Search results for: molecular mobility
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2944

Search results for: molecular mobility

2374 Low Voltage and High Field-Effect Mobility Thin Film Transistor Using Crystalline Polymer Nanocomposite as Gate Dielectric

Authors: Debabrata Bhadra, B. K. Chaudhuri

Abstract:

The operation of organic thin film transistors (OFETs) with low voltage is currently a prevailing issue. We have fabricated anthracene thin-film transistor (TFT) with an ultrathin layer (~450nm) of Poly-vinylidene fluoride (PVDF)/CuO nanocomposites as a gate insulator. We obtained a device with excellent electrical characteristics at low operating voltages (<1V). Different layers of the film were also prepared to achieve the best optimization of ideal gate insulator with various static dielectric constant (εr ). Capacitance density, leakage current at 1V gate voltage and electrical characteristics of OFETs with a single and multi layer films were investigated. This device was found to have highest field effect mobility of 2.27 cm2/Vs, a threshold voltage of 0.34V, an exceptionally low sub threshold slope of 380 mV/decade and an on/off ratio of 106. Such favorable combination of properties means that these OFETs can be utilized successfully as voltages below 1V. A very simple fabrication process has been used along with step wise poling process for enhancing the pyroelectric effects on the device performance. The output characteristic of OFET after poling were changed and exhibited linear current-voltage relationship showing the evidence of large polarization. The temperature dependent response of the device was also investigated. The stable performance of the OFET after poling operation makes it reliable in temperature sensor applications. Such High-ε CuO/PVDF gate dielectric appears to be highly promising candidates for organic non-volatile memory and sensor field-effect transistors (FETs).

Keywords: organic field effect transistors, thin film transistor, gate dielectric, organic semiconductor

Procedia PDF Downloads 231
2373 Ultra-High Molecular Weight Polyethylene (UHMWPE) for Radiation Dosimetry Applications

Authors: Malik Sajjad Mehmood, Aisha Ali, Hamna Khan, Tariq Yasin, Masroor Ikram

Abstract:

Ultra-high molecular weight polyethylene (UHMWPE) is one of the polymers belongs to polyethylene (PE) family having monomer –CH2– and average molecular weight is approximately 3-6 million g/mol. Due its chemical, mechanical, physical and biocompatible properties, it has been extensively used in the field of electrical insulation, medicine, orthopedic, microelectronics, engineering, chemistry and the food industry etc. In order to alter/modify the properties of UHMWPE for particular application of interest, certain various procedures are in practice e.g. treating the material with high energy irradiations like gamma ray, e-beam, and ion bombardment. Radiation treatment of UHMWPE induces free radicals within its matrix, and these free radicals are the precursors of chain scission, chain accumulation, formation of double bonds, molecular emission, crosslinking etc. All the aforementioned physical and chemical processes are mainly responsible for the modification of polymers properties to use them in any particular application of our interest e.g. to fabricate LEDs, optical sensors, antireflective coatings, polymeric optical fibers, and most importantly for radiation dosimetry applications. It is therefore, to check the feasibility of using UHMWPE for radiation dosimetery applications, the compressed sheets of UHMWPE were irradiated at room temperature (~25°C) for total dose values of 30 kGy and 100 kGy, respectively while one were kept un-irradiated as reference. Transmittance data (from 400 nm to 800 nm) of e-beam irradiated UHMWPE and its hybrids were measured by using Muller matrix spectro-polarimeter. As a result significant changes occur in the absorption behavior of irradiated samples. To analyze these (radiation induced) changes in polymer matrix Urbach edge method and modified Tauc’s equation has been used. The results reveal that optical activation energy decreases with irradiation. The values of activation energies are 2.85 meV, 2.48 meV, and 2.40 meV for control, 30 kGy, and 100 kGy samples, respectively. Direct and indirect energy band gaps were also found to decrease with irradiation due to variation of C=C unsaturation in clusters. We believe that the reported results would open new horizons for radiation dosimetery applications.

Keywords: electron beam, radiation dosimetry, Tauc’s equation, UHMWPE, Urbach method

Procedia PDF Downloads 398
2372 Synthesis, Characterization and Antibacterial Screening of 3-Hydroxy-2-[3-(2/3/4-Methoxybenzoyl)Thioureido]Butyric Acid

Authors: M. S. M. Yusof, R. Ramli, S. K. C. Soh, N. Ismail, N. Ngah

Abstract:

This study presents the synthesis of a series of methoxybenzoylthiourea amino acid derivatives. The compounds were obtained from the reactions between 2/3/4-methoxybenzoyl isothiocyanate with threonine. All of the compounds were characterized via mass spectrometry, 1H and 13C NMR spectrometry, UV-Vis spectrophotometer and FT-IR spectroscopy. Mass spectra for all of the compounds showed the presence of molecular ion [M]+ peaks at m/z 312, which are in agreement to the calculated molecular weight. For 1H NMR spectra, the presence of OCH3, C=S-NH and C=O-NH protons were observed within range of δH 3.8-4.0 ppm, 11.1-11.5 ppm and 10.0-11.5 ppm, respectively. 13C NMR spectra in all compounds displayed the presence of OCH3, C=O-NH, C=O-OH and C=S carbon resonances within range of δC 55.0-57.0 ppm, 165.0-168.0 ppm, 170.0-171.0 ppm and 180.0-182.0 ppm, respectively. In UV spectra, two absorption bands have been observed and both were assigned to the n-π* and π-π* transitions. Six vibrational modes of v(N-H), v(O-H), v(C=O-OH), v(C=O-NH), v(C=C) aromatic and v(C=S) appeared in the FT-IR spectra within the range of 3241-3467 cm-1, 2976-3302 cm-1, 1720-1768 cm-1, 1655-1672 cm-1, 1519-1525 cm-1 and 754-763 cm-1, respectively. The antibacterial activity for all of the compounds was screened against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella typhimurium and Escherichia coli. However, no activity was observed.

