypic change. Activator protein 1 (AP-1) is a group of dimeric transcription factors composed of jun, Fos, and ATF family proteins. We determined that NOS1-derived nitric oxide (NO) facilitate Fos and jun interaction which induces IL12 & IL23 expression. Pharmacological inhibition of NOS1 inhibits Fos and jun interaction but increases ATF2 and Fos dimerization. Switching of Fos and jun dimer to ATF2 and jun dimerization switches phenotype from IL–12high IL-23high IL-10low to IL–12low IL-23lowIL-10high phenotype, respectively. Together, these findings highlight a key role of the TLR4-NOS1-AP1 signaling axis in regulating macrophage polarization.

Keywords: inflammation, macrophage, lipopolysaccharide (LPS), proinflammatory cytokines, activator protein 1 (AP-1), neuronal nitric oxide synthase (NOS1)

Procedia PDF Downloads 285
2086 Development of Fluorescence Resonance Energy Transfer-Based Nanosensor for Measurement of Sialic Acid in vivo

Authors: Ruphi Naz, Altaf Ahmad, Mohammad Anis

Abstract:

Sialic acid (5-Acetylneuraminic acid, Neu5Ac) is a common sugar found as a terminal residue on glycoconjugates in many animals. Humans brain and the central nervous system contain the highest concentration of sialic acid (as N-acetylneuraminic acid) where these acids play an important role in neural transmission and ganglioside structure in synaptogenesis. Due to its important biological function, sialic acid is attracting increasing attention. To understand metabolic networks, fluxes and regulation, it is essential to be able to determine the cellular and subcellular levels of metabolites. Genetically-encoded fluorescence resonance energy transfer (FRET) sensors represent a promising technology for measuring metabolite levels and corresponding rate changes in live cells. Taking this, we developed a genetically encoded FRET (fluorescence resonance energy transfer) based nanosensor to analyse the sialic acid level in living cells. Sialic acid periplasmic binding protein (sia P) from Haemophilus influenzae was taken and ligated between the FRET pair, the cyan fluorescent protein (eCFP) and Venus. The chimeric sensor protein was expressed in E. coli BL21 (DE3) and purified by affinity chromatography. Conformational changes in the binding protein clearly confirmed the changes in FRET efficiency. So any change in the concentration of sialic acid is associated with the change in FRET ratio. This sensor is very specific to sialic acid and found stable with the different range of pH. This nanosensor successfully reported the intracellular level of sialic acid in bacterial cell. The data suggest that the nanosensors may be a versatile tool for studying the in vivo dynamics of sialic acid level non-invasively in living cells

Keywords: nanosensor, FRET, Haemophilus influenzae, metabolic networks

Procedia PDF Downloads 132
2085 Primer Design for the Detection of Secondary Metabolite Biosynthetic Pathways in Metagenomic Data

Authors: Jeisson Alejandro Triana, Maria Fernanda Quiceno Vallejo, Patricia del Portillo, Juan Manuel Anzola

Abstract:

Most of the known antimicrobials so far discovered are secondary metabolites. The potential for new natural products of this category increases as new microbial genomes and metagenomes are being sequenced. Despite the advances, there is no systematic way to interrogate metagenomic clones for their potential to contain clusters of genes related to these pathways. Here we analyzed 52 biosynthetic pathways from the AntiSMASH database at the protein domain level in order to identify domains of high specificity and sensitivity with respect to specific biosynthetic pathways. These domains turned out to have various degrees of divergence at the DNA level. We propose PCR assays targetting such domains in-silico and corroborated one by Sanger sequencing.

Keywords: bioinformatic, anti smash, antibiotics, secondary metabolites, natural products, protein domains

Procedia PDF Downloads 179
2084 Development of Immuno-Modulators: Application of Molecular Dynamics Simulation

Authors: Ruqaiya Khalil, Saman Usmani, Zaheer Ul-Haq

Abstract:

The accurate characterization of ligand binding affinity is indispensable for designing molecules with optimized binding affinity. Computational tools help in many directions to predict quantitative correlations between protein-ligand structure and their binding affinities. Molecular dynamics (MD) simulation is a modern state-of-the-art technique to evaluate the underlying basis of ligand-protein interactions by characterizing dynamic and energetic properties during the event. Autoimmune diseases arise from an abnormal immune response of the body against own tissues. The current regimen for the described condition is limited to immune-modulators having compromised pharmacodynamics and pharmacokinetics profiles. One of the key player mediating immunity and tolerance, thus invoking autoimmunity is Interleukin-2; a cytokine influencing the growth of T cells. Molecular dynamics simulation techniques are applied to seek insight into the inhibitory mechanisms of newly synthesized compounds that manifested immunosuppressant potentials during in silico pipeline. In addition to estimation of free energies associated with ligand binding, MD simulation yielded us a great deal of information about ligand-macromolecule interactions to evaluate the pattern of interactions and the molecular basis of inhibition. The present study is a continuum of our efforts to identify interleukin-2 inhibitors of both natural and synthetic origin. Herein, we report molecular dynamics simulation studies of Interluekin-2 complexed with different antagonists previously reported by our group. The study of protein-ligand dynamics enabled us to gain a better understanding of the contribution of different active site residues in ligand binding. The results of the study will be used as the guide to rationalize the fragment based synthesis of drug-like interleukin-2 inhibitors as immune-modulators.

Keywords: immuno-modulators, MD simulation, protein-ligand interaction, structure-based drug design

Procedia PDF Downloads 262
2083 Biological Activities of Flaxseed Peptides (Linusorbs)

Authors: Youn Young Shim, Ji Hye Kim, Jae Youl Cho, Martin J. T. Reaney

Abstract:

Flaxseed (Linum usitatissimum L.) is gaining popularity in the food industry as a superfood due to its health-promoting properties. The flax plant synthesizes an array of biologically active cyclic peptides or linusorbs (LOs, a.k.a. cyclolinopeptides) from three or more ribosome-derived precursors. [1–9-NαC]-linusorb B3 and [1–9-NαC]-linusorb B2, suppress immunity, induce apoptosis in human epithelial cancer cell line (Calu-3) cells, and inhibit T-cell proliferation, but the mechanism of LOs action is unknown. Using gene expression analysis in nematode cultures and human cancer cell lines, we have observed that LOs exert their activity, in part, through induction of apoptosis. Specific LOs’ properties include: 1) distribution throughout the body after flaxseed consumption; 2) induce heat shock protein (HSP) 70A production as an indicator of stress and address the issue in Caenorhabditis elegans (exposure of nematode cultures to [1–9-NαC]-linusorb B3 induced a 30% increase in production of the HSP 70A protein); 3) induce apoptosis in Calu-3 cells; and 4) modulate regulatory genes in microarray analysis. These diverse activities indicate that LOs might induce apoptosis in cancer cells or act as versatile platforms to deliver a variety of biologically active molecules for cancer therapy.

