Search results for: on in vitro
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1398

Search results for: on in vitro

948 Drug Design Modelling and Molecular Virtual Simulation of an Optimized BSA-Based Nanoparticle Formulation Loaded with Di-Berberine Sulfate Acid Salt

Authors: Eman M. Sarhan, Doaa A. Ghareeb, Gabriella Ortore, Amr A. Amara, Mohamed M. El-Sayed

Abstract:

Drug salting and nanoparticle-based drug delivery formulations are considered to be an effective means for rendering the hydrophobic drugs’ nano-scale dispersion in aqueous media, and thus circumventing the pitfalls of their poor solubility as well as enhancing their membrane permeability. The current study aims to increase the bioavailability of quaternary ammonium berberine through acid salting and biodegradable bovine serum albumin (BSA)-based nanoparticulate drug formulation. Berberine hydroxide (BBR-OH) that was chemically synthesized by alkalization of the commercially available berberine hydrochloride (BBR-HCl) was then acidified to get Di-berberine sulfate (BBR)₂SO₄. The purified crystals were spectrally characterized. The desolvation technique was optimized for the preparation of size-controlled BSA-BBR-HCl, BSA-BBR-OH, and BSA-(BBR)₂SO₄ nanoparticles. Particle size, zeta potential, drug release, encapsulation efficiency, Fourier transform infrared spectroscopy (FTIR), tandem MS-MS spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning and transmitting electron microscopic examination (SEM, TEM), in vitro bioactivity, and in silico drug-polymer interaction were determined. BSA (PDB ID; 4OR0) protonation state at different pH values was predicted using Amber12 molecular dynamic simulation. Then blind docking was performed using Lamarkian genetic algorithm (LGA) through AutoDock4.2 software. Results proved the purity and the size-controlled synthesis of berberine-BSA-nanoparticles. The possible binding poses, hydrophobic and hydrophilic interactions of berberine on BSA at different pH values were predicted. Antioxidant, anti-hemolytic, and cell differentiated ability of tested drugs and their nano-formulations were evaluated. Thus, drug salting and the potentially effective albumin berberine nanoparticle formulations can be successfully developed using a well-optimized desolvation technique and exhibiting better in vitro cellular bioavailability.

Keywords: berberine, BSA, BBR-OH, BBR-HCl, BSA-BBR-HCl, BSA-BBR-OH, (BBR)₂SO₄, BSA-(BBR)₂SO₄, FTIR, AutoDock4.2 Software, Lamarkian genetic algorithm, SEM, TEM, EDX

Procedia PDF Downloads 148
947 Characterization of a Broad Range Antimicrobial Substance from Pseudozyma aphidis

Authors: Raviv Harris, Maggie Levy

Abstract:

Natural product-based pesticides may serve as an alternative to the traditional synthetic pesticides, which have a potentially damaging effect, both to human health and for the environment. Along with plants, microorganisms are a prospective source of such biological pesticides. A unique and active strain of P. aphidis (designated isolate L12, Israel 2004), an epiphytic and non-pathogenic basidiomycete yeast, was isolated in our lab from strawberry leaves. P. aphidis L12 secretions were found to inhibit broad range of plant pathogens. This work demonstrates that metabolites isolated from the biocontrol agent P. aphidis (isolate L12) can inhibit varied fungal and bacterial phytopathogens. Biologically active metabolites were extracted from P. aphidis biomass, using the organic solvent ethyl acetate. The antimicrobial activity of the extract was demonstrated, both in vitro and in planta. Using disk diffusion assays, the following inhibition zones were obtained: 43cm² for Pseudomonas syringae pv. tomato, 28.5cm² for Xanthomonas campestris pv. vesicatoria, 59cm² for Clavibacter michiganensis subsp. michiganensis, 34cm² for Erwinia amylovora and 34cm² for Agrobacterium tumefaciens. Additionally, strong inhibitory activity of the extract against fungi mycelial growth was established, with IC₅₀ values of 606µg ml⁻¹ for Botrytis cinerea, 221µg ml⁻¹ for Pythium spp., 519µg ml⁻¹ for Rhizoctonia solani, 455µg ml⁻¹ for Sclerotinia sclerotiorum, 2270µg ml⁻¹ for Fusarium oxysporum f. sp. lycopersici, and 2038µg ml⁻¹ for Alternaria alternata. The results of the in planta experiments demonstrated a dose-dependent reduction in disease infection. Significant inhibition of B. cinerea lesions on tomato plants was obtained when a spore suspension of this pathogen was treated with extract concentrations higher than 4.2mg ml⁻¹. Concentration of 7mg ml⁻¹ caused a reduction of over 95% in the lesion size of B. cinerea on tomato plants. The strong antimicrobial activity demonstrated both in vitro and in planta against varied phytopathogens, may indicate that the extracted antimicrobial metabolites have potential to serve as natural pesticides in the field.