Keywords: methoxybenzoyl isothiocyanate, amino acid, threonine, antibacterial

Procedia PDF Downloads 322
2371 The Effects of High Velocity Low Amplitude Thrust Manipulation versus Low Velocity Low Amplitude Mobilization in Treatment of Chronic Mechanical Low Back Pain

Authors: Ahmed R. Z. Baghdadi, Ibrahim M. I. Hamoda,  Mona H. Gamal Eldein, Ibrahim Magdy Elnaggar

Abstract:

Background: High-velocity low amplitude thrust (HVLAT) manipulation and low-velocity low amplitude (LVLA) mobilization are an effective treatment for low back pain (LBP). Purpose: This study compared the effects of HVLAT versus LVLA on pain, functional deficits and segmental mobility in treatment of chronic mechanical LBP. Methods: Ninety patients suffering from chronic mechanical LBP are classified to three groups; Thirty patients treated by HVLAT (group I), thirty patients treated by LVLA (group II) and thirty patients as control group (group III) participated in the study. The mean age was 28.00±2.92, 27.83±2.28 and 28.07±3.05 years and BMI 27.98±2.60, 28.80±2.40 and 28.70±2.53 kg/m2 for group I, II and III respectively. The Visual Analogue Scale (VAS), the Oswestry low back pain disability questionnaire and modified schoper test were used for assessment. Assessments were conducted two weeks before and after treatment with the control group being assessed at the same time intervals. The treatment program group one was two weeks single session per week, and for group II two sessions per week for two weeks. Results: The One-way ANOVA revealed that group I had significantly lower pain scores and Oswestry score compared with group II two weeks after treatment. Moreover, the mobility in modified schoper increased significantly and the pain scores and Oswestry scores decreased significantly after treatment in group I and II compared with control group. Interpretation/Conclusion: HVLAT is preferable to LVLA mobilization, possibly due to a beneficial neurophysiological effect by Stimulating mechanically sensitive neurons in the lumbar facet joint capsule.

Keywords: low back pain, manipulation, mobilization, low velocity

Procedia PDF Downloads 587
2370 Iron(III)-Tosylate Doped PEDOT and PEG: A Nanoscale Conductivity Study of an Electrochemical System with Biosensing Applications

Authors: Giulio Rosati, Luciano Sappia, Rossana Madrid, Noemi Rozlòsnik

Abstract:

The addition of PEG of different molecular weights has important effects on the physical, electrical and electrochemical properties of iron(III)-tosylate doped PEDOT. This particular polymer can be easily spin coated over plastic discs, optimizing thickness and uniformity of the PEDOT-PEG films. The conductivity and morphological analysis of the hybrid PEDOT-PEG polymer by 4-point probe (4PP), 12-point probe (12PP), and conductive AFM (C-AFM) show strong effects of the PEG doping. Moreover, the conductive films kinetics at the nanoscale, in response to different bias voltages, change radically depending on the PEG molecular weight. The hybrid conductive films show also interesting electrochemical properties, making the PEDOT PEG doping appealing for biosensing applications both for EIS-based and amperometric affinity/catalytic biosensors.

Keywords: atomic force microscopy, biosensors, four-point probe, nano-films, PEDOT

Procedia PDF Downloads 330
2369 Puerto Rico and Pittsburg: A Social Psychology Perspective on How Perceived Infringement on Job and Cultural Identity Unite Racially Different Working-Class Groups

Authors: Reagan Rodriguez

Abstract:

With a growing divide between political echo chambers in the United States, exacerbated by race and income inequality, it might seem to be unfathomable to draw connections that tie working class in an industrial city and a U.S. territory. Yet, in regions where either the economy has been hit due to dwindling job infrastructure or natural disasters have left indelible marks on an island already once marked by colonial imperialism, a larger social shared identity is at play. Fracking has long been an intergenerational and stable work opportunity for many in the Pittsburg PA, yet the rising severity of global climate change may soon impact the policy and even presidential elections which could result in the reduction of jobs in the industry. Cock-fighting, considered a cultural mainstay within the island of Puerto Rico, has already had legislation banning activity and thus cutting out one of the most lucrative aspects of a severely injured economy. Insecurity, infringement, and isolation while being tied to a working-class bracket with no other opportunities in proximity have left both groups expressing similar frustration and while another larger shared identity politic is giving little other options to develop social mobility. This paper utilizes a thematic analysis and compares convergent and divergent themes on internet forums amongst unionized fracking workers in Pittsburg and cockfighters in Puerto Rico. This research examines how group identity in relation to job and cultural identity is most strong and at which points its most malleable; when intergenerational job identity becomes a part of one’s cultural identity, its override may be strongest when it is perceived as threatened. Final findings and limitations were comprehensively outlined.

Keywords: identity threat, social psychology, group identity, culture and social mobility

Procedia PDF Downloads 137
2368 Application of Computational Chemistry for Searching Anticancer Derivatives of 2-Phenazinamines as Bcr-Abl Tyrosine Kinase Inhibitors

Authors: Gajanan M. Sonwane

Abstract:

The computational studies on 2-phenazinamines with their protein targets have been carried out to design compounds with potential anticancer activity. This strategy of designing compounds possessing selectivity over specific tyrosine kinase has been achieved through G-QSAR and molecular docking studies. The objective of this research has been to design newer 2-phenazinamine derivatives as Bcr-Abl tyrosine kinase inhibitors by G-QSAR, molecular docking studies followed by wet-lab studies along with evaluation of their anticancer potential. Computational chemistry was done by using VLife MDS 4.3 and Autodock 4.2 followed by wet-lab experiments for synthesizing 2-phenazinamine derivatives. The chemical structures of ligands in 2D were drawn by employing Chemdraw 2D Ultra 8.0 and were converted into 3D. These were optimized by using a semi-empirical method called MOPAC. The protein structure was retrieved from RCSC protein data bank as a PDB file. The binding interactions of protein and ligands were done by using PYMOL. The molecular properties of the designed compounds were predicted in silico by using Osiris property explorer. The parent compound 2-phenazinamine was synthesized by reduction of 2, 4-dinitro-N-phenyl-benzenamine in the presence of tin chloride followed by cyclization in the presence of nitrobenzene and magnesium sulfate. The derivatization at the amino function of 2-phenazinamine was performed by treating parent compound with various aldehydes in the presence of dicyclohexylcarbodiimide (DCC) and urea to afford 2-(2-chlorophenyl)-3-(phenazine-2-yl) thiazolidine-4-one. Synthesized 39 novel derivatives of 2-phenazinamine and performed antioxidant activity, anti antiproliferative on the bulb of onion and anticancer activity on cell line showing significant competition with marked blockbuster drug imatinib.

Keywords: computer-aided drug design, tyrosin kinases, anticancer, docking

Procedia PDF Downloads 126
2367 Hands-off Parking: Deep Learning Gesture-based System for Individuals with Mobility Needs

Authors: Javier Romera, Alberto Justo, Ignacio Fidalgo, Joshue Perez, Javier Araluce

Abstract:

Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, the following paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for indepth gesture classification. This tandem of MediaPipe's extraction prowess and MPL's analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System (ROS), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs.

