Search results for: disease mapping
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4906

Search results for: disease mapping

4366 Pregnancy Outcomes in Patients With Inflammatory Bowel Disease: Retrospective Data From a Greek National Registry

Authors: Evgenia Papathanasiou, Georgios Kokkotis, Georgios Axiaris, Theodoros Argyropoulos, Nikos Viazis, Olga Giouleme, Konstantinos Gkoumas, Αnthia Gatopoulou, Αggelos Theodoulou, Georgios Theocharis, Αngeliki Theodoropoulou, Μaria Κalogirou, Pantelis Karatzas, Κonstantinos Κatsanos, Theodora Kafetzi, Κonstantinos Κarmiris, Αnastasia Κourikou, Ιoannis E Κoutroubakis, Christos Liatsos, Gerassimos J. Mantzaris, Νicoletta Μathou, Georgia Bellou, George Michalopoulos Αikaterini Μantaka, Penelope Nikolaou, Μichael Oikonomou, Dimitrios Polymeros, George Papatheodoridis, Εvdoxia Stergiou, Κonstantinos Soufleris, Εpameinondas Skouloudis, Μaria Tzouvala, Georgia Tsiolakidou, Εftychia Tsironi, Styliani Tsafaraki, Kalliopi Foteinogiannopoulou, Konstantina Chalakatevaki, Αngeliki Christidou, Dimitrios K. Christodoulou, Giorgos Bamias, Spyridon Michopoulos, Εvanthia Zampeli

Abstract:

Background: Inflammatory bowel disease (IBD) commonly affects female patients of reproductive age, making the interaction between fertility, pregnancy and IBD an important issue in disease management. The effect of disease activity on the outcome of pregnancy and its impact on neonatal growth is a field of intense research. Close follow-up of pregnant IBD patients by a multidisciplinary team improves maternal and neonatal outcomes. Aim – Methods: Α national retrospective study of pregnancies in women with IBD between 2010-2020 was carried out in 22 IBD reference centers in Greece. Patient characteristics such as disease profile, type of treatment, and disease activity during gestation were analyzed in correlation to the method of delivery, pregnancy outcomes, as well as breastfeeding and offspring health. Results: Two-hundred and twenty-three pregnancies in 175 IBD patients were registered in the study. 122 with Crohn’s disease (CD). Median age during diagnosis was 25.6 years (12-44), with median disease duration of 7.4 years (0-23). One-hundred and twenty-nine patients (58%) were recorded during their first pregnancy. Early pregnancy termination was reported by 48 patients (22%). Pregnancy as a result of in vitro fertilization (IVF) occurred in 15 cases (6.7%). At the beginning of gestation, 165 patients (74%) were under treatment: 48 with anti-TNF agents (29%), 43 with azathioprine (26%), 101 with 5-aminosalicylic acid formulations (61%) and 12 with steroids (7%). We recorded 49 cases of IBD flares (22%) during pregnancy. Two-thirds of them (n=30) were in remission at the onset of the pregnancy. Almost half of them (n=22) required corticosteroid treatment. Patients with ulcerative colitis (UC) were in greater risk of disease flare during pregnancy (p<0.001). All but 3 pregnancies (99.1%) resulted in uncomplicated delivery. In 147 cases (67.1%), cesarean delivery was performed. Two late fetal deaths (0.9%) were reported, both in patients with continuously active disease since the beginning of pregnancy. After delivery, 75 patients (34%) presented with a disease flare, which was associated with active disease at the beginning of pregnancy (p <0.001). Conclusion: The majority of female, Greek IBD patients, had a favorable pregnancy outcome. Active inflammation during gestation and UC diagnosis were associated with a negative impact on pregnancy outcomes. The results of this study are in favor of the continuation of IBD treatment during pregnancy.

Keywords: pregnancy, ulcerative colitis, Crohn disease, flare

Procedia PDF Downloads 88
4365 BIM-based Construction Noise Management Approach With a Focus on Inner-City Construction

Authors: Nasim Babazadeh

Abstract:

Growing demand for a quieter dwelling environment has turned the attention of construction companies to reducing the propagated noise of their project. In inner-city constructions, close distance between the construction site and surrounding buildings lessens the efficiency of passive noise control methods. Dwellers of the nearby areas may file complaints and lawsuits against the construction companies due to the emitted construction noise, thereby leading to the interruption of processes, compensation costs, or even suspension of the project. Therefore, construction noise should be predicted along with the project schedule. The advantage of managing the noise in the pre-construction phase is two-fold. Firstly, changes in the time plan and construction methods can be applied more flexibly. Thus, the costs related to rescheduling can be avoided. Secondly, noise-related legal problems are expected to be reduced. To implement noise mapping methods for the mentioned prediction, the required detailed information (such as the location of the noisy process, duration of the noisy work) can be exported from the 4D BIM model. The results obtained from the noise maps would be used to help the planners to define different work scenarios. The proposed approach has been applied for the foundation and earthwork of a site located in a residential area, and the obtained results are discussed.

Keywords: building information modeling, construction noise management, noise mapping, 4D BIM

Procedia PDF Downloads 186
4364 Creation of a Clinical Tool for Diagnosis and Treatment of Skin Disease in HIV Positive Patients in Malawi

Authors: Alice Huffman, Joseph Hartland, Sam Gibbs

Abstract:

Dermatology is often a neglected specialty in low-resource settings, despite the high morbidity associated with skin disease. This becomes even more significant when associated with HIV infection, as dermatological conditions are more common and aggressive in HIV positive patients. African countries have the highest HIV infection rates and skin conditions are frequently misdiagnosed and mismanaged, because of a lack of dermatological training and educational material. The frequent lack of diagnostic tests in the African setting renders basic clinical skills all the more vital. This project aimed to improve diagnosis and treatment of skin disease in the HIV population in a district hospital in Malawi. A basic dermatological clinical tool was developed and produced in collaboration with local staff and based on available literature and data collected from clinics. The aim was to improve diagnostic accuracy and provide guidance for the treatment of skin disease in HIV positive patients. A literature search within Embase, Medline and Google scholar was performed and supplemented through data obtained from attending 5 Antiretroviral clinics. From the literature, conditions were selected for inclusion in the resource if they were described as specific, more prevalent, or extensive in the HIV population or have more adverse outcomes if they develop in HIV patients. Resource-appropriate treatment options were decided using Malawian Ministry of Health guidelines and textbooks specific to African dermatology. After the collection of data and discussion with local clinical and pharmacy staff a list of 15 skin conditions was included and a booklet created using the simple layout of a picture, a diagnostic description of the disease and treatment options. Clinical photographs were collected from local clinics (with full consent of the patient) or from the book ‘Common Skin Diseases in Africa’ (permission granted if fully acknowledged and used in a not-for-profit capacity). This tool was evaluated by the local staff, alongside an educational teaching session on skin disease. This project aimed to reduce uncertainty in diagnosis and provide guidance for appropriate treatment in HIV patients by gathering information into one practical and manageable resource. To further this project, we hope to review the effectiveness of the tool in practice.