Keywords: flaxseed, linusorb, cyclic peptide, orbitides, heat shock protein, apoptosis, anti-cancer

Procedia PDF Downloads 136
2082 The New Insight about Interspecies Transmission of Iranian H9N2 Influenza Viruses from Avian to Human

Authors: Masoud Soltanialvar, Ali Bagherpour

Abstract:

Documented cases of human infection with H9N2 avian influenza viruses, first detected in 1999 in Hong Kong and China, indicate that these viruses can be directly transmitted from birds to humans. In this study, we characterized the mutation in the Hemagglutinin (HA) genes and proteins that correlates with a shift in affinity of the Hemagglutinin (HA) protein from the “avian” type sialic receptors to the “human” type in 10 Iranian isolates. We delineated the genomes and receptor binding profile of HA gene of some field isolates and established their phylogenetic relationship to the other Asian H9N2 sub lineages. A total of 1200 tissue samples collected from 40 farms located in various states of Iran during 2008 – 2010 as part of a program to monitor Avian Influenza Viruses (AIV) infection. To determine the genetic relationship of Iranian viruses, the Hemagglutinin (HA) genes from ten isolates were amplified and sequenced (by RT-PCR method). Nucleotide sequences (orf) of the (HA) genes were used for phylogenetic tree construction. Deduced amino acid sequences showed the presence of L226 (234 in H9 numbering) in all ten Iranian isolates which indicates a preference to binding of α (2–6) sialic acid receptors, so these Iranian H9N2 viruses have the potential to infect human beings. These isolates showed high degree of homology with 2 human H9N2 isolates A/HK/1073/99, A/HK/1074/99. Phylogenetic analysis of showed that all the HA genes of the Iranian H9N2 viruses fall into a single group within a G1-like sublineage which had contributed as donor of six internal genes to H5N1 highly pathogenic avian influenza. The results of this study indicated that all Iranian viruses have the potential to emerge as highly pathogenic influenza virus, and considering the homology of these isolates with human H9N2 strains, it seems that the potential of these avian influenza isolates to infect human should not be overlooked.

Keywords: influenza virus, hemagglutinin, neuraminidase, Iran

Procedia PDF Downloads 449
2081 Phenotypic and Molecular Heterogeneity Linked to the Magnesium Transporter CNNM2

Authors: Reham Khalaf-Nazzal, Imad Dweikat, Paula Gimenez, Iker Oyenarte, Alfonso Martinez-Cruz, Domonik Muller

Abstract:

Metal cation transport mediator (CNNM) gene family comprises 4 isoforms that are expressed in various human tissues. Structurally, CNNMs are complex proteins that contain an extracellular N-terminal domain preceding a DUF21 transmembrane domain, a ‘Bateman module’ and a C-terminal cNMP-binding domain. Mutations in CNNM2 cause familial dominant hypomagnesaemia. Growing evidence highlights the role of CNNM2 in neurodevelopment. Mutations in CNNM2 have been implicated in epilepsy, intellectual disability, schizophrenia, and others. In the present study, we aim to elucidate the function of CNNM2 in the developing brain. Thus, we present the genetic origin of symptoms in two family cohorts. In the first family, three siblings of a consanguineous Palestinian family in which parents are first cousins, and consanguinity ran over several generations, presented a varying degree of intellectual disability, cone-rod dystrophy, and autism spectrum disorder. Exome sequencing and segregation analysis revealed the presence of homozygous pathogenic mutation in the CNNM2 gene, the parents were heterozygous for that gene mutation. Magnesium blood levels were normal in the three children and their parents in several measurements. They had no symptoms of hypomagnesemia. The CNNM2 mutation in this family was found to locate in the CBS1 domain of the CNNM2 protein. The crystal structure of the mutated CNNM2 protein was not significantly different from the wild-type protein, and the binding of AMP or MgATP was not dramatically affected. This suggests that the CBS1 domain could be involved in pure neurodevelopmental functions independent of its magnesium-handling role, and this mutation could have affected a protein partner binding or other functions in this protein. In the second family, another autosomal dominant CNNM2 mutation was found to run in a large family with multiple individuals over three generations. All affected family members had hypomagnesemia and hypermagnesuria. Oral supplementation of magnesium did not increase the levels of magnesium in serum significantly. Some affected members of this family have defects in fine motor skills such as dyslexia and dyslalia. The detected mutation is located in the N-terminal part, which contains a signal peptide thought to be involved in the sorting and routing of the protein. In this project, we describe heterogenous clinical phenotypes related to CNNM2 mutations and protein functions. In the first family, and up to the authors’ knowledge, we report for the first time the involvement of CNNM2 in retinal photoreceptor development and function. In addition, we report the presence of a neurophenotype independent of magnesium status related to the CNNM2 protein mutation. Taking into account the different modes of inheritance and the different positions of the mutations within CNNM2 and its different structural and functional domains, it is likely that CNNM2 might be involved in a wide spectrum of neuropsychiatric comorbidities with considerable varying phenotypes.

Keywords: magnesium transport, autosomal recessive, autism, neurodevelopment, CBS domain

Procedia PDF Downloads 150
2080 STD-NMR Based Protein Engineering of the Unique Arylpropionate-Racemase AMDase G74C

Authors: Sarah Gaßmeyer, Nadine Hülsemann, Raphael Stoll, Kenji Miyamoto, Robert Kourist

Abstract:

Enzymatic racemization allows the smooth interconversion of stereocenters under very mild reaction conditions. Racemases find frequent applications in deracemization and dynamic kinetic resolutions. Arylmalonate decarboxylase (AMDase) from Bordetella Bronchiseptica has high structural similarity to amino acid racemases. These cofactor-free racemases are able to break chemically strong CH-bonds under mild conditions. The racemase-like catalytic machinery of mutant G74C conveys it a unique activity in the racemisation of pharmacologically relevant derivates of 2-phenylpropionic acid (profenes), which makes AMDase G74C an interesting object for the mechanistic investigation of cofactor-independent racemases. Structure-guided protein engineering achieved a variant of this unique racemase with 40-fold increased activity in the racemisation of several arylaliphatic carboxylic acids. By saturation–transfer–difference NMR spectroscopy (STD-NMR), substrate binding during catalysis was investigated. All atoms of the substrate showed interactions with the enzyme. STD-NMR measurements revealed distinct nuclear Overhauser effects in experiments with and without molecular conversion. The spectroscopic analysis led to the identification of several amino acid residues whose variation increased the activity of G74C. While single-amino acid exchanges increased the activity moderately, structure-guided saturation mutagenesis yielded a quadruple mutant with a 40 times higher reaction rate. This study presents STD-NMR as versatile tool for the analysis of enzyme-substrate interactions in catalytically competent systems and for the guidance of protein engineering.