Keywords: gesture detection, mediapipe, multiperceptron layer, robot operating system

Procedia PDF Downloads 83
2366 Bismuth Telluride Topological Insulator: Physical Vapor Transport vs Molecular Beam Epitaxy

Authors: Omar Concepcion, Osvaldo De Melo, Arturo Escobosa

Abstract:

Topological insulator (TI) materials are insulating in the bulk and conducting in the surface. The unique electronic properties associated with these surface states make them strong candidates for exploring innovative quantum phenomena and as practical applications for quantum computing, spintronic and nanodevices. Many materials, including Bi₂Te₃, have been proposed as TIs and, in some cases, it has been demonstrated experimentally by angle-resolved photoemission spectroscopy (ARPES), scanning tunneling spectroscopy (STM) and/or magnetotransport measurements. A clean surface is necessary in order to make any of this measurements. Several techniques have been used to produce films and different kinds of nanostructures. Growth and characterization in situ is usually the best option although cleaving the films can be an alternative to have a suitable surface. In the present work, we report a comparison of Bi₂Te₃ grown by physical vapor transport (PVT) and molecular beam epitaxy (MBE). The samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and ARPES. The Bi₂Te₃ samples grown by PVT, were cleaved in the ultra-high vacuum in order to obtain a surface free of contaminants. In both cases, the XRD shows a c-axis orientation and the pole diagrams proved the epitaxial relationship between film and substrate. The ARPES image shows the linear dispersion characteristic of the surface states of the TI materials. The samples grown by PVT, a relatively simple and cost-effective technique shows the same high quality and TI properties than the grown by MBE.

Keywords: Bismuth telluride, molecular beam epitaxy, physical vapor transport, topological insulator

Procedia PDF Downloads 176
2365 Gap Formation into Bulk InSb Crystals Grown by the VDS Technique Revealing Enhancement in the Transport Properties

Authors: Dattatray Gadkari, Dilip Maske, Manisha Joshi, Rashmi Choudhari, Brij Mohan Arora

Abstract:

The vertical directional solidification (VDS) technique has been applied to the growth of bulk InSb crystals. The concept of practical stability is applied to the case of detached bulk crystal growth on earth in a simplified design. By optimization of the set up and growth parameters, 32 ingots of 65-75 mm in length and 10-22 mm in diameter have been grown. The results indicate that the wetting angle of the melt on the ampoule wall and the pressure difference across the interface are the crucial factors effecting the meniscus shape and stability. Taking into account both heat transfer and capillarity, it is demonstrated that the process is stable in case of convex menisci (seen from melt), provided that pressure fluctuations remain in a stable range. During the crystal growth process, it is necessary to keep a relationship between the rate of the difference pressure controls and the solidification to maintain the width of gas gap. It is concluded that practical stability gives valuable knowledge of the dynamics and could be usefully applied to other crystal growth processes, especially those involving capillary shaping. Optoelectronic properties were investigated in relation to the type of solidification attached and detached ingots growth. These samples, room temperature physical properties such as Hall mobility, FTIR, Raman spectroscopy and microhardness achieved for antimonide samples grown by VDS technique have shown the highest values gained till at this time. These results reveal that these crystals can be used to produce InSb with high mobility for device applications.

Keywords: alloys, electronic materials, semiconductors, crystal growth, solidification, etching, optical microscopy, crystal structure, defects, Hall effect

Procedia PDF Downloads 406
2364 Libyan Crude Oil Composition Analysis and Prediction

Authors: Omar Hussein El Ayadi, EmadY. El-Mansouri, Mohamed B. Dozan

Abstract:

Production oil process require specific details i.e. oil composition. Generally, types of oil or differentiation between reservoir fluids depend specifically on composition. The main purpose of this study is to correlate and predict the Libyan oil (reservoir fluid and residual) composition utilizing tri-angle-coordinate plots discovered and tasked with Excel. The reservoir fluid data (61 old + 47 new), the residual oil data (33 new) collected from most of Libyan reservoirs were correlated with each others. Moreover, find a relation between stock tank molecular weight and stock tank oil gravity (oAPI), the molecular weight oh (C7+) versus residual oil gravity (oAPI). The average value of every oil composition was estimated including non-hydrocarbon (H2S, CO2, and N2). Nevertheless, the isomers (i-…) and normal (n-…) structure of (C4) and (C5) were also obtained. The summary of the conclusion is; utilizing excel Microsoft office to draw triangle coordinates to find two unknown component if only one is known. However, it is recommended to use the obtained oil composition plots and equations for any oil composition dependents i.e. optimum separator pressure.

Keywords: PVT, phase behavior, petroleum, chemical engineering

Procedia PDF Downloads 500
2363 Antitrypanosomal Activity of Stigmasterol: An in silico Approach

Authors: Mohammed Auwal Ibrahim, Aminu Mohammed

Abstract:

Stigmasterol has previously been reported to possess antitrypanosomal activity using in vitro and in vivo models. However, the mechanism of antitrypanosomal activity is yet to be elucidated. In the present study, molecular docking was used to decipher the mode of interaction and binding affinity of stigmasterol to three known antitrypanosomal drug targets viz; adenosine kinase, ornithine decarboxylase and triose phosphate isomerase. Stigmasterol was found to bind to the selected trypanosomal enzymes with minimum binding energy of -4.2, -6.5 and -6.6 kcal/mol for adenosine kinase, ornithine decarboxylase, and triose phosphate isomerase respectively. However, hydrogen bond was not involved in the interaction of stigmasterol with all the three enzymes, but hydrophobic interaction seemed to play a vital role in the binding phenomenon which was predicted to be non-competitive like type of inhibition. It was concluded that binding to the three selected enzymes, especially triose phosphate isomerase, might be involved in the antitrypanosomal activity of stigmasterol but not mediated via a hydrogen bond interaction.

Keywords: antitrypanosomal, in silico, molecular docking, stigmasterol

Procedia PDF Downloads 262
2362 Road Systems as Environmental Barriers: An Overview of Roadways in Their Function as Fences for Wildlife Movement

Authors: Rachael Bentley, Callahan Gergen, Brodie Thiede

Abstract:

Roadways have a significant impact on the environment in so far as they function as barriers to wildlife movement, both through road mortality and through resultant road avoidance. Roads have an im-mense presence worldwide, and it is predicted to increase substantially in the next thirty years. As roadways become even more common, it is important to consider their environmental impact, and to mitigate the negative effects which they have on wildlife and wildlife mobility. In a thorough analysis of several related studies, a common conclusion was that roads cause habitat fragmentation, which can lead split populations to evolve differently, for better or for worse. Though some populations adapted positively to roadways, becoming more resistant to road mortality, and more tolerant to noise and chemical contamination, many others experienced maladaptation, either due to chemical contamination in and around their environment, or because of genetic mutations from inbreeding when their population was fragmented too substantially to support a large enough group for healthy genetic exchange. Large mammals were especially susceptible to maladaptation from inbreed-ing, as they require larger areas to roam and therefore require even more space to sustain a healthy population. Regardless of whether a species evolved positively or negatively as a result of their proximity to a road, animals tended to avoid roads, making the genetic diversity from habitat fragmentation an exceedingly prevalent issue in the larger discussion of road ecology. Additionally, the consideration of solu-tions, such as overpasses and underpasses, is crucial to ensuring the long term survival of many wildlife populations. In studies addressing the effectiveness of overpasses and underpasses, it seemed as though animals adjusted well to these sorts of solutions, but strategic place-ment, as well as proper sizing, proper height, shelter from road noise, and other considerations were important in construction. When an underpass or overpass was well-built and well-shielded from human activity, animals’ usage of the structure increased significantly throughout its first five years, thus reconnecting previously divided populations. Still, these structures are costly and they are often unable to fully address certain issues such as light, noise, and contaminants from vehicles. Therefore, the need for further discussion of new, crea-tive solutions remains paramount. Roads are one of the most consistent and prominent features of today’s landscape, but their environmental impacts are largely overlooked. While roads are useful for connecting people, they divide landscapes and animal habitats. Therefore, further research and investment in possible solutions is necessary to mitigate the negative effects which roads have on wildlife mobility and to pre-vent issues from resultant habitat fragmentation.

Keywords: fences, habitat fragmentation, roadways, wildlife mobility

Procedia PDF Downloads 159
2361 A Combined CFD Simulation of Plateau Borders including Films and Transitional Areas of Liquid Foams

Authors: Abdolhamid Anazadehsayed, Jamal Naser

Abstract:

An integrated computational fluid dynamics model is developed for a combined simulation of Plateau borders, films, and transitional areas between the film and the Plateau borders to reduce the simplifications and shortcomings of available models for foam drainage in micro-scale. Additionally, the counter-flow related to the Marangoni effect in the transitional area is investigated. The results of this combined model show the contribution of the films, the exterior Plateau borders, and Marangoni flow in the drainage process more accurately since the inter-influence of foam's elements is included in this study. The exterior Plateau borders flow rate can be four times larger than the interior ones. The exterior bubbles can be more prominent in the drainage process in cases where the number of the exterior Plateau borders increases due to the geometry of container. The ratio of the Marangoni counter-flow to the Plateau border flow increases drastically with an increase in the mobility of air-liquid interface. However, the exterior bubbles follow the same trend with much less intensity since typically, the flow is less dependent on the interface of air-liquid in the exterior bubbles. Moreover, the Marangoni counter-flow in a near-wall transition area is less important than an internal one. The influence of air-liquid interface mobility on the average velocity of interior foams is attained with more accuracy with more realistic boundary condition. Then it has been compared with other numerical and analytical results. The contribution of films in the drainage is significant for the mobile foams as the velocity of flow in the film has the same order of magnitude as the velocity in the Plateau border. Nevertheless, for foams with rigid interfaces, film's contribution in foam drainage is insignificant, particularly for the films near the wall of the container.

Keywords: foam, plateau border, film, Marangoni, CFD, bubble

Procedia PDF Downloads 334
2360 In-Silico Investigation of Phytochemicals from Ocimum Sanctum as Plausible Antiviral Agent in COVID-19

Authors: Dileep Kumar, Janhavi Ramchandra Rao Kumar, Rao

Abstract:

COVID-19 has ravaged the globe, and it is spreading its Spectre day by day. In the absence of established drugs, this disease has created havoc. Some of the infected persons are symptomatic or asymptomatic. The respiratory system, cardiac system, digestive system, etc. in human beings are affected by this virus. In our present investigation, we have undertaken a study of the Indian Ayurvedic herb, Ocimum sanctum against SARS-CoV-2 using molecular docking and dynamics studies. The docking analysis was performed on the Glide module of Schrödinger suite on two different proteins from SARS-CoV-2 viz. NSP15 Endoribonuclease and spike receptor-binding domain. MM-GBSA based binding free energy calculations also suggest the most favorable binding affinities of carvacrol, β elemene, and β caryophyllene with binding energies of −61.61, 58.23, and −54.19 Kcal/mol respectively with spike receptor-binding domain and NSP15 Endoribonuclease. It rekindles our hope for the design and development of new drug candidates for the treatment of COVID19.

Keywords: molecular docking, COVID-19, ocimum sanctum, binding energy

Procedia PDF Downloads 171
2359 Calpains; Insights Into the Pathogenesis of Heart Failure

Authors: Mohammadjavad Sotoudeheian

Abstract:

Heart failure (HF) prevalence, as a global cardiovascular problem, is increasing gradually. A variety of molecular mechanisms contribute to HF. Proteins involved in cardiac contractility regulation, such as ion channels and calcium handling proteins, are altered. Additionally, epigenetic modifications and gene expression can lead to altered cardiac function. Moreover, inflammation and oxidative stress contribute to HF. The progression of HF can be attributed to mitochondrial dysfunction that impairs energy production and increases apoptosis. Molecular mechanisms such as these contribute to the development of cardiomyocyte defects and HF and can be therapeutically targeted. The heart's contractile function is controlled by cardiomyocytes. Calpain, and its related molecules, including Bax, VEGF, and AMPK, are among the proteins involved in regulating cardiomyocyte function. Apoptosis is facilitated by Bax. Cardiomyocyte apoptosis is regulated by this protein. Furthermore, cardiomyocyte survival, contractility, wound healing, and proliferation are all regulated by VEGF, which is produced by cardiomyocytes during inflammation and cytokine stress. Cardiomyocyte proliferation and survival are also influenced by AMPK, an enzyme that plays an active role in energy metabolism. They all play key roles in apoptosis, angiogenesis, hypertrophy, and metabolism during myocardial inflammation. The role of calpains has been linked to several molecular pathways. The calpain pathway plays an important role in signal transduction and apoptosis, as well as autophagy, endocytosis, and exocytosis. Cell death and survival are regulated by these calcium-dependent cysteine proteases that cleave proteins. As a result, protein fragments can be used for various cellular functions. By cleaving adhesion and motility proteins, calcium proteins also contribute to cell migration. HF may be brought about by calpain-mediated pathways. Many physiological processes are mediated by the calpain molecular pathways. Signal transduction, cell death, and cell migration are all regulated by these molecular pathways. Calpain is activated by calcium binding to calmodulin. In the presence of calcium, calmodulin activates calpain. Calpains are stimulated by calcium, which increases matrix metalloproteinases (MMPs). In order to develop novel treatments for these diseases, we must understand how this pathway works. A variety of myocardial remodeling processes involve calpains, including remodeling of the extracellular matrix and hypertrophy of cardiomyocytes. Calpains also play a role in maintaining cardiac homeostasis through apoptosis and autophagy. The development of HF may be in part due to calpain-mediated pathways promoting cardiomyocyte death. Numerous studies have suggested the importance of the Ca2+ -dependent protease calpain in cardiac physiology and pathology. Therefore, it is important to consider this pathway to develop and test therapeutic options in humans that targets calpain in HF. Apoptosis, autophagy, endocytosis, exocytosis, signal transduction, and disease progression all involve calpain molecular pathways. Therefore, it is conceivable that calpain inhibitors might have therapeutic potential as they have been investigated in preclinical models of several conditions in which the enzyme has been implicated that might be treated with them. Ca 2+ - dependent proteases and calpains contribute to adverse ventricular remodeling and HF in multiple experimental models. In this manuscript, we will discuss the calpain molecular pathway's important roles in HF development.