Keywords: dermatology, HIV, Malawi, skin disease

Procedia PDF Downloads 206
4363 Depression in Non Hospitalized Jordanian Patients with Coronary Artery Disease

Authors: Ibtisam Al-Zaru

Abstract:

Background: Worldwide, depression among coronary artery disease (CAD) patients is considered a serious problem that may cause many complications and negative consequences; particularly serious being increased mortality and morbidity rate. Studying depression among CAD patients in Jordan has not been investigated thoroughly and thus a need for further studies has been a priority. Aims: To assess depression in non-hospitalized Jordanian patients with CAD; to describe the relationship between socio-demographic data, health related factors, and depression; and to examine the best predictors of depression in non-hospitalized Jordanian patients with CAD. Method: A cross-sectional-descriptive design was used to collect data from 174 non-hospitalized Jordanian patients diagnosed with CAD in outpatients’ cardiac clinics, using a self- administered questionnaires and Cardiac Depression Scale. Results: 53.4% of CAD patients reported mild/moderate, and severe depressive symptoms. Significant relationships between depressive symptoms and some demo-clinical characteristics (i.e. being female gender; having of chronic disease and surgical history; being physically inactive, and perceived their sexual activity, physical and psychological as poor). The preceding factors are also found to be statistically significant predictors for depression among this patients’ group. Conclusion: Jordanian patients with CAD had various levels of severity regarding their depressive symptoms. Therefore, health care providers need to introduce depression assessment and treatment in cardiac rehabilitation to control depression and its impact on the patient. Consequently, such control will reduce co-morbidity, mortality, complications and health costs among CAD patients and enhance the quality of their lives.

Keywords: coronary artery disease, predictors, depression, prevalence

Procedia PDF Downloads 272
4362 The Influence of Substrate and Temperature on the Growth of Phytophthora palmivora of Cocoa Black Pod Disease

Authors: Suhaida Salleh, Tee Yei Kheng

Abstract:

Black pod is the most commonly destructive disease of cacao (Theobroma cacao) which cause major losses to global production of cocoa beans. The genus of Phytophthora is the important pathogen of this disease worldwide. The species of P. megakarya causes black pod disease in West Africa, whereas P. capsici and P. citrophthora cause the incident in Central and South America. In Malaysia, this disease is caused by P. palmivora which infect all stages of pod development including flower cushion, cherelle, immature and mature pods. This pathogen destroys up to 10% of trees yearly through stem cankers and causes 20 to 30% pod damages through black pod rot. Since P. palmivora has a high impact on cocoa yield, it is crucial to identify some of the abiotic factors that can constrain their growth. In an effort to evaluate the effect of different substrates and temperatures to the growth of P. palmivora, a laboratory study was done under a different range of temperatures. Different substrate for the growth of P. palmivora were used which are corn meal agar (CMA) media and detached pod of cocoa. An agar plug of seven days old of P. palmivora growth was transferred on both substrates and incubated at 24, 27, 30, 33 and 36ᵒC, respectively. The diameter of lesion on pod and the cultural growth of pathogen was recorded for 7 consecutive days. The optimum incubation temperature of P. palmivora on both substrates is at 27ᵒC. However, the growth tends to be inhibited as the temperature increases. No lesion developed on pod surface incubated at 36ᵒC and only a small lesion observed at 33ᵒC. The sporulation with the formation of white mycelial growth on pod surface was only visible at optimum temperature, 27ᵒC. On CMA, the pathogen grew over the entire range of temperatures tested. The study is, therefore, concluded that P. palmivora grow the best at temperature of 27ᵒC on both substrates and their growth begin to inhibit when the temperature rises to more than 27ᵒC. The growth pattern of this pathogen is similar on both pod surface and cultural media.

Keywords: cocoa, Phytophthora palmivora, substrate, temperature

Procedia PDF Downloads 191
4361 Electron Beam Melting Process Parameter Optimization Using Multi Objective Reinforcement Learning

Authors: Michael A. Sprayberry, Vincent C. Paquit

Abstract:

Process parameter optimization in metal powder bed electron beam melting (MPBEBM) is crucial to ensure the technology's repeatability, control, and industry-continued adoption. Despite continued efforts to address the challenges via the traditional design of experiments and process mapping techniques, there needs to be more successful in an on-the-fly optimization framework that can be adapted to MPBEBM systems. Additionally, data-intensive physics-based modeling and simulation methods are difficult to support by a metal AM alloy or system due to cost restrictions. To mitigate the challenge of resource-intensive experiments and models, this paper introduces a Multi-Objective Reinforcement Learning (MORL) methodology defined as an optimization problem for MPBEBM. An off-policy MORL framework based on policy gradient is proposed to discover optimal sets of beam power (P) – beam velocity (v) combinations to maintain a steady-state melt pool depth and phase transformation. For this, an experimentally validated Eagar-Tsai melt pool model is used to simulate the MPBEBM environment, where the beam acts as the agent across the P – v space to maximize returns for the uncertain powder bed environment producing a melt pool and phase transformation closer to the optimum. The culmination of the training process yields a set of process parameters {power, speed, hatch spacing, layer depth, and preheat} where the state (P,v) with the highest returns corresponds to a refined process parameter mapping. The resultant objects and mapping of returns to the P-v space show convergence with experimental observations. The framework, therefore, provides a model-free multi-objective approach to discovery without the need for trial-and-error experiments.