Keywords: racemase, rational protein design, STD-NMR, structure guided saturation mutagenesis

Procedia PDF Downloads 304
2079 Effect of Whey Proteins and Caffeic Acid Interactions on Antioxidant Activity and Protein Structure

Authors: Tassia Batista Pessato, Francielli Pires Ribeiro Morais, Fernanda Guimaraes Drummond Silva, Flavia Maria Netto

Abstract:

Proteins and phenolic compounds can interact mainly by hydrophobic interactions. Those interactions may lead to structural changes in both molecules, which in turn could affect positively or negatively their functional and nutritional properties. Here, the structural changes of whey proteins (WPI) due to interaction with caffeic acid (CA) were investigated by intrinsic and extrinsic fluorescence. The effects of protein-phenolic compounds interactions on the total phenolic content and antioxidant activity were also assessed. The WPI-CA complexes were obtained by mixture of WPI and CA stock solutions in deionized water. The complexation was carried out at room temperature during 60 min, using 0.1 M NaOH to adjust pH at 7.0. The WPI concentration was fixed at 5 mg/mL, whereas the CA concentration varied in order to obtain four different WPI:CA molar relations (1:1; 2:1; 5:1; 10:1). WPI and phenolic solutions were used as controls. Intrinsic fluorescence spectra of the complexes (mainly due to Trp fluorescence emission) were obtained at λex = 280 nm and the emission intensities were measured from 290 to 500 nm. Extrinsic fluorescence was obtained as the measure of protein surface hydrophobicity (S0) using ANS as a fluorescence probe. Total phenolic content was determined by Folin-Ciocalteau and the antioxidant activity by FRAP and ORAC methods. Increasing concentrations of CA resulted in decreasing of WPI intrinsic fluorescence. The emission band of WPI red shifted from 332 to 354 nm as the phenolic concentration increased, which is related to the exposure of Trp residue to the more hydrophilic environment and unfolding of protein structure. In general, the complexes presented lower S0 values than WPI, suggesting that CA hindered ANS binding to hydrophobic sites of WPI. The total phenolic content in the complexes was lower than the sum of two compounds isolated. WPI showed negligible AA measured by FRAP. However, as the relative concentration of CA increased in the complexes, the FRAP values enhanced, indicating that AA measure by this technique comes mainly from CA. In contrast, the WPI ORAC value (82.3 ± 1.5 µM TE/g) suggest that its AA is related to the capacity of H+ transfer. The complexes exhibited no important improvement of AA measured by ORAC in relation to the isolated components, suggesting complexation partially suppressed AA of the compounds. The results hereby presented indicate that interaction of WPI and CA occurred, and this interaction caused a structural change in the proteins. The complexation can either hide or expose antioxidant sites of both components. In conclusion, although the CA can undergo an AA suppression due to the interaction with proteins, the AA of WPI could be enhanced due to protein unfolding and exposure of antioxidant sites.

Keywords: bioactive properties, milk proteins, phenolic acids, protein-phenolic compounds complexation

Procedia PDF Downloads 549
2078 Expression of CASK Antibody in Non-Mucionus Colorectal Adenocarcinoma and Its Relation to Clinicopathological Prognostic Factors

Authors: Reham H. Soliman, Noha Noufal, Howayda AbdelAal

Abstract:

Calcium/calmodulin-dependent serine protein kinase (CASK) belongs to the membrane-associated guanylate kinase (MAGUK) family and has been proposed as a mediator of cell-cell adhesion and proliferation, which can contribute to tumorogenesis. CASK has been linked as a good prognostic factor with some tumor subtypes, while considered as a poor prognostic marker in others. To our knowledge, no sufficient evidence of CASK role in colorectal cancer is available. The aim of this study is to evaluate the expression of Calcium/calmodulin-dependent serine protein kinase (CASK) in non-mucinous colorectal adenocarcinoma and adenomatous polyps as precursor lesions and assess its prognostic significance. The study included 42 cases of conventional colorectal adenocarcinoma and 15 biopsies of adenomatous polyps with variable degrees of dysplasia. They were reviewed for clinicopathological prognostic factors and stained by CASK; mouse, monoclonal antibody using heat-induced antigen retrieval immunohistochemical techniques. The results showed that CASK protein was significantly overexpressed (p <0.05) in CRC compared with adenoma samples. The CASK protein was overexpressed in the majority of CRC samples with 85.7% of cases showing moderate to strong expression, while 46.7% of adenomas were positive. CASK overexpression was significantly correlated with both TNM stage and grade of differentiation (p <0.05). There was a significantly higher expression in tumor samples with early stages (I/II) rather than advanced stage (III/IV) and with low grade (59.5%) rather than high grade (40.5%). Another interesting finding was found among the adenomas group, where the stronger intensity of staining was observed in samples with high grade dysplasia (33.3%) than those of lower grades (13.3%). In conclusion, this study shows that there is significant overexpression of CASK protein in CRC as well as in adenomas with high grade dysplasia. This indicates that CASK is involved in the process of carcinogenesis and functions as a potential trigger of the adenoma-carcinoma cascade. CASK was significantly overexpressed in early stage and low-grade tumors rather than tumors with advanced stage and higher histological grades. This suggests that CASK protein is a good prognostic factor. We suggest that CASK affects CRC in two different ways derived from its physiology. CASK as part of MAGUK family can stimulate proliferation and through its cell membrane localization and as a mediator of cell-cell adhesion might contribute in tumor confinement and localization.

Keywords: CASK, colorectal cancer, overexpression, prognosis

Procedia PDF Downloads 279
2077 Effect of Cooking Time, Seed-To-Water Ratio and Soaking Time on the Proximate Composition and Functional Properties of Tetracarpidium conophorum (Nigerian Walnut) Seeds

Authors: J. O. Idoko, C. N. Michael, T. O. Fasuan

Abstract:

This study investigated the effects of cooking time, seed-to-water ratio and soaking time on proximate and functional properties of African walnut seed using Box-Behnken design and Response Surface Methodology (BBD-RSM) with a view to increase its utilization in the food industry. African walnut seeds were sorted washed, soaked, cooked, dehulled, sliced, dried and milled. Proximate analysis and functional properties of the samples were evaluated using standard procedures. Data obtained were analyzed using descriptive and inferential statistics. Quadratic models were obtained to predict the proximate and functional qualities as a function of cooking time, seed-to-water ratio and soaking time. The results showed that the crude protein ranged between 11.80% and 23.50%, moisture content ranged between 1.00% and 4.66%, ash content ranged between 3.35% and 5.25%, crude fibre ranged from 0.10% to 7.25% and carbohydrate ranged from 1.22% to 29.35%. The functional properties showed that soluble protein ranged from 16.26% to 42.96%, viscosity ranged from 23.43 mPas to 57 mPas, emulsifying capacity ranged from 17.14% to 39.43% and water absorption capacity ranged from 232% to 297%. An increase in the volume of water used during cooking resulted in loss of water soluble protein through leaching, the length of soaking time and the moisture content of the dried product are inversely related, ash content is inversely related to the cooking time and amount of water used, extraction of fat is enhanced by increase in soaking time while increase in cooking and soaking times result into decrease in fibre content. The results obtained indicated that African walnut could be used in several food formulations as protein supplement and binder.