Keywords: calpain, heart failure, autophagy, apoptosis, cardiomyocyte

Procedia PDF Downloads 60
2358 Dissociation of Hydrophobic Interactions in Whey Protein Polymers: Molecular Characterization Using Dilute Solution Viscometry

Authors: Ahmed S. Eissa

Abstract:

Whey represents about 85-95% of the milk volume and about 55% of milk nutrients. Whey proteins are of special importance in formulated foods due to their rich nutritional and functional benefits. Whey proteins form large polymers upon heating to a temperature greater than the denaturation temperature. Hydrophobic interactions play an important role in building whey protein polymers. In this study, dissociation of hydrophobic interactions of whey protein polymers was done by adding Sodium Dodecyl Sulphonate (SDS). At low SDS concentrations, protein polymers were dissociated to smaller chains, as revealed by dilution solution viscometry (DSV). Interestingly, at higher SDS concentrations, polymer molecules got larger in size. Intrinsic viscosity was increased to many folds when raising the SDS concentration from 0.5% to 2%. Complex molecular arrangement leads to the formation of larger macromolecules, due to micelle formation. The study opens a venue for manipulating and enhancing whey protein functional properties by manipulating the hydrophobic interactions.

Keywords: whey proteins, hydrophobic interactions, SDS

Procedia PDF Downloads 232
2357 Molecular Dynamic Simulation of Cold Spray Process

Authors: Aneesh Joshi, Sagil James

Abstract:

Cold Spray (CS) process is deposition of solid particles over a substrate above a certain critical impact velocity. Unlike thermal spray processes, CS process does not melt the particles thus retaining their original physical and chemical properties. These characteristics make CS process ideal for various engineering applications involving metals, polymers, ceramics and composites. The bonding mechanism involved in CS process is extremely complex considering the dynamic nature of the process. Though CS process offers great promise for several engineering applications, the realization of its full potential is limited by the lack of understanding of the complex mechanisms involved in this process and the effect of critical process parameters on the deposition efficiency. The goal of this research is to understand the complex nanoscale mechanisms involved in CS process. The study uses Molecular Dynamics (MD) simulation technique to understand the material deposition phenomenon during the CS process. Impact of a single crystalline copper nanoparticle on copper substrate is modelled under varying process conditions. The quantitative results of the impacts at different velocities, impact angle and size of the particles are evaluated using flattening ratio, von Mises stress distribution and local shear strain. The study finds that the flattening ratio and hence the quality of deposition was highest for an impact velocity of 700 m/s, particle size of 20 Å and an impact angle of 90°. The stress and strain analysis revealed regions of shear instabilities in the periphery of impact and also revealed plastic deformation of the particles after the impact. The results of this study can be used to augment our existing knowledge in the field of CS processes.

Keywords: cold spray process, molecular dynamics simulation, nanoparticles, particle impact

Procedia PDF Downloads 358
2356 Structure, Bioinformatics Analysis and Substrate Specificity of a 6-Phospho-β-Glucosidase Glycoside Hydrolase 1 Enzyme from Bacillus licheniformis

Authors: Wayde Veldman, Ozlem T. Bishop, Igor Polikarpov

Abstract:

In bacteria, mono and disaccharides are phosphorylated during uptake into the cell via the widely used phosphoenolpyruvate (PEP)-dependent phosphotransferase transport system. As an initial step in the phosphorylated disaccharide metabolism pathway, certain glycoside hydrolase family 1 (GH1) enzymes play a crucial role in releasing phosphorylated and non-phosphorylated monosaccharides. However, structural determinants for the specificity of these enzymes still need to be clarified. GH1 enzymes are known to have a wide array of functions. According to the CAZy database, there are twenty-one different enzymatic activities in the GH1 family. Here, the structure and substrate specificity of a GH1 enzyme from Bacillus licheniformis, hereafter known as BlBglH, was investigated. The sequence of the enzyme BlBglH was compared to the sequences of other characterized GH1 enzymes using sequence alignment, sequence identity calculations, phylogenetic analysis, and motif discovery. Through these various analyses, BlBglH was found to have sequence features characteristic of the 6-phospho-β-glucosidase activity enzymes. Additionally, motif and structure comparisons of the three most commonly studied GH1 enzyme-activities revealed a shared loop amongst the different structures that consist of different sequence motifs – this loop is thought to guide specific substrates (depending on activity) towards the active-site. To further affirm BlBglH enzyme activity, molecular docking and molecular dynamics simulations were performed. Docking was carried out using 6-phospho-β-glucosidase enzyme-activity positive (p-Nitrophenyl-beta-D-glucoside-6-phosphate) and negative (p-Nitrophenyl-beta-D-galactoside-6-phosphate) control ligands, followed by 400 ns molecular dynamics simulations. The positive-control ligand maintained favourable interactions within the active site until the end of the simulation. The negative-control ligand was observed exiting the enzyme at 287 ns. Binding free energy calculations showed that the positive-control complex had a substantially more favourable binding energy compared to the negative-control complex. Jointly, the findings of this study suggest that the BlBglH enzyme possesses 6-phospho-β-glucosidase enzymatic activity.