Keywords: additive manufacturing, metal powder bed fusion, reinforcement learning, process parameter optimization

Procedia PDF Downloads 94
4360 Uncommon Presentation of Iscahemic Heart Disease with Sheehan’s Syndrome at Mid-Level Private Hospital of Bangladesh and Its Management- A Case Report

Authors: Nazmul Haque, Syeda Tasnuva Maria

Abstract:

Sheehan's Syndrome (SS), also known as postpartum hypopituitarism, is a rare but potentially serious condition resulting from ischemic necrosis of the pituitary gland, often occurring during or after childbirth. This syndrome is characterized by hypopituitarism, leading to deficiencies in various hormones produced by the pituitary gland. The primary cause is typically severe postpartum hemorrhage, leading to inadequate blood supply and subsequent necrosis of the pituitary tissue. This chronic hypopituitarism sometimes plays the role of premature atherosclerosis, which may lead to cardiovascular disease. This abstract provides a comprehensive overview of Sheehan's Syndrome with ischaemic heart disease, encompassing its pathophysiology, clinical manifestations, and current management strategies. The disorder presents a wide spectrum of symptoms, including chest pain, fatigue, amenorrhea, lactation failure, hypothyroidism, and adrenal insufficiency. Timely diagnosis is crucial, as delayed recognition can lead to complications and long-term health consequences. We herein report a patient complaining of chronic fatigue symptoms, aggressiveness, chest pain, and breathlessness with repeated LOC that were diagnosed with SS with IHD. The patient was treated with antiplatelet, antianginal, steroids, and hormone replacement with marked improvement in his overall condition.

Keywords: ischaemic heart disease, Sheehan's syndrome, post-partum haemorrhage, pituitary gland

Procedia PDF Downloads 58
4359 A Dynamic Solution Approach for Heart Disease Prediction

Authors: Walid Moudani

Abstract:

The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the coronary heart disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts’ knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.

Keywords: multi-classifier decisions tree, features reduction, dynamic programming, rough sets

Procedia PDF Downloads 411
4358 Physical Fitness in Omani Children with Sickle Cell Disease and Sickle Cell Trait

Authors: Mahfoodha Al-Kitani, Dylan Thompson, Keith Stokes

Abstract:

Sickle cell disease (SCD) and sickle cell trait (SCT) are the most common hematological diseases in Oman according to the national survey of genetic blood disorders. The aim of this study was to determine markers of physical fitness and anthropometrics indices in children with sickle cell disease and children with sickle cell trait and compare them with normal healthy children of the same age. One hundred and twenty male children participated in the present study divided to three groups: 40 with sickle disease (SCD; age, 13.3(.80), height, 131.9(3.5), mass, 29.2(3.1)); 40 with sickle cell trait (SCT; age, 12.2(.80), height, 141.0(9.9), mass, 38.0(4.4)); and 40 controls with normal hemoglobin (Con; age, 12.8(.80), height, 139.4(8.7), mass, 37.2(4.3)). All children completed a 5-min running exercise test on a treadmill at speed corresponding to 5 km/hr. Heart rate and was recorded during exercise and during 10-min of recovery. Blood lactate was measured before and 5 min after the completion of exercise. Children with SCD exhibited a higher mean value (P < 0.05) for percent body fat and fat mass than the normal healthy subjects and SCT subjects. Resting values of hemoglobin were similar in SCT (11.04(.78)) and control (10.8(94)) groups, and lower in SCD (8.89(.54); P < 0.05). There was a strong correlation between peak heart rate and resting hemoglobin levels for the three groups (r= -.472. n= 120, p < .0005).The SCD group (175.2(10.3)) exhibited higher mean heart rate during exercise than those observed in the SCT (143.7(9.5)) and normal control children (144.5(22.4); P < 0.05). Additionally, SCD children showed higher serum lactate values before and after treadmill exercise compared to the other groups (P < 0.05). Children with sickle cell trait demonstrate similar physical fitness level and similar exercise responses to treadmill stress test to normal children. In contrast, SCD children have lower body mass, higher fat mass and lower physical fitness than children with SCT and healthy controls.

Keywords: sickle cell disease, sickle cell trait, children, exercise

Procedia PDF Downloads 430
4357 Prebiotics and Essential Oils-Enriched Diet Can Increase the Efficiency of Vaccine against Furunculosis in Rainbow Trout (Oncorhynchus Mykiss)

Authors: Niki Hayatgheib, SéGolèNe Calvez, Catherine Fournel, Lionel Pineau, Herve Pouliquen, Emmanuelle Moreau

Abstract:

Furunculosis caused by infection with Aeromonas salmonicida subsp. salmonicida has been a known disease found principally in salmonid aquaculture. Vaccination has been partly successful in preventing this disease, but outbreaks still occur. The application of functional feed additive found to be a promising yield to improve fish health against diseases. In this study, we tested the efficacy of prebiotics and plant essential oils-enriched diet on immune response and disease resistance in vaccinated and non-vaccinated rainbow trout (Oncorhynchus mykiss) against furunculosis. A total of 600 fish were fed with the basal diet or supplement. On 4th week of feeding, fish were vaccinated with an autovaccine. Following 8 weeks, fish were challenged with Aeromonas salmonicida subsp. salmonicida and mortalities were recorded for 3 weeks. Lysozyme activity and antibody titer in serum were measured in different groups. The results of this study showed that lysozyme and circulatory antibody titer in plasma elevated significantly in vaccinated fish fed with additive. The best growth rate and relative percentage survival (62%) were in fish fed with a supplement, while 15% in control fish. Overall, prebiotics and essential oils association can be considered as a potential component for enhancing vaccine efficacy against furunculosis by increasing the growth performance, immune responses and disease resistance in rainbow trout.

Keywords: aeromonas salmonicida subsp. salmonicida, aquaculture, disease resistance, fish, immune response, prebiotics-essential oils feed additive, rainbow trout, vaccination

Procedia PDF Downloads 122
4356 Thick Data Techniques for Identifying Abnormality in Video Frames for Wireless Capsule Endoscopy

Authors: Jinan Fiaidhi, Sabah Mohammed, Petros Zezos

Abstract:

Capsule endoscopy (CE) is an established noninvasive diagnostic modality in investigating small bowel disease. CE has a pivotal role in assessing patients with suspected bleeding or identifying evidence of active Crohn's disease in the small bowel. However, CE produces lengthy videos with at least eighty thousand frames, with a frequency rate of 2 frames per second. Gastroenterologists cannot dedicate 8 to 15 hours to reading the CE video frames to arrive at a diagnosis. This is why the issue of analyzing CE videos based on modern artificial intelligence techniques becomes a necessity. However, machine learning, including deep learning, has failed to report robust results because of the lack of large samples to train its neural nets. In this paper, we are describing a thick data approach that learns from a few anchor images. We are using sound datasets like KVASIR and CrohnIPI to filter candidate frames that include interesting anomalies in any CE video. We are identifying candidate frames based on feature extraction to provide representative measures of the anomaly, like the size of the anomaly and the color contrast compared to the image background, and later feed these features to a decision tree that can classify the candidate frames as having a condition like the Crohn's Disease. Our thick data approach reported accuracy of detecting Crohn's Disease based on the availability of ulcer areas at the candidate frames for KVASIR was 89.9% and for the CrohnIPI was 83.3%. We are continuing our research to fine-tune our approach by adding more thick data methods for enhancing diagnosis accuracy.