Keywords: antimicrobial, B. cinerea, metabolites, natural pesticides, P. aphidis

Procedia PDF Downloads 212
946 Immobilizing Quorum Sensing Inhibitors on Biomaterial Surfaces

Authors: Aditi Taunk, George Iskander, Kitty Ka Kit Ho, Mark Willcox, Naresh Kumar

Abstract:

Bacterial infections on biomaterial implants and medical devices accounts for 60-70% of all hospital acquired infections (HAIs). Treatment or removal of these infected devices results in high patient mortality and morbidity along with increased hospital expenses. In addition, with no effective strategies currently available and rapid development of antibacterial resistance has made device-related infections extremely difficult to treat. Therefore, in this project we have developed biomaterial surfaces using antibacterial compounds that inhibit biofilm formation by interfering with the bacterial communication mechanism known as quorum sensing (QS). This study focuses on covalent attachment of potent quorum sensing (QS) inhibiting compounds, halogenated furanones (FUs) and dihydropyrrol-2-ones (DHPs), onto glass surfaces. The FUs were attached by photoactivating the azide groups on the surface, and the acid functionalized DHPs were immobilized on amine surface via EDC/NHS coupling. The modified surfaces were tested in vitro against pathogenic organisms such as Staphylococcus aureus and Pseudomonas aeruginosa using confocal laser scanning microscopy (CLSM). Successful attachment of compounds on the substrates was confirmed by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The antibacterial efficacy was assessed, and significant reduction in bacterial adhesion and biofilm formation was observed on the FU and DHP coated surfaces. The activity of the coating was dependent upon the type of substituent present on the phenyl group of the DHP compound. For example, the ortho-fluorophenyl DHP (DHP-2) exhibited 79% reduction in bacterial adhesion against S. aureus and para-fluorophenyl DHP (DHP-3) exhibited 70% reduction against P. aeruginosa. The results were found to be comparable to DHP coated surfaces prepared in earlier study via Michael addition reaction. FUs and DHPs were able to retain their in vitro antibacterial efficacy after covalent attachment via azide chemistry. This approach is a promising strategy to develop efficient antibacterial biomaterials to reduce device related infections.

Keywords: antibacterial biomaterials, biomedical device-related infections, quorum sensing, surface functionalization

Procedia PDF Downloads 246
945 Evaluation of Natural Gums: Gum Tragacanth, Xanthan Gum, Guar Gum and Gum Acacia as Potential Hemostatic Agents

Authors: Himanshu Kushwah, Nidhi Sandal, Meenakshi K. Chauhan, Gaurav Mittal

Abstract:

Excessive bleeding is the primary factor of avoidable death in both civilian trauma centers as well as the military battlefield. Hundreds of Indian troops die every year due to blood loss caused by combat-related injuries. These deaths are avoidable and can be prevented to a large extent by making available a suitable hemostatic dressing in an emergency medical kit. In this study, natural gums were evaluated as potential hemostatic agents in combination with calcium gluconate. The study compares the hemostatic activity of Gum Tragacanth (GT), Guar Gum (GG), Xanthan Gum (XG) and Gum Acacia (GA) by carrying out different in-vitro and in-vivo studies. In-vitro studies were performed using the Lee-White method and Eustrek method, which includes the visual and microscopic analysis of blood clotting. MTT assay was also performed using human lymphocytes to check the cytotoxicity of the gums. The in-vivo studies were performed in Sprague Dawley rats using tail bleeding assay to evaluate the hemostatic efficacy of the gums and compared with a commercially available hemostatic sponge, Surgispon. Erythrocyte agglutination test was also performed to check the interaction between blood cells and the natural gums. Other parameters like blood loss, adherence strength of the developed hemostatic dressing material incorporating these gums, re-bleeding, and survival of the animals were also studied. The data obtained from the MTT assay showed that Guar gum, Gum Tragacanth, and Gum Acacia were not significantly cytotoxic, but substantial cytotoxicity was observed in Xanthan gum samples at high concentrations. Also, Xanthan gum took the least time with its minimum concentration to achieve hemostasis, (approximately 50 seconds at 3mg concentration). Gum Tragacanth also showed efficient hemostasis at a concentration of 35mg at the same time, but the other two gums tested were not able to clot the blood in significantly less time. A sponge dressing made of Tragacanth gum was found to be more efficient in achieving hemostasis and showed better practical applicability among all the gums studied and also when compared to the commercially available product, Surgispon, thus making it a potentially better alternative.