Keywords: African walnut, functional properties, proximate analysis, response surface methodology

Procedia PDF Downloads 396
2076 Biospiral-Detect to Distinguish PrP Multimers from Monomers

Authors: Gulyas Erzsebet

Abstract:

The multimerisation of proteins is a common feature of many cellular processes; however, it could also impair protein functions and/or be associated with the occurrence of diseases. Thus, development of a research tool monitoring the appearance/presence of multimeric protein forms has great importance for a variety of research fields. Such a tool is potentially applicable in the ante-mortem diagnosis of certain conformational diseases, such as transmissible spongiform encephalopathies (TSE) and Alzheimer’s disease. These conditions are accompanied by the appearance of aggregated protein multimers, present in low concentrations in various tissues. This detection is particularly relevant for TSE where the handling of tissues derived from affected individuals and of meat products of infected animals have become an enormous health concern. Here we demonstrate the potential of such a multimer detection approach in TSE by developing a facile approach. The Biospiral-Detect system resembles a traditional sandwich ELISA, except that the capturing antibody that is attached to a solid surface and the detecting antibody is directed against the same or overlapping epitopes. As a consequence, the capturing antibody shields the epitope on the captured monomer from reacting with the detecting antibody, therefore monomers are not detected. Thus, MDS is capable of detecting only protein multimers with high specificity. We developed an alternative system as well, where RNA aptamers were employed instead of monoclonal antibodies. In order to minimize degradation, the 3' and 5' ends of the aptamer contained deoxyribonucleotides and phosphorothioate linkages. When compared the monoclonal antibodies-based system with the aptamers-based one, the former proved to be superior. Thus all subsequent experiments were conducted by employing the Biospiral -Detect modified sandwich ELISA kit. Our approach showed an order of magnitude higher sensitivity toward mulimers than monomers suggesting that this approach may become a valuable diagnostic tool for conformational diseases that are accompanied by multimerization.

Keywords: diagnosis, ELISA, Prion, TSE

Procedia PDF Downloads 251
2075 Frequency of Polymorphism of Mrp1/Abcc1 And Mrp2/Abcc2 in Healthy Volunteers of the Center Savannah (Colombia)

Authors: R. H. Bustos, L. Martinez, J. García, F. Suárez

Abstract:

MRP1 (Multi-drug resistance associated protein 1) and MRP2 (Multi-drug resistance associated protein 2) are two proteins belonging to the transporters of ABC (ATP-Binding Cassette). These transporter proteins are involved in the efflux of several biological drugs and xenobiotic and also in multiple physiological, pathological and pharmacological processes. Evidence has been found that there is a correlation among different polymorphisms found and their clinical implication in the resistance to antiepileptic, chemotherapy and anti-infectious drugs. In our study, exonic regions of MRP1/ABCC1 y MRP2/ABCC2 were studied in the Colombian population, specifically in the region of the central Savannah (Cundinamarca) to determinate SNP (Single Nucleotide Polymorphisms) and determinate its allele frequency and its genomics frequency. Results showed that for our population, SNP are found that have been previously reported for MRP1/ABCC1 (rs200647436, rs200624910, rs150214567) as well as for MRP2/ABCC2 (rs2273697, rs3740066, rs142573385, rs17216212). In addition, 13 new SNP were identified. Evidences show an important clinic correlation for polymorphisms rs3740066 and rs2273697. The study object population displays genetic variability as compared to the one reported in other populations.

Keywords: ATP-binding cassette (ABCC), Colombian population, multidrug-resistance protein (MRP), pharmacogenetic, single nucleotide polymorphism (SNP)

Procedia PDF Downloads 324
2074 Effects of Tramadol Administration on the Ovary of Adult Rats and the Possible Recovery after Tramadol Withdrawal: A Light and Electron Microscopic Study

Authors: Heba Kamal Mohamed

Abstract:

Introduction: Tramadol is a weak -opioid receptor agonist with an analgesic effect because of the inhibition of uptake of norepinephrine and serotonin. Nowadays, tramadol hydrochloride is frequently used as a pain reliever. Tramadol is recommended for the management of acute and chronic pain of moderate to severe intensity associated with a variety of diseases or problems, including osteoarthritis, diabetic neuropathy, neuropathic pain, and even perioperative pain in human patients. In obstetrics and gynecology, tramadol is used extensively to treat postoperative pain. Aim of the study: This study was undertaken to investigate the histological (light and electron microscopic) and immunohistochemical effects of long term tramadol treatment on the ovary of adult rats and the possible recovery after tramadol withdrawal. Design: Experimental study. Materials and methods: Thirty adult female albino rats were used in this study. They were classified into three main groups (10 rats each). Group I served as the control group. Group II, rats were subcutaneously injected with tramadol 40 mg/kg three times per week for 8 weeks. Group III, rats were subcutaneously injected with tramadol 40 mg/kg three times per week for 8 weeks then were kept for another 8 weeks without treatment for recovery. At the end of the experiment rats were sacrificed and bilateral oophorectomy was carried out; the ovaries were processed for histological study (light and electron microscopic) and immunohistochemical reaction for caspase-3 (apoptotic protein). Results: Examination of the ovary of tramadol-treated rats (group II) revealed many atretic ovarian follicles, some follicles showed detachment of the oocyte from surrounding granulosa cells and others showed loss of the oocyte. Many follicles revealed degenerated vacuolated oocytes and vacuolated theca folliculi cells. Granulosa cells appeared shrunken, disrupted and loosely attached with vacuolated cytoplasm and pyknotic nuclei. Some follicles showed separation of granulosa cells from the theca folliculi layer. The ultrastructural study revealed the presence of granulosa cells with electron dense indented nuclei, damaged mitochondria and granular vacuolated cytoplasm. Other cells showed accumulation of large amount of lipid droplets in their cytoplasm. Some follicles revealed rarifaction of the cytoplasm of oocytes and absent zona pellucida. Moreover, apoptotic changes were detected by immunohistochemical staining in the form of increased staining intensity to caspase-3 (apoptotic protein). With Masson's Trichrome stain, there was an increased collagen fibre deposition in the ovarian cortical stroma. The wall of blood vessels appeared thickened. In the withdrawal group (group III), there was a little improvement in the histological and immunohistochemical changes. Conclusion: Tramadol had serious deleterious effects on ovarian structure. Thus, it should be used with caution, especially when a long term treatment is indicated. Withdrawal of tramadol led to a little improvement in the structural impairment of the ovary.