Keywords: thick data analytics, capsule endoscopy, Crohn’s disease, siamese neural network, decision tree

Procedia PDF Downloads 156
4355 Testing and Validation Stochastic Models in Epidemiology

Authors: Snigdha Sahai, Devaki Chikkavenkatappa Yellappa

Abstract:

This study outlines approaches for testing and validating stochastic models used in epidemiology, focusing on the integration and functional testing of simulation code. It details methods for combining simple functions into comprehensive simulations, distinguishing between deterministic and stochastic components, and applying tests to ensure robustness. Techniques include isolating stochastic elements, utilizing large sample sizes for validation, and handling special cases. Practical examples are provided using R code to demonstrate integration testing, handling of incorrect inputs, and special cases. The study emphasizes the importance of both functional and defensive programming to enhance code reliability and user-friendliness.

Keywords: computational epidemiology, epidemiology, public health, infectious disease modeling, statistical analysis, health data analysis, disease transmission dynamics, predictive modeling in health, population health modeling, quantitative public health, random sampling simulations, randomized numerical analysis, simulation-based analysis, variance-based simulations, algorithmic disease simulation, computational public health strategies, epidemiological surveillance, disease pattern analysis, epidemic risk assessment, population-based health strategies, preventive healthcare models, infection dynamics in populations, contagion spread prediction models, survival analysis techniques, epidemiological data mining, host-pathogen interaction models, risk assessment algorithms for disease spread, decision-support systems in epidemiology, macro-level health impact simulations, socioeconomic determinants in disease spread, data-driven decision making in public health, quantitative impact assessment of health policies, biostatistical methods in population health, probability-driven health outcome predictions

Procedia PDF Downloads 11
4354 Autoimmune Diseases Associated with Primary Biliary Cirrhosis: A Retrospective Study of 51 Patients

Authors: Soumaya Mrabet, Imen Akkari, Amira Atig, Elhem Ben Jazia

Abstract:

Introduction: Primary biliary cirrhosis (PBC) is a cholestatic cholangitis of unknown etiology. It is frequently associated with autoimmune diseases, which explains their systematic screening. The aim of our study was to determine the prevalence and the type of autoimmune disorders associated with PBC and to assess their impact on the prognosis of the disease. Material and methods: It is a retrospective study over a period of 16 years (2000-2015) including all patients followed for PBC. In all these patients we have systematically researched: dysthyroidism (thyroid balance, antithyroid autoantibodies), type 1 diabetes, dry syndrome (ophthalmologic examination, Schirmer test and lip biopsy in case of Presence of suggestive clinical signs), celiac disease(celiac disease serology and duodenal biopsies) and dermatological involvement (clinical examination). Results: Fifty-one patients (50 women and one men) followed for PBC were collected. The Mean age was 54 years (37-77 years). Among these patients, 30 patients(58.8%) had at least one autoimmune disease associated with PBC. The discovery of these autoimmune diseases preceded the diagnosis of PBC in 8 cases (26.6%) and was concomitant, through systematic screening, in the remaining cases. Autoimmune hepatitis was found in 12 patients (40%), defining thus an overlap syndrome. Other diseases were Hashimoto's thyroiditis (n = 10), dry syndrome (n = 7), Gougerot Sjogren syndrome (n=6), celiac disease (n = 3), insulin-dependent diabetes (n = 1), scleroderma (n = 1), rheumatoid arthritis (n = 1), Biermer Anemia (n=1) and Systemic erythematosus lupus (n=1). The two groups of patients with PBC with or without associated autoimmune disorders were comparable for bilirubin levels, Child-Pugh score, and response to treatment. Conclusion: In our series, the prevalence of autoimmune diseases in PBC was 58.8%. These diseases were dominated by autoimmune hepatitis and Hashimoto's thyroiditis. Even if their association does not seem to alter the prognosis, screening should be systematic in order to institute an early and adequate management.

Keywords: autoimmune diseases, autoimmune hepatitis, primary biliary cirrhosis, prognosis

Procedia PDF Downloads 276
4353 Enhanced CNN for Rice Leaf Disease Classification in Mobile Applications

Authors: Kayne Uriel K. Rodrigo, Jerriane Hillary Heart S. Marcial, Samuel C. Brillo

Abstract:

Rice leaf diseases significantly impact yield production in rice-dependent countries, affecting their agricultural sectors. As part of precision agriculture, early and accurate detection of these diseases is crucial for effective mitigation practices and minimizing crop losses. Hence, this study proposes an enhancement to the Convolutional Neural Network (CNN), a widely-used method for Rice Leaf Disease Image Classification, by incorporating MobileViTV2—a recently advanced architecture that combines CNN and Vision Transformer models while maintaining fewer parameters, making it suitable for broader deployment on edge devices. Our methodology utilizes a publicly available rice disease image dataset from Kaggle, which was validated by a university structural biologist following the guidelines provided by the Philippine Rice Institute (PhilRice). Modifications to the dataset include renaming certain disease categories and augmenting the rice leaf image data through rotation, scaling, and flipping. The enhanced dataset was then used to train the MobileViTV2 model using the Timm library. The results of our approach are as follows: the model achieved notable performance, with 98% accuracy in both training and validation, 6% training and validation loss, and a Receiver Operating Characteristic (ROC) curve ranging from 95% to 100% for each label. Additionally, the F1 score was 97%. These metrics demonstrate a significant improvement compared to a conventional CNN-based approach, which, in a previous 2022 study, achieved only 78% accuracy after using 5 convolutional layers and 2 dense layers. Thus, it can be concluded that MobileViTV2, with its fewer parameters, outperforms traditional CNN models, particularly when applied to Rice Leaf Disease Image Identification. For future work, we recommend extending this model to include datasets validated by international rice experts and broadening the scope to accommodate biotic factors such as rice pest classification, as well as abiotic stressors such as climate, soil quality, and geographic information, which could improve the accuracy of disease prediction.