Keywords: 6-P-β-glucosidase, glycoside hydrolase 1, molecular dynamics, sequence analysis, substrate specificity

Procedia PDF Downloads 122
2355 Clostridium Difficile in Western Australian Native Animals: Prevalence and Molecular Epidemiology

Authors: Karla Cautivo, Thomas Riley, Daniel Knight

Abstract:

Clostridium difficile infection (CDI) is the most common cause of infectious diarrhea in hospitalised humans. C. difficile colonises the gastrointestinal tract, causes disease in a variety of animal species and can persist as a spore in diverse environments. Genetic overlap between C. difficile strains from human, animal and environmental sources suggests CDI has a zoonotic or foodborne aetiology. In Australia, C. difficile PCR ribotype RT014 (MLST clade 1) and several ST11 (MLST clade 5) RTs are found commonly in livestock. The high prevalence and diversity of ST11 strains in Australian production animals indicates Australia might be the ancestral home for this lineage. This project describes for the first time the ecology of C. difficile in Australian native animals, providing insights into the prevalence, molecular epidemiology and evolution of C. difficile in this unique environment and a possible role in CDI in humans and animals in Australia. Faecal samples were collected from wild/captive reptiles (n=37), mammals (n=104) and birds (n=102) in Western Australia in 2020/21. Anaerobic enrichment culture was performed, and C. difficile isolates were characterised by PCR ribotyping and toxin gene profiling. Seventy isolates of C. difficile were recovered (prevalence of C. difficile in faecal samples 28%, n=68/243); 27 unique RTs were identified, 5 were novel. The prevalence of C. difficile was similar for reptiles and mammals, 46% (n=17/37) and 43%(n=45/104), respectively, but significantly lower in birds (7.8%, n=8/102; p<0.00001 for both reptiles and mammals). Of the 57 isolates available for typing, RT237 (clade 5) and RT002 (clade 2) were the most prevalent, 15.8% (n=9/57) and 14% (n=8/57), respectively. The high prevalence of C. difficile in reptiles and mammals, particularly clade 5 strains, supported by previous studies of C. difficile in Australian soils, suggest that Australia might be the ancestral home of MLST clade 5.

Keywords: Clostridium difficile, zoonosis, molecular epidemiology, ecology and evolution

Procedia PDF Downloads 185
2354 Molecular Farming: Plants Producing Vaccine and Diagnostic Reagent

Authors: Katerina H. Takova, Ivan N. Minkov, Gergana G. Zahmanova

Abstract:

Molecular farming is the production of recombinant proteins in plants with the aim to use the protein as a purified product, crude extract or directly in the planta. Plants gain more attention as expression systems compared to other ones due to the cost effective production of pharmaceutically important proteins, appropriate post-translational modifications, assembly of complex proteins, absence of human pathogens to name a few. In addition, transient expression in plant leaves enables production of recombinant proteins within few weeks. Hepatitis E virus (HEV) is a causative agent of acute hepatitis. HEV causes epidemics in developing countries and is primarily transmitted through the fecal-oral route. Presently, all efforts for development of Hepatitis E vaccine are focused on the Open Read Frame 2 (ORF2) capsid protein as it contains epitopes that can induce neutralizing antibodies. For our purpose, we used the CMPV-based vector-pEAQ-HT for transient expression of HEV ORF2 in Nicotiana benthamina. Different molecular analysis (Western blot and ELISA) showed that HEV ORF2 capsid protein was expressed in plant tissue in high-yield up to 1g/kg of fresh leaf tissue. Electron microscopy showed that the capsid protein spontaneously assembled in low abundance virus-like particles (VLPs), which are highly immunogenic structures and suitable for vaccine development. The expressed protein was recognized by both human and swine HEV positive sera and can be used as a diagnostic reagent for the detection of HEV infection. Production of HEV capsid protein in plants is a promising technology for further HEV vaccine investigations. Here, we reported for a rapid high-yield transient expression of a recombinant protein in plants suitable for vaccine production as well as a diagnostic reagent. Acknowledgments -The authors’ research on HEV is supported with grants from the Project PlantaSYST under the Widening Program, H2020 as well as under the UK Biotechnological and Biological Sciences Research Council (BBSRC) Institute Strategic Programme Grant ‘Understanding and Exploiting Plant and Microbial Secondary Metabolism’ (BB/J004596/1). The authors want to thank Prof. George Lomonossoff (JIC, Norwich, UK) for his contribution.

Keywords: hepatitis E virus, plant molecular farming, transient expression, vaccines

Procedia PDF Downloads 138
2353 Molecular Epidemiology of Circulating Adenovirus Types in Acute Conjunctivitis Cases in Chandigarh, North India

Authors: Mini P. Singh, Jagat Ram, Archit Kumar, Tripti Rungta, Jasmine Khurana, Amit Gupta, R. K. Ratho

Abstract:

Introduction: Human adenovirus is the most common agent involved in viral conjunctivitis. The clinical manifestations vary with different serotypes. The identification of the circulating strains followed by phylogenetic analysis can be helpful in understanding the origin and transmission of the disease. The present study aimed to carry out molecular epidemiology of the adenovirus types in the patients with conjunctivitis presenting to the eye centre of a tertiary care hospital in North India. Materials and Methods: The conjunctival swabs were collected from 23 suspected adenoviral conjunctivitis patients between April-August, 2014 and transported in viral transport media. The samples were subjected to nested PCR targeting hexon gene of human adenovirus. The band size of 956bp was eluted and 8 representative positive samples were subjected to sequencing. The sequences were analyzed by using CLUSTALX2.1 and MEGA 5.1 software. Results: The male: female ratio was found to be 3.6:1. The mean age of presenting patients was 43.95 years (+17.2). Approximately 52.1% (12/23) of patients presented with bilateral involvement while 47.8% (11/23) with unilateral involvement of the eye. Human adenovirus DNA could be detected in 65.2% (15/23) of the patients. The phylogenetic analysis revealed presence of serotype 8 in 7 patients and serotype 4 in one patient. The serotype 8 sequences showed 99-100% identity with Tunisian, Indian and Japanese strains. The adenovirus serotype 4 strains had 100% identity with strains from Tunisia, China and USA. Conclusion: Human adenovirus was found be an important etiological agent for conjunctivitis in our set up. The phylogenetic analysis showed that the predominant circulating strains in our epidemic keratoconjunctivitis were serotypes 8 and 4.