Keywords: tramadol, ovary, withdrawal, rats

Procedia PDF Downloads 293
2073 Prospects of Milk Protein as a Potential Alternative of Natural Antibiotic

Authors: Syeda Fahria Hoque Mimmi

Abstract:

Many new and promising treatments for reducing or diminishing the adverse effects of microorganisms are being discovered day by day. On the other hand, the dairy industry is accelerating the economic wheel of Bangladesh. Considering all these facts, new thoughts were developed to isolate milk proteins by the present experiment for opening up a new era of developing natural antibiotics from milk. Lactoferrin, an iron-binding glycoprotein with multifunctional properties, is crucial to strengthening the immune system and also useful for commercial applications. The protein’s iron-binding capacity makes it undoubtedly advantageous to immune system modulation and different bacterial strains. For fulfilling the purpose, 4 of raw and 17 of commercially available milk samples were collected from different farms and stores in Bangladesh (Dhaka, Chittagong, and Cox’s Bazar). Protein quantification by nanodrop technology has confirmed that raw milk samples have better quantities of protein than the commercial ones. All the samples were tested for their antimicrobial activity against 18 pathogens, where raw milk samples showed a higher percentage of antibacterial activity. In addition to this, SDS-PAGE (Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis) was performed to identify lactoferrin in the milk samples. Lactoferrin was detected in 9 samples from which 4 were raw milk samples. Interestingly, Streptococcus pyogenes, Klebsiella pneumoniae, Bacillus cereus, Pseudomonas aeruginosa, Vibrio cholera, Staphylococcus aureus, and enterotoxigenic E. coli significantly displayed sensitivity against lactoferrin collected from raw milk. Only Bacillus cereus, Pseudomonas aeruginosa, Streptococcus pneumonia, Enterococcus faecalis, and ETEC (Enterotoxigenic Escherichia coli) were susceptible to lactoferrin obtained from a commercial one. This study suggested that lactoferrin might be used as the potential alternative of antibiotics for many diseases and also can be used to reduce microbial deterioration in the food and feed industry.

Keywords: alternative of antibiotics, commercially available milk, lactoferrin, nanodrop technology, pathogens, raw milk

Procedia PDF Downloads 180
2072 SARS-CoV-2: Prediction of Critical Charged Amino Acid Mutations

Authors: Atlal El-Assaad

Abstract:

Viruses change with time through mutations and result in new variants that may persist or disappear. A Mutation refers to an actual change in the virus genetic sequence, and a variant is a viral genome that may contain one or more mutations. Critical mutations may cause the virus to be more transmissible, with high disease severity, and more vulnerable to diagnostics, therapeutics, and vaccines. Thus, variants carrying such mutations may increase the risk to human health and are considered variants of concern (VOC). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - the contagious in humans, positive-sense single-stranded RNA virus that caused coronavirus disease 2019 (COVID-19) - has been studied thoroughly, and several variants were revealed across the world with their corresponding mutations. SARS-CoV-2 has four structural proteins, known as the S (spike), E (envelope), M (membrane), and N (nucleocapsid) proteins, but prior study and vaccines development focused on genetic mutations in the S protein due to its vital role in allowing the virus to attach and fuse with the membrane of a host cell. Specifically, subunit S1 catalyzes attachment, whereas subunit S2 mediates fusion. In this perspective, we studied all charged amino acid mutations of the SARS-CoV-2 viral spike protein S1 when bound to Antibody CC12.1 in a crystal structure and assessed the effect of different mutations. We generated all missense mutants of SARS-CoV-2 protein amino acids (AAs) within the SARS-CoV-2:CC12.1 complex model. To generate the family of mutants in each complex, we mutated every charged amino acid with all other charged amino acids (Lysine (K), Arginine (R), Glutamic Acid (E), and Aspartic Acid (D)) and studied the new binding of the complex after each mutation. We applied Poisson-Boltzmann electrostatic calculations feeding into free energy calculations to determine the effect of each mutation on binding. After analyzing our data, we identified charged amino acids keys for binding. Furthermore, we validated those findings against published experimental genetic data. Our results are the first to propose in silico potential life-threatening mutations of SARS-CoV-2 beyond the present mutations found in the five common variants found worldwide.

Keywords: SARS-CoV-2, variant, ionic amino acid, protein-protein interactions, missense mutation, AESOP

Procedia PDF Downloads 113
2071 Association between TNF-α and Its Receptor TNFRSF1B Polymorphism with Pulmonary Tuberculosis in Tomsk, Russia Federation

Authors: K. A. Gladkova, N. P. Babushkina, E. Y. Bragina

Abstract:

Purpose: Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the major public health problems worldwide. It is clear that the immune response to M. tuberculosis infection is a relationship between inflammatory and anti-inflammatory responses in which Tumour Necrosis Factor-α (TNF-α) plays key roles as a pro-inflammatory cytokine. TNF-α involved in various cell immune responses via binding to its two types of membrane-bound receptors, TNFRSF1A and TNFRSF1B. Importantly, some variants of the TNFRSF1B gene have been considered as possible markers of host susceptibility to TB. However, the possible impact of such TNF-α and its receptor genes polymorphism on TB cases in Tomsk is missing. Thus, the purpose of our study was to investigate polymorphism of TNF-α (rs1800629) and its receptor TNFRSF1B (rs652625 and rs525891) genes in population of Tomsk and to evaluate their possible association with the development of pulmonary TB. Materials and Methods: The population distribution features of genes polymorphisms were investigated and made case-control study based on group of people from Tomsk. Human blood was collected during routine patients examination at Tomsk Regional TB Dispensary. Altogether, 234 TB-positive patients (80 women, 154 men, average age is 28 years old) and 205 health-controls (153 women, 52 men, average age is 47 years old) were investigated. DNA was extracted from blood plasma by phenol-chloroform method. Genotyping was carried out by a single-nucleotide-specific real-time PCR assay. Results: First, interpopulational comparison was carried out between healthy individuals from Tomsk and available data from the 1000 Genomes project. It was found that polymorphism rs1800629 region demonstrated that Tomsk population was significantly different from Japanese (P = 0.0007), but it was similar with the following Europeans subpopulations: Italians (P = 0.052), Finns (P = 0.124) and British (P = 0.910). Polymorphism rs525891 clear demonstrated that group from Tomsk was significantly different from population of South Africa (P = 0.019). However, rs652625 demonstrated significant differences from Asian population: Chinese (P = 0.03) and Japanese (P = 0.004). Next, we have compared healthy individuals versus patients with TB. It was detected that no association between rs1800629, rs652625 polymorphisms, and positive TB cases. Importantly, AT genotype of polymorphism rs525891 was significantly associated with resistance to TB (odds ratio (OR) = 0.61; 95% confidence interval (CI): 0.41-0.9; P < 0.05). Conclusion: To the best of our knowledge, the polymorphism of TNFRSF1B (rs525891) was associated with TB, while genotype AT is protective [OR = 0.61] in Tomsk population. In contrast, no significant correlation was detected between polymorphism TNF-α (rs1800629) and TNFRSF1B (rs652625) genes and alveolar TB cases among population of Tomsk. In conclusion, our data expands the molecular particularities associated with TB. The study was supported by the grant of the Russia for Basic Research #15-04-05852.