Keywords: cytotoxicity, hemostasis, natural gums, sponge

Procedia PDF Downloads 126
944 Modulation of the Innate Immune Response in Bovine Udder Tissue by Epigenetic Modifiers

Authors: Holm Zerbe, Laura Macias, Hans-Joachim Schuberth, Wolfram Petzl

Abstract:

Mastitis is among the most important production diseases in cows. It accounts for large parts of antimicrobial drug use in the dairy industry worldwide. Due to the imminent normative to reduce the use of antimicrobial drugs in livestock, new ways for therapy and prophylaxis of mastitis are needed. Recently epigenetic regulation of inflammation by chromatin modifications has increasingly drawn attention. Currently, some epigenetic modifiers have already been approved for the use in humans, however little is known about their actions in the bovine system. The aim of our study was to investigate whether three selected epigenetic modifiers (Vitamin D3, SAHA and S2101) influence the initial immune response towards mastitis pathogens in bovine udder tissue in vitro. Tissue explants of the teat cistern and udder parenchyma were collected from 21 cows and were incubated for 36 hours in the absence and presence of epigenetic modifiers. Additionally, the tissue was stimulated with heat-inactivated particles of Escherichia coli and Staphylococcus aureus, which are regarded as two of the most important mastitis pathogens. After incubation, the explants were tested by RT-qPCR for transcript abundances of immune-related candidate genes. Gene expression was validated in culture supernatants by an AlphaLISA assay. Furthermore, the culture supernatants were analyzed for their chemotactic capacity through a chemotaxis assay. Statistical analysis of data was performed with the program ‘R’ version 3.2.3. Vitamin D3 had no effect on the immune response of udder tissue in vitro after stimulation with mastitis pathogens. The epigenetic modifiers SAHA and S2101 however significantly blocked the pathogen-induced upregulation of CXCL8, TNFα, S100A9 and LAP (P < 0.05). The regulation of IL10 was not affected by treatment with SAHA and S2101. Transcript abundances for CXCL8 were reflected by IL8 contents and chemotactic activity in culture supernatants. In conclusion, these data show the potential of epigenetic modifiers (SAHA and S2101) to block overshooting inflammation in the udder. Thus epigenetic modifiers may serve in future as immune modulators for the treatment and/or prophylaxis of clinical mastitis. (Funded by Deutsche Forschungsgemeinschaft PE 1495/2-1).

Keywords: mastitis, cattle, epigenetics, immunomodulation

Procedia PDF Downloads 208
943 Effect of Locally Produced Sweetened Pediatric Antibiotics on Streptococcus mutans Isolated from the Oral Cavity of Pediatric Patients in Syria - in Vitro Study

Authors: Omar Nasani, Chaza Kouchaji, Muznah Alkhani, Maisaa Abd-alkareem

Abstract:

Objective: To evaluate the influence of sweetening agents used in pediatric medications on the growth of Streptococcus mutans colonies and its effect on the cariogenic activity in the oral cavity. No previous studies are registered yet in Syrian children. Methods: Specimens were isolated from the oral cavity of pediatric patients, then in-vitro study is applied on locally manufactured liquid pediatric antibiotic drugs, containing natural or synthetic sweeteners. The selected antibiotics are Ampicillin (sucrose), Amoxicillin (sucrose), Amoxicillin + Flucloxacillin (sorbitol), Amoxicillin+Clavulanic acid (Sorbitol or sucrose). These antibiotics have a known inhibitory effect on gram positive aerobic/anaerobic bacteria especially Streptococcus mutans strains in children’s oral biofilm. Five colonies are studied with each antibiotic. Saturated antibiotics were spread on a 6mm diameter filter disc. Incubated culture media were compared with each other and with the control antibiotic discs. Results were evaluated by measuring the diameter of the inhibition zones. The control group of antibiotic discs was resourced from Abtek Biologicals Ltd. Results: The diameter of inhibition zones around discs of antibiotics sweetened with sorbitol was larger than those sweetened with sucrose. The effect was most important when comparing Amoxicillin + Clavulanic Acid (sucrose 25mm; versus sorbitol 27mm). The highest inhibitory effect was observed with the usage of Amoxicillin + Flucloxacillin sweetened with sorbitol (38mm). Whereas the lowest inhibitory effect was observed with Amoxicillin and Ampicillin sweetened with sucrose (22mm and 21mm). Conclusion: The results of this study indicate that although all selected antibiotic produced an inhibitory effect on S. mutans, sucrose weakened the inhibitory action of the antibiotic to varying degrees, meanwhile antibiotic formulations containing sorbitol simulated the effects of the control antibiotic. This study calls attention to effects of sweeteners included in pediatric drugs on the oral hygiene and tooth decay.