Keywords: conjunctivitis, human adenovirus, molecular epidemiology, phylogenetics

Procedia PDF Downloads 268
2352 Biomolecular Interaction of Ruthenium(II) Polypyridyl Complexes

Authors: S. N. Harun, H. Ahmad

Abstract:

A series of ruthenium(II) complexes, including two novel compounds [Ru(dppz)2(L)]2+ where dppz = dipyrido-[3,2-a:2’,3’-c]phenazine, and L = 2-phenylimidazo[4,5-f][1,10]phenanthroline (PIP) or 2-(4-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline (p-HPIP) have been synthesized and characterized. The previously reported complexes [Ru(bpy)2L]2+ and [Ru(phen)2L]2+ were also prepared. All complexes were characterized by elemental analysis, 1H-NMR spectroscopy, ESI-Mass spectroscopy and FT-IR spectroscopy. The photophysical properties were analyzed by UV-Visible spectroscopy and fluorescence spectroscopy. [Ru(dppz)2(PIP)]2+ and [Ru(dppz)2(p-HPIP)]2+ displayed ‘molecular light-switch’ effect as they have high emission in acetonitrile but no emission in water. The cytotoxicity of all complexes against cancer cell lines Hela and MCF-7 were investigated through standard MTT assay. [Ru(dppz)2(PIP)]2+ showed moderate toxicity on both MCF-7 and Hela with IC50 of 37.64 µM and 28.02 µM, respectively. Interestingly, [Ru(dppz)2(p-HPIP)]2+ exhibited remarkable cytotoxicity results with IC50 of 13.52 µM on Hela and 11.63 µM on MCF-7 cell lines which are comparable to the infamous anti-cancer drug, cisplatin. The cytotoxicity of this complex series increased as the ligands size extended in order of [Ru(bpy)2(L)]2+ < [Ru(phen)2(L)]2+ < [Ru(dppz)2(L)]2+.

Keywords: ruthenium, cytotoxicity, molecular light-switch, anticancer

Procedia PDF Downloads 291
2351 Application of Artificial Neural Network for Prediction of Retention Times of Some Secoestrane Derivatives

Authors: Nataša Kalajdžija, Strahinja Kovačević, Davor Lončar, Sanja Podunavac Kuzmanović, Lidija Jevrić

Abstract:

In order to investigate the relationship between retention and structure, a quantitative Structure Retention Relationships (QSRRs) study was applied for the prediction of retention times of a set of 23 secoestrane derivatives in a reversed-phase thin-layer chromatography. After the calculation of molecular descriptors, a suitable set of molecular descriptors was selected by using step-wise multiple linear regressions. Artificial Neural Network (ANN) method was employed to model the nonlinear structure-activity relationships. The ANN technique resulted in 5-6-1 ANN model with the correlation coefficient of 0.98. We found that the following descriptors: Critical pressure, total energy, protease inhibition, distribution coefficient (LogD) and parameter of lipophilicity (miLogP) have a significant effect on the retention times. The prediction results are in very good agreement with the experimental ones. This approach provided a new and effective method for predicting the chromatographic retention index for the secoestrane derivatives investigated.

Keywords: lipophilicity, QSRR, RP TLC retention, secoestranes

Procedia PDF Downloads 445
2350 Molecular Dynamics Simulation of Irradiation-Induced Damage Cascades in Graphite

Authors: Rong Li, Brian D. Wirth, Bing Liu

Abstract:

Graphite is the matrix, and structural material in the high temperature gas-cooled reactor exhibits an irradiation response. It is of significant importance to analyze the defect production and evaluate the role of graphite under irradiation. A vast experimental literature exists for graphite on the dimensional change, mechanical properties, and thermal behavior. However, simulations have not been applied to the atomistic perspective. Remarkably few molecular dynamics simulations have been performed to study the irradiation response in graphite. In this paper, irradiation-induced damage cascades in graphite were investigated with molecular dynamics simulation. Statistical results of the graphite defects were obtained by sampling a wide energy range (1–30 KeV) and 10 different runs for every cascade simulation with different random number generator seeds to the velocity scaling thermostat function. The chemical bonding in carbon was described using the adaptive intermolecular reactive empirical bond-order potential (AIREBO) potential coupled with the standard Ziegler–Biersack–Littmack (ZBL) potential to describe close-range pair interactions. This study focused on analyzing the number of defects, the final cascade morphology and the distribution of defect clusters in space, the length-scale cascade properties such as the cascade length and the range of primary knock-on atom (PKA), and graphite mechanical properties’ variation. It can be concluded that the number of surviving Frenkel pairs increased remarkably with the increasing initial PKA energy but did not exhibit a thermal spike at slightly lower energies in this paper. The PKA range and cascade length approximately linearly with energy which indicated that increasing the PKA initial energy will come at expensive computation cost such as 30KeV in this study. The cascade morphology and the distribution of defect clusters in space mainly related to the PKA energy meanwhile the temperature effect was relatively negligible. The simulations are in agreement with known experimental results and the Kinchin-Pease model, which can help to understand the graphite damage cascades and lifetime span under irradiation and provide a direction to the designs of these kinds of structural materials in the future reactors.

Keywords: graphite damage cascade, molecular dynamics, cascade morphology, cascade distribution

Procedia PDF Downloads 144
2349 Social Sustainability and Affordability of the Transitional Housing Scheme in Hong Kong

Authors: Tris Kee

Abstract:

This research investigates social sustainability factors in transitional housing projects and their impact on fostering healthy living environments that promote physical activity and social interaction for residents. Social sustainability is integral to individual health and well-being, as emphasized by Goal 11 of the 2030 Agenda for Sustainable Development, which highlights the importance of safe, affordable, and accessible transport systems, green spaces, and public spaces catering to vulnerable populations' needs. Communal spaces in urban environments are essential for fostering social sustainability, as they serve as settings for physical activities and social interactions among diverse socio-economic groups. Factors such as neighborhood social atmosphere, historical context, social disparity, and mobility can influence the relationship between existing and transitional communities. Mental health effects can be measured through housing segregation, mobility and accessibility, and housing tenure. A significant research gap exists in understanding the living environment of transitional housing in Hong Kong and the social sustainability factors affecting residents' mental and physical health. To address this gap, our study employs a mixed-methods approach combining survey questionnaires and interviews to gather both quantitative and qualitative data. This methodology will provide comprehensive insights into residents' experiences and perceptions. Our research's main contribution is identifying key social sustainability factors in transitional housing and their impact on residents' well-being, informing policy-making and the creation of inclusive, healthy living environments. By addressing this research gap, we aim to provide valuable insights for future housing projects, ultimately promoting the development of socially sustainable transitional communities.