Keywords: polymorphism, tuberculosis, TNF-α, TNFRSF1B gene

Procedia PDF Downloads 179
2070 Characteristics of Sorghum (Sorghum bicolor L. Moench) Flour on the Soaking Time of Peeled Grains and Particle Size Treatment

Authors: Sri Satya Antarlina, Elok Zubaidah, Teti Istiana, Harijono

Abstract:

Sorghum bicolor (Sorghum bicolor L. Moench) has the potential as a flour for gluten-free food products. Sorghum flour production needs grain soaking treatment. Soaking can reduce the tannin content which is an anti-nutrient, so it can increase the protein digestibility. Fine particle size decreases the yield of flour, so it is necessary to study various particle sizes to increase the yield. This study aims to determine the characteristics of sorghum flour in the treatment of soaking peeled grain and particle size. The material of white sorghum varieties KD-4 from farmers in East Java, Indonesia. Factorial randomized factorial design (two factors), repeated three times, factor I were the time of grain soaking (five levels) that were 0, 12, 24, 36, and 48 hours, factor II was the size of the starch particles sifted with a fineness level of 40, 60, 80, and 100 mesh. The method of making sorghum flour is grain peeling, soaking peeled grain, drying using the oven at 60ᵒC, milling, and sieving. Physico-chemical analysis of sorghum flour. The results show that there is an interaction between soaking time of grain with the size of sorghum flour particles. Interaction in yield of flour, L* color (brightness level), whiteness index, paste properties, amylose content, protein content, bulk density, and protein digestibility. The method of making sorghum flour through the soaking of peeled grain and the difference in particle size has an important role in producing the physicochemical properties of the specific flour. Based on the characteristics of sorghum flour produced, it is determined the method of making sorghum flour through sorghum grain soaking for 24 hours, the particle size of flour 80 mesh. The sorghum flour with characteristic were 24.88% yield of flour, 88.60 color L* (brightness level), 69.95 whiteness index, 3615 Cp viscosity, 584.10 g/l of bulk density, 24.27% db protein digestibility, 90.02% db starch content, 23.4% db amylose content, 67.45% db amylopectin content, 0.22% db crude fiber content, 0.037% db tannin content, 5.30% db protein content, ash content 0.18% db, carbohydrate content 92.88 % db, and 1.94% db fat content. The sorghum flour is recommended for cookies products.

Keywords: characteristic, sorghum (Sorghum bicolor L. Moench) flour, grain soaking, particle size, physicochemical properties

Procedia PDF Downloads 162
2069 Inclusion Body Refolding at High Concentration for Large-Scale Applications

Authors: J. Gabrielczyk, J. Kluitmann, T. Dammeyer, H. J. Jördening

Abstract:

High-level expression of proteins in bacteria often causes production of insoluble protein aggregates, called inclusion bodies (IB). They contain mainly one type of protein and offer an easy and efficient way to get purified protein. On the other hand, proteins in IB are normally devoid of function and therefore need a special treatment to become active. Most refolding techniques aim at diluting the solubilizing chaotropic agents. Unfortunately, optimal refolding conditions have to be found empirically for every protein. For large-scale applications, a simple refolding process with high yields and high final enzyme concentrations is still missing. The constructed plasmid pASK-IBA63b containing the sequence of fructosyltransferase (FTF, EC 2.4.1.162) from Bacillus subtilis NCIMB 11871 was transformed into E. coli BL21 (DE3) Rosetta. The bacterium was cultivated in a fed-batch bioreactor. The produced FTF was obtained mainly as IB. For refolding experiments, five different amounts of IBs were solubilized in urea buffer with protein concentration of 0.2-8.5 g/L. Solubilizates were refolded with batch or continuous dialysis. The refolding yield was determined by measuring the protein concentration of the clear supernatant before and after the dialysis. Particle size was measured by dynamic light scattering. We tested the solubilization properties of fructosyltransferase IBs. The particle size measurements revealed that the solubilization of the aggregates is achieved at urea concentration of 5M or higher and confirmed by absorption spectroscopy. All results confirm previous investigations that refolding yields are dependent upon initial protein concentration. In batch dialysis, the yields dropped from 67% to 12% and 72% to 19% for continuous dialysis, in relation to initial concentrations from 0.2 to 8.5 g/L. Often used additives such as sucrose and glycerol had no effect on refolding yields. Buffer screening indicated a significant increase in activity but also temperature stability of FTF with citrate/phosphate buffer. By adding citrate to the dialysis buffer, we were able to increase the refolding yields to 82-47% in batch and 90-74% in the continuous process. Further experiments showed that in general, higher ionic strength of buffers had major impact on refolding yields; doubling the buffer concentration increased the yields up to threefold. Finally, we achieved corresponding high refolding yields by reducing the chamber volume by 75% and the amount of buffer needed. The refolded enzyme had an optimal activity of 12.5±0.3 x104 units/g. However, detailed experiments with native FTF revealed a reaggregation of the molecules and loss in specific activity depending on the enzyme concentration and particle size. For that reason, we actually focus on developing a process of simultaneous enzyme refolding and immobilization. The results of this study show a new approach in finding optimal refolding conditions for inclusion bodies at high concentrations. Straightforward buffer screening and increase of the ionic strength can optimize the refolding yield of the target protein by 400%. Gentle removal of chaotrope with continuous dialysis increases the yields by an additional 65%, independent of the refolding buffer applied. In general time is the crucial parameter for successful refolding of solubilized proteins.