Keywords: convolutional neural network, MobileViTV2, rice leaf disease, precision agriculture, image classification, vision transformer

Procedia PDF Downloads 29
4352 Resilience in Patients with Chronic Kidney Disease in Hemodialysis

Authors: Gomes C. C. Izabel, Lanzotti B. Rafaela, Orlandi S. Fabiana

Abstract:

Chronic Kidney Disease is considered a serious public health problem. The exploitation of resilience has been guided by studies conducted in various contexts, especially in hemodialysis, since the impact of diagnosis and restrictions produced during the treatment process because, despite advances in treatment, remains the stigma of the disease and the feeling of pain, hopelessness, low self-esteem and disability. The objective was to evaluate the level of resilience of patients in chronic renal dialysis. This is a descriptive, correlational, cross and quantitative research. The sample consisted of 100 patients from a Renal Replacement Therapy Unit in the countryside of São Paulo. For data collection were used the characterization instrument of Participants and the Resilience Scale. There was a predominance of males (70.0%) were Caucasian (45.0%) and had completed elementary education (34.0%). The average score obtained through the Resilience Scale was 131.3 (± 20.06) points. The resiliency level submitted may be considered satisfactory. It is expected that this study will assist in the preparation of programs and actions in order to avoid possible situations of crises faced by chronic renal patients.

Keywords: hemodialysis units, renal dialysis, renal insufficiency chronic, resilience psychological

Procedia PDF Downloads 284
4351 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer A. Aljohani

Abstract:

COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.

Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network

Procedia PDF Downloads 94
4350 Budd-Chiari Syndrome: Common Presentation, Rare Disease

Authors: Aadil Khan, Yasser Chomayil, P. P. Venugopalan

Abstract:

Background: Budd-Chiari syndrome is caused by thrombosis of the hepatic veins and/or the thrombosis of the intrahepatic or suprahepatic IVC. The etiology remains idiopathic in 16% -35% of cases. Malignancy, rheumatological disorder, myeloproliferative disease, inheritable coagulopathy, infection or hyperestrogen state can be identified in many cases. Methodology: Review of case records of the patient presented to Aster Medcity, Emergency Department, Cochin. Introduction:17 years old female was presented to ED with fever, jaundice and abdominal distention since 1 week. O/E: Pallor+, icterus+. Abdomen- gross distension+, shifting dullness+, generalized anasarca+. USG abdomen showed hepatomegaly with mild coarse echotexture and moderate to gross ascites. CT abdomen and chest showed hepatomegaly with thrombosis of all three hepatic vein and moderate ascites suggestive of Budd-Chiari syndrome. Patient was taken for catheter vein thrombolysis. Venogram done the next day revealed almost > 50% opening of the right hepatic vein. Concurrent doppler showed colour and doppler signals in middle hepatic veins. She gradually improved and was discharged home on anticoagulant and adviced regular follow up. Conclusion: Being a rare disease in this young population, high suspicion is required when evaluating young patients with abdominal pain and jaundice.

Keywords: Budd-Chiari syndrome, rare disease, abdominal pain, India

Procedia PDF Downloads 278
4349 Characterization of Forest Fire Fuel in Shivalik Himalayas Using Hyperspectral Remote Sensing

Authors: Neha Devi, P. K. Joshi

Abstract:

Fire fuel map is one of the most critical factors for planning and managing the fire hazard and risk. One of the most significant forms of global disturbance, impacting community dynamics, biogeochemical cycles and local and regional climate across a wide range of ecosystems ranging from boreal forests to tropical rainforest is wildfire Assessment of fire danger is a function of forest type, fuelwood stock volume, moisture content, degree of senescence and fire management strategy adopted in the ground. Remote sensing has potential of reduction the uncertainty in mapping fuels. Hyperspectral remote sensing is emerging to be a very promising technology for wildfire fuels characterization. Fine spectral information also facilitates mapping of biophysical and chemical information that is directly related to the quality of forest fire fuels including above ground live biomass, canopy moisture, etc. We used Hyperion imagery acquired in February, 2016 and analysed four fuel characteristics using Hyperion sensor data on-board EO-1 satellite, acquired over the Shiwalik Himalayas covering the area of Champawat, Uttarakhand state. The main objective of this study was to present an overview of methodologies for mapping fuel properties using hyperspectral remote sensing data. Fuel characteristics analysed include fuel biomass, fuel moisture, and fuel condition and fuel type. Fuel moisture and fuel biomass were assessed through the expression of the liquid water bands. Fuel condition and type was assessed using green vegetation, non-photosynthetic vegetation and soil as Endmember for spectral mixture analysis. Linear Spectral Unmixing, a partial spectral unmixing algorithm, was used to identify the spectral abundance of green vegetation, non-photosynthetic vegetation and soil.

Keywords: forest fire fuel, Hyperion, hyperspectral, linear spectral unmixing, spectral mixture analysis

Procedia PDF Downloads 165
4348 The Non-Motor Symptoms of Filipino Patients with Parkinson’s Disease

Authors: Cherrie Mae S. Sia, Noel J. Belonguel, Jarungchai Anton S. Vatanagul

Abstract:

Background: Parkinson’s disease (PD) is a chronic progressive, neurodegenerative disorder known for its motor symptoms such as bradykinesia, resting tremor, muscle rigidity, and postural instability. Patients with PD also experience non-motor symptoms (NMS) such as depression, fatigue, and sleep disturbances that are most of the time unrecognized by clinicians. This may be due to the lack of spontaneous reports from the patients or partly because of the lack of systematic questioning from the healthcare professional. There is limited data with regards to these NMS especially that of Filipino patients with PD. Objectives: This study aims to determine the non-motor symptoms of Filipino patients with Parkinson’s disease. Materials and Methods: This is a prospective, cohort study involving thirty-four patients of Filipino-descent diagnosed with PD in three out-patient clinics in Cebu City from April to September 2014. Each patient was interviewed using the Non-Motor Symptom Scale (NMSS). A Cebuano version of the NMSS was also provided for the non-English speaking patients. Interview time was approximately ten to fifteen minutes for each respondent. Results: Of the thirty-four patients with Parkinson’s disease, majority was noted to be males (N=19) and the disease was noted to be more prevalent in patients with a mean age of 62 (SD±9) years old. Hypertension (59%) and diabetes mellitus (29%) were the common co-morbidities in the study population. All patients presented more than one NMS, with insomnia (41.2%), poor memory (23.5%) and depression (14.7%) being the first non-motor symptoms to occur. Symptoms involving mood/cognition (mean=2.21), and attention/memory (mean=2.05) were noted to be the most frequent and of moderate severity. Based on the NMSS, the symptoms that were noted to be mild and often to occur were those that involved the mood/cognition (score=3.84), attention/memory (score=3.50), and sleep/fatigue (score=3.00) domains. Levodopa-Carbidopa, Ropinirole, and Pramipexole were the most frequently used medications in the study population. Conclusion: Non-motor symptoms (NMS) are common in patients with Parkinson’s disease (PD). They appear at the time of diagnosis of PD or even before the motor symptoms manifest. The earliest non-motor symptoms to occur are insomnia, poor memory, and depression. Those pertaining to mood/cognition and attention/memory are the most frequent NMS and they are of moderate severity. Identifying these NMS by doing a questionnaire-guided interview such as the Non-Motor Symptom Scale (NMSS) before they can become more severe and affect the patient’s quality of life is a must for every clinician caring for a PD patient. Early treatment and control of these NMS can then be given, hence, improving the patient’s outcome and prognosis.