Keywords: social sustainablity, affordable housing, transitional housing, high density housing

Procedia PDF Downloads 63
2348 Antiplasmodial Activity of Drimane Sesquiterpene Isolated from Warburgia salutaris

Authors: Mthokozisi Simelane

Abstract:

Background: Malaria remains a life-threatening disease in tropical regions despite the advances in the treatment of this disease, it still remains a significant burden as some parasites have become resistant to the currently available drugs. This has created a necessity for the development of alternative, more efficient antimalarial drugs. Warburgia salutaris is a traditional medicinal plant used in malaria treatment by Zulu traditional healers. Materials and methods: The W. salutaris stem-bark was extracted with dichloromethane and the compound was isolated through column chromatography. The compound was identified and characterized by spectroscopic analysis (1H NMR, 13C NMR, IR and MS) and the structure was also confirmed by x-ray crystallography. The anti-plasmodial activity (in vitro) was studied on NF54 Plasmodium falciparum strain (CQS). Cytotoxicity was measured using the MTT assay on HEK239 and HEPG2 cell lines. Docking of Mukaadial acetate was conducted in AutoDock Vina. Structural modifications were conducted in UCSF Chimera and molecular interactions examined in LigPlot. Results: The compound, Mukaadial Acetate showed appreciable inhibition (IC50 0.44±0.10 µg/ml) of the parasite growth and cytotoxicity activity of 0.124±0.109 and 0.199±0.083 (µg/ml) on HEK293 and HEPG2 cells respectively. Molecular docking revealed that Mukaadial Acetate binds to the purine, pyrophosphate and ribose binding sites of the PfHGXPRT with an optimum binding conformation and forms hydrogen bond, steric and hydrophobic interactions with the residues inhabiting the respective binding sites. Conclusion: It is apparent that W. salutaris contains components (including Mukaadial Acetate) that exhibit antimalarial activity. This study scientifically validates the use of this plant in folk medicine.

Keywords: plasmodium falciparum, molecular docking, antimalarial activity, PfHGXPRT, Warburgia salutaris, mukaadial acetate

Procedia PDF Downloads 188
2347 Modeling and Design of E-mode GaN High Electron Mobility Transistors

Authors: Samson Mil'shtein, Dhawal Asthana, Benjamin Sullivan

Abstract:

The wide energy gap of GaN is the major parameter justifying the design and fabrication of high-power electronic components made of this material. However, the existence of a piezo-electrics in nature sheet charge at the AlGaN/GaN interface complicates the control of carrier injection into the intrinsic channel of GaN HEMTs (High Electron Mobility Transistors). As a result, most of the transistors created as R&D prototypes and all of the designs used for mass production are D-mode devices which introduce challenges in the design of integrated circuits. This research presents the design and modeling of an E-mode GaN HEMT with a very low turn-on voltage. The proposed device includes two critical elements allowing the transistor to achieve zero conductance across the channel when Vg = 0V. This is accomplished through the inclusion of an extremely thin, 2.5nm intrinsic Ga₀.₇₄Al₀.₂₆N spacer layer. The added spacer layer does not create piezoelectric strain but rather elastically follows the variations of the crystal structure of the adjacent GaN channel. The second important factor is the design of a gate metal with a high work function. The use of a metal gate with a work function (Ni in this research) greater than 5.3eV positioned on top of n-type doped (Nd=10¹⁷cm⁻³) Ga₀.₇₄Al₀.₂₆N creates the necessary built-in potential, which controls the injection of electrons into the intrinsic channel as the gate voltage is increased. The 5µm long transistor with a 0.18µm long gate and a channel width of 30µm operate at Vd=10V. At Vg =1V, the device reaches the maximum drain current of 0.6mA, which indicates a high current density. The presented device is operational at frequencies greater than 10GHz and exhibits a stable transconductance over the full range of operational gate voltages.

Keywords: compound semiconductors, device modeling, enhancement mode HEMT, gallium nitride

Procedia PDF Downloads 249
2346 In-Depth Analysis on Sequence Evolution and Molecular Interaction of Influenza Receptors (Hemagglutinin and Neuraminidase)

Authors: Dong Tran, Thanh Dac Van, Ly Le

Abstract:

Hemagglutinin (HA) and Neuraminidase (NA) play an important role in host immune evasion across influenza virus evolution process. The correlation between HA and NA evolution in respect to epitopic evolution and drug interaction has yet to be investigated. In this study, combining of sequence to structure evolution and statistical analysis on epitopic/binding site specificity, we identified potential therapeutic features of HA and NA that show specific antibody binding site of HA and specific binding distribution within NA active site of current inhibitors. Our approach introduces the use of sequence variation and molecular interaction to provide an effective strategy in establishing experimental based distributed representations of protein-protein/ligand complexes. The most important advantage of our method is that it does not require complete dataset of complexes but rather directly inferring feature interaction from sequence variation and molecular interaction. Using correlated sequence analysis, we additionally identified co-evolved mutations associated with maintaining HA/NA structural and functional variability toward immunity and therapeutic treatment. Our investigation on the HA binding specificity revealed unique conserved stalk domain interacts with unique loop domain of universal antibodies (CR9114, CT149, CR8043, CR8020, F16v3, CR6261, F10). On the other hand, NA inhibitors (Oseltamivir, Zaninamivir, Laninamivir) showed specific conserved residue contribution and similar to that of NA substrate (sialic acid) which can be exploited for drug design. Our study provides an important insight into rational design and identification of novel therapeutics targeting universally recognized feature of influenza HA/NA.

Keywords: influenza virus, hemagglutinin (HA), neuraminidase (NA), sequence evolution

Procedia PDF Downloads 147
2345 Metagenomics-Based Molecular Epidemiology of Viral Diseases

Authors: Vyacheslav Furtak, Merja Roivainen, Olga Mirochnichenko, Majid Laassri, Bella Bidzhieva, Tatiana Zagorodnyaya, Vladimir Chizhikov, Konstantin Chumakov

Abstract:

Molecular epidemiology and environmental surveillance are parts of a rational strategy to control infectious diseases. They have been widely used in the worldwide campaign to eradicate poliomyelitis, which otherwise would be complicated by the inability to rapidly respond to outbreaks and determine sources of the infection. The conventional scheme involves isolation of viruses from patients and the environment, followed by their identification by nucleotide sequences analysis to determine phylogenetic relationships. This is a tedious and time-consuming process that yields definitive results when it may be too late to implement countermeasures. Because of the difficulty of high-throughput full-genome sequencing, most such studies are conducted by sequencing only capsid genes or their parts. Therefore the important information about the contribution of other parts of the genome and inter- and intra-species recombination to viral evolution is not captured. Here we propose a new approach based on the rapid concentration of sewage samples with tangential flow filtration followed by deep sequencing and reconstruction of nucleotide sequences of viruses present in the samples. The entire nucleic acids content of each sample is sequenced, thus preserving in digital format the complete spectrum of viruses. A set of rapid algorithms was developed to separate deep sequence reads into discrete populations corresponding to each virus and assemble them into full-length consensus contigs, as well as to generate a complete profile of sequence heterogeneities in each of them. This provides an effective approach to study molecular epidemiology and evolution of natural viral populations.

Keywords: poliovirus, eradication, environmental surveillance, laboratory diagnosis

Procedia PDF Downloads 265