Keywords: dialysis, inclusion body, refolding, solubilization

Procedia PDF Downloads 294
2068 Production and Evaluation of Jam Made from Pineapple (Ananas comosus) and Grape (Vitis vinifera)

Authors: Z. O. Apotiola, J. F. Fashakin

Abstract:

This project studied the production and evaluation of jam produced from pineapple and grape at different level of ratio (90:10, 80:20, 70:30, 60:40, 50:50, and 100%). The proximate and sensory properties were determined using standard methods. The (GDZ) was the highest for protein, moisture, fat and ash, (KFJ) was the highest for carbohydrate. There were significant differences (p<0.05) in samples (PAB, GDZ, BEN) for moisture. Also, there were significant differences (p<0.05) in samples (PAB, BBL, GDZ, KFJ) for protein. There were significant differences (p<0.05) in samples (PAB, BBL, BEN) for carbohydrate. Also, there were significant differences (p<0.05) in samples (PAB, BBL, QCM, GDZ, BEN) for fat and there were significant differences (p<0.05) in samples (PAB, BBL, GDZ) for ash. (KFJ) was the highest for pH, (BBL and QCM) was the highest for Vitamin C; (GDZ) was the highest for titratable acidity. For sensory properties, for aroma, colour, flavour, and overall acceptability were tested using panellists; the result showed that (KFJ) had the highest for all samples. From the results of chemical and sensory characteristics sample BBL was the best combination.

Keywords: chemical, characteristic, combination, titratable, sensory, significant

Procedia PDF Downloads 275
2067 The Ameliorative Effects of the Histamine H3 Receptor Antagonist/Inverse Agonist DL77 on MK801-Induced Memory Deficits in Rats

Authors: B. Sadek, N. Khan, Shreesh K. Ojha, Adel Sadeq, D. Lazewska, K. Kiec-Kononowicz

Abstract:

The involvement of Histamine H3 receptors (H3Rs) in memory and the potential role of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer disease (AD) is well established. Therefore, the memory-enhancing effects of the H3R antagonist DL77 on MK801-induced cognitive deficits were evaluated in passive avoidance paradigm (PAP) and novel object recognition (NOR) tasks in adult male rats, applying donepezil (DOZ) as a reference drug. Animals pretreated with acute systemic administration of DL77 (2.5, 5, and 10 mg/kg, i.p.) were significantly ameliorated in regard to MK801-induced memory deficits in PAP. The ameliorative effect of most effective dose of DL77 (5 mg/kg, i.p.) was abrogated when animals were pretreated with a co-injection with the H3R agonist R-(α)-methylhistamine (RAMH, 10 mg/kg, i.p.). Moreover, and in the NOR paradigm, DL77 (5 mg/kg, i.p.) reversed MK801-induced deficits long-term memory (LTM), and the DL77-provided procognitive effect was comparable to that of reference drug DOZ, and was reversed when animals were co-injected with RAMH (10 mg/kg, i.p.). However, DL77(5 mg/kg, i.p.) failed to alter short-term memory (STM) impairment in NOR test. Furthermore, DL77 (5 mg/kg) failed to induce any alterations of anxiety and locomotor behaviors of animals naive to elevated-plus maze (EPM), indicating that the ameliorative effects observed in PAP or NOR tests were not associated to alterations in emotions or in natural locomotion of tested animals. These results reveal the potential contribution of H3Rs in modulating CNS neurotransmission systems associated with neurodegenerative disorders, e.g., AD.

Keywords: histamine H3 receptor, antagonist, learning and memory, Alzheimer's disease, neurodegeneration, passive avoidance paradigm, novel object recognition, behavioral research

Procedia PDF Downloads 155
2066 The Effects of Highly Active Antiretroviral Therapy (HAART) on the Expression of Muc1 and P65 in a Cervical Cancer Cell Line, HCS-2

Authors: K. R. Thabethe, G. A. Adefolaju, M. J. Hosie

Abstract:

Cervical cancer is the third most commonly diagnosed cancer globally and it is one of three AIDS defining malignancies. Highly active antiretroviral therapy (HAART) is a combination of three or more antiretroviral drugs and has been shown to play a significant role in reducing the incidence of some AIDS defining malignancies, although its effect on cervical cancer is still unclear. The aim of this study was to investigate the relationship between cervical cancer and HAART. This was achieved by studying the expression of two signalling molecules expressed in cervical cancer; MUC1 and P65. Following the 24 hour treatment of a cervical cancer cell line, HCS-2, with drugs which are commonly used as part of HAART at their clinical plasma concentrations, real-time qPCR and immunofluorescence were used in order to study gene and protein expression. A one way ANOVA followed by a Tukey Kramer Post Hoc test was conducted using JMP 11 software on both sets of data. The drug classified as a protease inhibitor (PI) (i.e. LPV/r) reduced MUC1 and P65 gene and protein expression more than the other drug tested. PIs are known to play a significant role in cell death, therefore the cells were thought to be more susceptible to cell death following treatment with PIs. In conclusion, the drugs used, especially the PI showed some anticancer effects by facilitating cell death through decreased gene and protein expression of MUC1 and P65 and present promising agents for cancer treatment.

Keywords: cervical cancer, haart, MUC1, P65

Procedia PDF Downloads 333
2065 3D Interactions in Under Water Acoustic Simulationseffect of Green Synthesized Metal Nanoparticles on Gene Expression in an In-Vitro Model of Non-alcoholic Steatohepatitis

Authors: Nendouvhada Livhuwani Portia, Nicole Sibuyi, Kwazikwakhe Gabuza, Adewale Fadaka

Abstract:

Metabolic dysfunction-associated liver disease (MASLD) is a chronic condition characterized by excessive fat accumulation in the liver, distinct from conditions caused by alcohol, viral hepatitis, or medications. MASLD is often linked with metabolic syndrome, including obesity, diabetes, hyperlipidemia, and hypertriglyceridemia. This disease can progress to metabolic dysfunction-associated steatohepatitis (MASH), marked by liver inflammation and scarring, potentially leading to cirrhosis. However, only 43-44% of patients with steatosis develop MASH, and 7-30% of those with MASH progress to cirrhosis. The exact mechanisms underlying MASLD and its progression remain unclear, and there are currently no specific therapeutic strategies for MASLD/MASH. While anti-obesity and anti-diabetic medications can reduce progression, they do not fully treat or reverse the disease. As an alternative, green-synthesized metal nanoparticles (MNPs) are emerging as potential treatments for liver diseases due to their anti-diabetic, anti-inflammatory, and anti-obesity properties with minimal side effects. MNPs like gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) have been shown to improve metabolic processes by lowering blood glucose, body fat, and inflammation. The study aimed to explore the effects of green-synthesized MNPs on gene expression in an in vitro model of MASH using C3A/HepG2 liver cells. The MASH model was created by exposing these cells to free fatty acids (FFAs) followed by lipopolysaccharide (LPS) to induce inflammation. Cell viability was assessed with the Water-Soluble Tetrazolium (WST)-1 assay, and lipid accumulation was measured using the Oil Red O (ORO) assay. Additionally, mitochondrial membrane potential was assessed by the tetramethyl rhodamine, methyl ester (TMRE) assay, and inflammation was measured with an Enzyme-Linked Immunosorbent Assay (ELISA). The study synthesized AuNPs from Carpobrotus edulis fruit (CeF) and avocado seed (AvoSE) and AgNPs from Salvia africana-lutea (SAL) using optimized conditions. The MNPs were characterized by UV-Vis spectrophotometry and Dynamic Light Scattering (DLS). The nanoparticles were tested at various concentrations for their impact on the C3A/HepG2-induced MASH model. Among the MNPs tested, AvoSE-AuNPs showed the most promise. They reduced cell proliferation and intracellular lipid content more effectively than CeFE-AuNPs and SAL-AgNPs. Molecular analysis using real-time polymerase chain reaction revealed that AvoSE-AuNPs could potentially reverse MASH effects by reducing the expression of key pro-inflammatory and metabolic genes, including tumor necrosis factor-alpha (TNF-α), Fas cell surface death receptor (FAS), Peroxisome proliferator-activated receptor (PPAR)-α, PPAR-γ, and Sterol regulatory element-binding protein (SREBPF)-1. Further research is needed to confirm the molecular mechanisms behind the effects of these MNPs and to identify the specific phytochemicals responsible for their synthesis and bioactivities.