Keywords: non motor symptoms, Parkinson's Disease, insomnia, depression

Procedia PDF Downloads 448
4347 Laboratory Diagnostic Testing of Peste des Petits Ruminants in Georgia

Authors: Nino G. Vepkhvadze, Tea Enukidze

Abstract:

Every year the number of countries around the world face the risk of the spread of infectious diseases that bring significant ecological and social-economic damage. Hence, the importance of food product safety is emphasized that is the issue of interest for many countries. To solve them, it’s necessary to conduct preventive measures against the diseases, have accurate diagnostic results, leadership, and management. The Peste des petits ruminants (PPR) disease is caused by a morbillivirus closely related to the rinderpest virus. PPR is a transboundary disease as it emerges and evolves, considered as one of the top most damaging animal diseases. The disease imposed a serious threat to sheep-breeding when the farms of sheep, goats are significantly growing within the country. In January 2016, PPR was detected in Georgia. Up to present the origin of the virus, the age relationship of affected ruminants and the distribution of PPRV in Georgia remains unclear. Due to the nature of PPR, and breeding practices in the country, reemerging of the disease in Georgia is highly likely. The purpose of the studies is to provide laboratories with efficient tools allowing the early detection of PPR emergence and re-emergences. This study is being accomplished under the Biological Threat Reduction Program project with the support of the Defense Threat Reduction Agency (DTRA). The purpose of the studies is to investigate the samples and identify areas at high risk of the disease. Georgia has a high density of small ruminant herds bred as free-ranging, close to international borders. Kakheti region, Eastern Georgia, will be considered as area of high priority for PPR surveillance. For this reason, in 2019, in Kakheti region investigated n=484 sheep and goat serum and blood samples from the same animals, utilized serology and molecular biology methods. All samples were negative by RT-PCR, and n=6 sheep samples were seropositive by ELISA-Ab. Future efforts will be concentrated in areas where the risk of PPR might be high such as international bordering regions of Georgia. For diagnostics, it is important to integrate the PPRV knowledge with epidemiological data. Based on these diagnostics, the relevant agencies will be able to control the disease surveillance.

Keywords: animal disease, especially dangerous pathogen, laboratory diagnostics, virus

Procedia PDF Downloads 116
4346 The Link of the Human Immunodeficiency Virus With the Progression of Multiple Sclerosis Disease

Authors: Sina Mahdavi

Abstract:

Multiple sclerosis (MS) is a progressive inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially human immunodeficiency virus (HIV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on human HIV infection in MS disease progression. In this study, the keywords "Multiple sclerosis", "Human immunodeficiency virus ", and "Central nervous system" in the databases PubMed, and Google Scholar between 2017 and 2022 were searched and 15 articles were chosen, studied, and analyzed. Revealed histologic signs of "MS-like illness" in the setting of HIV, which comprised widespread demyelination with reactive astrocytes, foamy macrophages, and perivascular infiltration with inflammatory cells, all of which are compatible with MS lesions. Human immunodeficiency virus causes dysfunction of the immune system, especially characterized by hypergammaglobulinemia and chronic activation of B cells. Activation of B cells leads to increased synthesis of immunoglobulin and finally to an excess of free light chains. Free light chains may be involved in autoimmune responses against neurons. There is a high expression of HIV during the course of MS, which indicates the relationship between HIV and MS, that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of HIV may be effective in reducing inflammatory processes in demyelinated areas of MS patients.

Keywords: multiple sclerosis, human immunodeficiency virus, central nervous system, autoimmunity

Procedia PDF Downloads 84
4345 Understanding Informal Settlements: The Role of Geo-Information Tools

Authors: Musyimi Mbathi

Abstract:

Information regarding social, political, demographic, economic and other attributes of human settlement is important for decision makers at all levels of planning, as they have to grapple with dynamic environments often associated with settlements. At the local level, it is particularly important for both communities and urban managers to have accurate and reliable information regarding all planning attributes. Settlement mapping, in particular, informal settlements mapping in Kenya, has over the past few years been carried out using modern tools like Geographic information systems (GIS) and remote sensing for spatial data analysis and planning. GIS tools offer a platform for integration of spatial and non-spatial data as well as visualisation of the settlements. The capabilities offered by these tools have enabled communities to participate especially in the planning and management of new infrastructure as well as settlement upgrading. Land tenure based projects within informal settlements have also relied on GIS and related tools with considerable success. Additionally, the adoption of participatory approaches and use of geo-information tools helped to provide a basis for all inclusive planning thus promoting accountability, transparency, legitimacy, and other dimensions of governance within human settlement planning. The paper examines the context and application of geo-information tools for planning within low-income settlements of Kenya. A case study of Kiambiu settlement will be used to demonstrate how the tools have been applied for planning and decision-making purposes.

Keywords: informal settlements, GIS, governance, modern tools

Procedia PDF Downloads 501
4344 Challenges of eradicating neglected tropical diseases

Authors: Marziye Hadian, Alireza Jabbari

Abstract:

Background: Each year, tropical diseases affect large numbers of tropical or subtropical populations and give rise to irreparable financial and human damage. Among these diseases, some are known as Neglected Tropical Disease (NTD) that may cause unusual dangers; however, they have not been appropriately accounted for. Taking into account the priority of eradication of the disease, this study explored the causes of failure to eradicate neglected tropical diseases. Method: This study was a systematized review that was conducted in January 2021 on the articles related to neglected tropical diseases on databases of Web of Science, PubMed, Scopus, Science Direct, Ovid, Pro-Quest, and Google Scholar. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines as well as Critical Appraisal Skills Program (CASP) for articles and AACODS (Authority, Accuracy, Coverage, Objectivity, Date, Significance) for grey literature (provides five criteria for judging the quality of grey information) were integrated. Finding: The challenges in controlling and eradicating neglected tropical diseases in four general themes are as follows: shortcomings in disease management policies and programs, environmental challenges, executive challenges in policy disease and research field and 36 sub-themes. Conclusion: To achieve the goals of eradicating forgotten tropical diseases, it seems indispensable to free up financial, human and research resources, proper management of health infrastructure, attention to migrants and refugees, clear targeting, prioritization appropriate to local conditions and special attention to political and social developments. Reducing the number of diseases should free up resources for the management of neglected tropical diseases prone to epidemics as dengue, chikungunya and leishmaniasis. For the purpose of global support, targeting should be accurate.

Keywords: neglected tropical disease, NTD, preventive, eradication

Procedia PDF Downloads 133
4343 Hydrocarbon New Business Opportunities in the Bida Basin of Central Nigeria: Prospect and Challenges

Authors: N. G. Obaje, S. I. Ibrahim, N. Dadi-Mamud, M. K. Musa, I. Yusuf

Abstract:

An integrated study combining geological prospectivity mapping and geophysical aeromagnetic interpretation was carried out to determine hydrocarbon new business opportunities that may exist in the Bida Basin of Central Nigeria. Geological mapping was used to delineate the geological boundaries between the formations which is a significant initial criterion in evaluating hydrocarbon prospectivity. Processed and interpreted geophysical aeromagnetic data over the basin juxtaposed against the geological map has led to ranking of the prospectivity as less prospective, prospective and more prospective. The prospective and more prospective areas constitute new hydrocarbon business opportunities in the basin. The more prospective areas are at Pattishabakolo near Bida and at Kandi near Gulu. Prospective areas cover Badegi, Lemu, Duba, Kutigi, Auna, Mashegu and Mokwa. Geochemical data show that hydrocarbon source rocks exist within the Enagi and Patti formations in the northern and southern sections respectively. The geophysical aeromagnetic data indicates depths of more than 2,000m (> 2 Km) within the identified prospective areas. New business opportunities as used here refer to open acreages in Nigeria’s sedimentary basins that have not been licensed out by the government (Department of Petroleum Resources) to any operator but with significant potentials for commercial hydrocarbon accumulation.

Keywords: hydrocarbon, aeromagnetic, business opportunity, Bida Basin

Procedia PDF Downloads 271
4342 Prevalence of Enterocytozoon hepatopenaei in Shrimp Cultured in Inland Saline Water

Authors: Naveen Kumar B. T., Anuj Tyagi, Prabjeet Singh, Shanthanagouda A. H., Sumeet Rai

Abstract:

Inland saline water resources are gaining the importance in expanding the aquaculture activities to mitigate the nutritional and food security issues of the world. For profitable and sustainable aquaculture practices, scientific farming, biosecurity measure, and best fish health management should be the integral part of developmental activities. Keeping in line with global awareness and trends, the Indian government has taken an innovative step to conduct disease surveillance and awareness programme for aquatic disease through network project. This ‘National Surveillance Programme for Aquatic Animal Diseases (NSPAAD)’ is being implemented in collaboration of national institutes and state agriculture universities with funding support from National Fisheries Development Board (NFDB), Govt. of India. Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, an NSPAAD collaborator, has been actively engaged in disease surveillance in the Indian state of Punjab. Shrimp farming in inland saline areas of Punjab is expanding at a tremendous pace under the guidance of GADVASU along with the support of State Fisheries Department. Under this national disease surveillance programme, we reported Enterocytozoon hepatopenaei (EHP) infection in the Litopenaeus vannamei cultured in the inland saline waters. Polymerase chain reaction (PCR) based diagnosis was carried out using the OIE (World Organisation for Animal Health) protocol. It was observed that out of 20 shrimp farms, two farms were 1st step PCR positive and two more farms were nested PCR positive. All the EHP positive ponds had shown the white faeces along with mortalities at very low rate. Therefore, implementation of biosecurity and continuous surveillance and monitoring program for finfish and shellfish aquaculture are in need of the hour to prevent and control the large-scale disease outbreaks and subsequent economic losses.

Keywords: disease, EHP, inland saline water, shrimp culture

Procedia PDF Downloads 263
4341 Suggested Role for Neutrophil Extracellular Traps Formation in Ewing Sarcoma Immune Microenvironment

Authors: Rachel Shukrun, Szilvia Baron, Victoria Fidel, Anna Shusterman, Osnat Sher, Netanya Kollender, Dror Levin, Yair Peled, Yair Gortzak, Yoav Ben-Shahar, Revital Caspi, Sagi Gordon, Michal Manisterski, Ronit Elhasid

Abstract:

Ewing sarcoma (EWS) is a highly aggressive cancer with a survival rate of 70–80% for patients with localized disease and under 30% for those with metastatic disease. Tumor-infiltrating neutrophils (TIN) can generate extracellular net-like DNA structures known as neutrophil extracellular traps (NETs). However, little is known about the presence and prognostic significance of tumor-infiltrating NETs in EWS. Herein, we investigated 46 patients diagnosed with EWS and treated in the Tel Aviv Medical Center between 2010 and 2021. TINs and NETs were identified in diagnostic biopsies of EWS by immunofluorescent. In addition, NETs were investigated in neutrophils isolated from peripheral blood samples of EWS patients at diagnosis and following neoadjuvant chemotherapy. The relationships between the presence of TINs and NETs, pathological and clinical features, and outcomes were analyzed. Our results demonstrate that TIN and NETs at diagnosis were higher in EWS patients with metastatic disease compared to those with local disease. High NETs formation at diagnosis predicted poor response to neo-adjuvant chemotherapy, relapse, and death from disease (P < .05). NETs formation in peripheral blood samples at diagnosis was significantly elevated among patients with EWS compared to pediatric controls and decreased significantly following neoadjuvant chemotherapy. In conclusion, NETs formation seems to have a role in the EWS immune microenvironment. Their presence can refine risk stratification, predict chemotherapy resistance and survival, and serve as a therapeutic target in patients with EWS.