Keywords: gold nanoparticles, green nanotechnology, metal nanoparticles, obesity

Procedia PDF Downloads 25
2064 Exploring Penicillin Resistance in Gonococcal Penicillin Binding Protein-2: Molecular Docking and Ligand Interaction Analysis

Authors: Sinethemba Yakobi, Lindiwe Zuma, Ofentse Pooe

Abstract:

Gonococcal infections present a notable public health issue, and the major approach for treatment involves using β-lactam antibiotics that specifically target penicillin-binding protein 2 (PBP2) in Neisseria gonorrhoeae. This study examines the influence of flavonoids, namely rutin, on the structural changes of PBP2 in both penicillin-resistant (FA6140) and penicillin-susceptible (FA19) strains. The research clarifies the structural effects of particular mutations, such as inserting an aspartate residue at position 345 (Asp-345a) in the PBP2 protein. The strain FA6140, which is resistant to penicillin, shows specific changes that lead to a decrease in penicillin binding. These mutations, namely P551S and F504L, significantly impact the pace at which acylation occurs and the stability of the strain under high temperatures. Molecular docking analyses investigate the antibacterial activities of rutin and other phytocompounds, emphasizing its exceptional binding affinity and potential as an inhibitor of PBP2. Quercetin and protocatechuic acid have encouraging antibacterial effectiveness, with quercetin displaying characteristics similar to those of drugs. Molecular dynamics simulations offer a detailed comprehension of the interactions between flavonoids and PBP2, highlighting rutin's exceptional antioxidant effects and strong affinity for the substrate binding site. The study's wider ramifications pertain to the pressing requirement for antiviral treatments in the context of the ongoing COVID-19 epidemic. Flavonoids have a strong affinity for binding to PBP2, indicating their potential as inhibitors to impair cell wall formation in N. gonorrhoeae. Ultimately, this study provides extensive knowledge on the interactions between proteins and ligands, the dynamics of the structure, and the ability of flavonoids to combat penicillin-resistant N. gonorrhoeae bacteria. The verified simulation outcomes establish a basis for creating potent inhibitors and medicinal therapies to combat infectious illnesses.

Keywords: phytochemicals, penicillin-binding protein 2, gonococcal infection, ligand-protein interaction, binding energy, neisseria gonorrhoeae FA19, neisseria gonorrhoeae FA6140, flavonoids

Procedia PDF Downloads 69
2063 DNAJB6 Chaperone Prevents the Aggregation of Intracellular but not Extracellular Aβ Peptides Associated with Alzheimer’s Disease

Authors: Rasha M. Hussein, Reem M. Hashem, Laila A. Rashed

Abstract:

Alzheimer’s disease is the most common dementia disease in the elderly. It is characterized by the accumulation of extracellular amyloid β (Aβ) peptides and intracellular hyper-phosphorylated tau protein. In addition, recent evidence indicates that accumulation of intracellular amyloid β peptides may play a role in Alzheimer’s disease pathogenesis. This suggests that intracellular Heat Shock Proteins (HSP) that maintain the protein quality control in the cell might be potential candidates for disease amelioration. DNAJB6, a member of DNAJ family of HSP, effectively prevented the aggregation of poly glutamines stretches associated with Huntington’s disease both in vitro and in cells. In addition, DNAJB6 was found recently to delay the aggregation of Aβ42 peptides in vitro. In the present study, we investigated the ability of DNAJB6 to prevent the aggregation of both intracellular and extracellular Aβ peptides using transfection of HEK293 cells with Aβ-GFP and recombinant Aβ42 peptides respectively. We performed western blotting and immunofluorescence techniques. We found that DNAJB6 can prevent Aβ-GFP aggregation, but not the seeded aggregation initiated by extracellular Aβ peptides. Moreover, DNAJB6 required interaction with HSP70 to prevent the aggregation of Aβ-GFP protein and its J-domain was essential for this anti-aggregation activity. Interestingly, overexpression of other DNAJ proteins as well as HSPB1 suppressed Aβ-GFP aggregation efficiently. Our findings suggest that DNAJB6 is a promising candidate for the inhibition of Aβ-GFP mediated aggregation through a canonical HSP70 dependent mechanism.

Keywords: , Alzheimer’s disease, chaperone, DNAJB6, aggregation

Procedia PDF Downloads 512
2062 Improving the Quality of Casava Peel-Leaf Mixture through Fermentation with Rhizopus oligosporusas Poultry Ration

Authors: Mirnawati, G. Ciptaan, Ferawati

Abstract:

This study aims to improve the quality of the cassava peel-leaf mixture (CPLM) through fermentation with Rhizopus oligosporusas poultry ration. This research is an experimental study using a completely randomized design (CRD) with four treatments and five replications. The treatments were cassava peel-leaf mixture (CPLM) fermented with Rhizopus oligosporus. The treatments were a combination of cassava peel and leaves with the ratio of; A (9:1), B (8:2), C (7:3), and D (6:4). The observed variables were protease enzyme activity, crude protein, crude fiber, nitrogen retention, digestibility of crude fiber, and metabolic energy. The results of the diversity analysis showed that there was a very significant (p < 0.01) effect on protease activity, crude protein, crude fiber, nitrogen retention, digestibility of crude fiber, and energy metabolism of fermented CPLM. Based on the results of the study, it can be concluded that CPLM (6:4) fermented with Rhizopus oligosporus gave the best results seen from protease activity 7,25 U/ml, 21.23% crude protein, 19.80% crude fiber, 59.65% nitrogen retention, 62.99% crude fiber digestibility and metabolic energy 2671 Kcal/kg.

Keywords: quality, Casava peel-leaf mixture, fermentation, Rhizopus oligosporus

Procedia PDF Downloads 185