Keywords: Ewing sarcoma, tumor microenvironment, neutrophil, neutrophil extracellular traps (NETs), prognosis

Procedia PDF Downloads 65
4340 Using Soil Texture Field Observations as Ordinal Qualitative Variables for Digital Soil Mapping

Authors: Anne C. Richer-De-Forges, Dominique Arrouays, Songchao Chen, Mercedes Roman Dobarco

Abstract:

Most of the digital soil mapping (DSM) products rely on machine learning (ML) prediction models and/or the use or pedotransfer functions (PTF) in which calibration data come from soil analyses performed in labs. However, many other observations (often qualitative, nominal, or ordinal) could be used as proxies of lab measurements or as input data for ML of PTF predictions. DSM and ML are briefly described with some examples taken from the literature. Then, we explore the potential of an ordinal qualitative variable, i.e., the hand-feel soil texture (HFST) estimating the mineral particle distribution (PSD): % of clay (0-2µm), silt (2-50µm) and sand (50-2000µm) in 15 classes. The PSD can also be measured by lab measurements (LAST) to determine the exact proportion of these particle-sizes. However, due to cost constraints, HFST are much more numerous and spatially dense than LAST. Soil texture (ST) is a very important soil parameter to map as it is controlling many of the soil properties and functions. Therefore, comes an essential question: is it possible to use HFST as a proxy of LAST for calibration and/or validation of DSM predictions of ST? To answer this question, the first step is to compare HFST with LAST on a representative set where both information are available. This comparison was made on ca 17,400 samples representative of a French region (34,000 km2). The accuracy of HFST was assessed, and each HFST class was characterized by a probability distribution function (PDF) of its LAST values. This enables to randomly replace HFST observations by LAST values while respecting the PDF previously calculated and results in a very large increase of observations available for the calibration or validation of PTF and ML predictions. Some preliminary results are shown. First, the comparison between HFST classes and LAST analyses showed that accuracies could be considered very good when compared to other studies. The causes of some inconsistencies were explored and most of them were well explained by other soil characteristics. Then we show some examples applying these relationships and the increase of data to several issues related to DSM. The first issue is: do the PDF functions that were established enable to use HSFT class observations to improve the LAST soil texture prediction? For this objective, we replaced all HFST for topsoil by values from the PDF 100 time replicates). Results were promising for the PTF we tested (a PTF predicting soil water holding capacity). For the question related to the ML prediction of LAST soil texture on the region, we did the same kind of replacement, but we implemented a 10-fold cross-validation using points where we had LAST values. We obtained only preliminary results but they were rather promising. Then we show another example illustrating the potential of using HFST as validation data. As in numerous countries, the HFST observations are very numerous; these promising results pave the way to an important improvement of DSM products in all the countries of the world.

Keywords: digital soil mapping, improvement of digital soil mapping predictions, potential of using hand-feel soil texture, soil texture prediction

Procedia PDF Downloads 226
4339 In silico Analysis towards Identification of Host-Microbe Interactions for Inflammatory Bowel Disease Linked to Reactive Arthritis

Authors: Anukriti Verma, Bhawna Rathi, Shivani Sharda

Abstract:

Reactive Arthritis (ReA) is a disorder that causes inflammation in joints due to certain infections at distant sites in the body. ReA begins with stiffness, pain, and inflammation in these areas especially the ankles, knees, and hips. It gradually causes several complications such as conjunctivitis in the eyes, skin lesions in hand, feet and nails and ulcers in the mouth. Nowadays the diagnosis of ReA is based upon a differential diagnosis pattern. The parameters for differentiating ReA from other similar disorders include physical examination, history of the patient and a high index of suspicion. There are no standard lab tests or markers available for ReA hence the early diagnosis of ReA becomes difficult and the chronicity of disease increases with time. It is reported that enteric disorders such as Inflammatory Bowel Disease (IBD) that is inflammation in gastrointestinal tract namely Crohn’s Disease (CD) and Ulcerative Colitis (UC) are reported to be linked with ReA. Several microorganisms are found such as Campylobacter, Salmonella, Shigella and Yersinia causing IBD leading to ReA. The aim of our study was to perform the in-silico analysis in order to find interactions between microorganisms and human host causing IBD leading to ReA. A systems biology approach for metabolic network reconstruction and simulation was used to find the essential genes of the reported microorganisms. Interactomics study was used to find the interactions between the pathogen genes and human host. Genes such as nhaA (pathogen), dpyD (human), nagK (human) and kynU (human) were obtained that were analysed further using the functional, pathway and network analysis. These genes can be used as putative drug targets and biomarkers in future for early diagnosis, prevention, and treatment of IBD leading to ReA.

Keywords: drug targets, inflammatory bowel disease, reactive arthritis, systems biology

Procedia PDF Downloads 276
4338 COVID-19 Analysis with Deep Learning Model Using Chest X-Rays Images

Authors: Uma Maheshwari V., Rajanikanth Aluvalu, Kumar Gautam

Abstract:

The COVID-19 disease is a highly contagious viral infection with major worldwide health implications. The global economy suffers as a result of COVID. The spread of this pandemic disease can be slowed if positive patients are found early. COVID-19 disease prediction is beneficial for identifying patients' health problems that are at risk for COVID. Deep learning and machine learning algorithms for COVID prediction using X-rays have the potential to be extremely useful in solving the scarcity of doctors and clinicians in remote places. In this paper, a convolutional neural network (CNN) with deep layers is presented for recognizing COVID-19 patients using real-world datasets. We gathered around 6000 X-ray scan images from various sources and split them into two categories: normal and COVID-impacted. Our model examines chest X-ray images to recognize such patients. Because X-rays are commonly available and affordable, our findings show that X-ray analysis is effective in COVID diagnosis. The predictions performed well, with an average accuracy of 99% on training photographs and 88% on X-ray test images.

Keywords: deep CNN, COVID–19 analysis, feature extraction, feature map, accuracy

Procedia PDF Downloads 81
4337 Functional Profiling of a Circular RNA from the Huntingtin (HTT) Gene

Authors: Laura Gantley, Vanessa M. Conn, Stuart Webb, Kirsty Kirk, Marta Gabryelska, Duncan Holds, Brett W. Stringer, Simon J. Conn

Abstract:

Trinucleotide repeat disorders comprise ~20 severe, inherited human neuromuscular and neurodegenerative disorders, which are a result of an abnormal expansion of repetitive sequences in the DNA. The most common of these, Huntington’s disease, results from the expansion of the CAG repeat region in exon 1 of the HTT gene via an unknown mechanism. Non-coding RNAs have been implicated in the initiation and progression of many diseases; thus, we focus on one circular RNA (circRNA) molecule arising from non-canonical splicing (back splicing) of HTT pre-mRNA. This circRNA and its mouse orthologue were transgenically overexpressed in human cells (SHSY-5Y and HEK293T) and mouse cells (Mb1), respectively. High-content imaging and flow cytometry demonstrated the overexpression of this circRNA reduces cell proliferation, reduces nuclear size independent of cellular size, and alters cell cycle progression. Analysis of protein by western blot and immunofluorescence demonstrated no change to HTT protein levels but altered nuclear-cytoplasmic distribution without impacting the expansion of the HTT repeat region. As these phenotypic and genotypic changes are found in Huntington’s disease patients, these results may suggest that this circRNA may play a functional role in the progression of Huntington’s disease.

Keywords: cell biology, circular RNAs, Huntington’s disease, molecular biology, neurodegenerative disorders

Procedia PDF Downloads 101