Keywords: pediatric, dentistry, antibiotics, streptococcus mutans, biofilm, sucrose, sugar free

Procedia PDF Downloads 47
942 Development of Positron Emission Tomography (PET) Tracers for the in-Vivo Imaging of α-Synuclein Aggregates in α-Synucleinopathies

Authors: Bright Chukwunwike Uzuegbunam, Wojciech Paslawski, Hans Agren, Christer Halldin, Wolfgang Weber, Markus Luster, Thomas Arzberger, Behrooz Hooshyar Yousefi

Abstract:

There is a need to develop a PET tracer that will enable to diagnosis and track the progression of Alpha-synucleinopathies (Parkinson’s disease [PD], dementia with Lewy bodies [DLB], multiple system atrophy [MSA]) in living subjects over time. Alpha-synuclein aggregates (a-syn), which are present in all the stages of disease progression, for instance, in PD, are a suitable target for in vivo PET imaging. For this reason, we have developed some promising a-syn tracers based on a disarylbisthiazole (DABTA) scaffold. The precursors are synthesized via a modified Hantzsch thiazole synthesis. The precursors were then radiolabeled via one- or two-step radiofluorination methods. The ligands were initially screened using a combination of molecular dynamics and quantum/molecular mechanics approaches in order to calculate the binding affinity to a-syn (in silico binding experiments). Experimental in vitro binding assays were also performed. The ligands were further screened in other experiments such as log D, in vitro plasma protein binding & plasma stability, biodistribution & brain metabolite analyses in healthy mice. Radiochemical yields were up to 30% - 72% in some cases. Molecular docking revealed possible binding sites in a-syn and also the free energy of binding to those sites (-28.9 - -66.9 kcal/mol), which correlated to the high binding affinity of the DABTAs to a-syn (Ki as low as 0.5 nM) and selectivity (> 100-fold) over Aβ and tau, which usually co-exist with a-synin some pathologies. The log D values range from 2.88 - 2.34, which correlated with free-protein fraction of 0.28% - 0.5%. Biodistribution experiments revealed that the tracers are taken up (5.6 %ID/g - 7.3 %ID/g) in the brain at 5 min (post-injection) p.i., and cleared out (values as low as 0.39 %ID/g were obtained at 120 min p.i. Analyses of the mice brain 20 min p.i. Revealed almost no radiometabolites in the brain in most cases. It can be concluded that in silico study presents a new venue for the rational development of radioligands with suitable features. The results obtained so far are promising and encourage us to further validate the DABTAs in autoradiography, immunohistochemistry, and in vivo imaging in non-human primates and humans.

Keywords: alpha-synuclein aggregates, alpha-synucleinopathies, PET imaging, tracer development

Procedia PDF Downloads 212
941 Determination of the Toxicity of a Lunar Dust Simulant on Human Alveolar Epithelial Cells and Macrophages in vitro

Authors: Agatha Bebbington, Terry Tetley, Kathryn Hadler

Abstract:

Background: Astronauts will set foot on the Moon later this decade, and are at high risk of lunar dust inhalation. Freshly-fractured lunar dust produces reactive oxygen species in solution, which are known to cause cellular damage and inflammation. Cytotoxicity and inflammatory mediator release was measured in pulmonary alveolar epithelial cells (cells that line the gas-exchange zone of the lung) exposed to a lunar dust simulant, LMS-1. It was hypothesised that freshly-fractured LMS-1 would result in increased cytotoxicity and inflammatory mediator release, owing to the angular morphology and high reactivity of fractured particles. Methods: A human alveolar epithelial type 1-like cell line (TT1) and a human macrophage-like cell line (THP-1) were exposed to 0-200μg/ml of unground, aged-ground, and freshly-ground LMS-1 (screened at <22μm). Cell viability, cytotoxicity, and inflammatory mediator release (IL-6, IL-8) were assessed using MMT, LDH, and ELISA assays, respectively. LMS-1 particles were characterised for their size, surface area, and morphology before and after grinding. Results: Exposure to LMS-1 particles did not result in overt cytotoxicity in either TT1 epithelial cells or THP-1 macrophage-like cells. A dose-dependent increase in IL-8 release was observed in TT1 cells, whereas THP-1 cell exposure, even at low particle concentrations, resulted in increased IL-8 release. Both cytotoxic and pro-inflammatory responses were most marked and significantly greater in TT1 and THP-1 cells exposed to freshly-fractured LMS-1. Discussion: LMS-1 is a novel lunar dust simulant; this is the first study to determine its toxicological effects on respiratory cells in vitro. An increased inflammatory response in TT1 and THP-1 cells exposed to ground LMS-1 suggests that low particle size, increased surface area, and angularity likely contribute to toxicity. Conclusions: Evenlow levels of exposure to LMS-1 could result in alveolar inflammation. This may have pathological consequences for astronauts exposed to lunar dust on future long-duration missions. Future research should test the effect of low-dose, intermittent lunar dust exposure on the respiratory system.

Keywords: lunar dust, LMS-1, lunar dust simulant, long-duration space travel, lunar dust toxicity

Procedia PDF Downloads 190
940 Core-Shell Nanofibers for Prevention of Postsurgical Adhesion

Authors: Jyh-Ping Chen, Chia-Lin Sheu

Abstract:

In this study, we propose to use electrospinning to fabricate porous nanofibrous membranes as postsurgical anti-adhesion barriers and to improve the properties of current post-surgical anti-adhesion products. We propose to combine FDA-approved biomaterials with anti-adhesion properties, polycaprolactone (PCL), polyethylene glycol (PEG), hyaluronic acid (HA) with silver nanoparticles (Ag) and ibuprofen (IBU), to produce anti-adhesion barrier nanofibrous membranes. For this purpose, PEG/PCL/Ag/HA/IBU core-shell nanofibers were prepared. The shell layer contains PEG + PCL to provide mechanical supports and Ag was added to the outer PEG-PCL shell layer during electrospinning to endow the nanofibrous membrane with anti-bacterial properties. The core contains HA to exert anti-adhesion and IBU to exert anti-inflammation effects, respectively. The nanofibrous structure of the membranes can reduce cell penetration while allowing nutrient and waste transports to prevent postsurgical adhesion. Nanofibers with different core/shell thickness ratio were prepared. The nanofibrous membranes were first characterized for their physico-chemical properties in detail, followed by in vitro cell culture studies for cell attachment and proliferation. The HA released from the core region showed extended release up to 21 days for prolonged anti-adhesion effects. The attachment of adhesion-forming fibroblasts is reduced using the nanofibrous membrane from DNA assays and confocal microscopic observation of adhesion protein vinculin expression. The Ag released from the shell showed burst release to prevent E Coli and S. aureus infection immediately and prevent bacterial resistance to Ag. Minimum cytotoxicity was observed from Ag and IBU when fibroblasts were culture with the extraction medium of the nanofibrous membranes. The peritendinous anti-adhesion model in rabbits and the peritoneal anti-adhesion model in rats were used to test the efficacy of the anti-adhesion barriers as determined by gross observation, histology, and biomechanical tests. Within all membranes, the PEG/PCL/Ag/HA/IBU core-shell nanofibers showed the best reduction in cell attachment and proliferation when tested with fibroblasts in vitro. The PEG/PCL/Ag/HA/IBU nanofibrous membranes also showed significant improvement in preventing both peritendinous and peritoneal adhesions when compared with other groups and a commercial adhesion barrier film.

Keywords: anti-adhesion, electrospinning, hyaluronic acid, ibuprofen, nanofibers

Procedia PDF Downloads 158
939 In Vitro Evaluation of an Artificial Venous Valve

Authors: Joon Hock Yeo, Munirah Ismail

Abstract:

Chronic venous insufficiency is a condition where the venous wall or venous valves fail to operate properly. As such, it is difficult for the blood to return from the lower extremities back to the heart. Chronic venous insufficiency affects many people worldwide. In last decade, there have been many new and innovative designs of prosthetic venous valves to replace the malfunction native venous valves. However, thus far, to the authors’ knowledge, there is no successful prosthetic venous valve. In this project, we have developed a venous valve which could operate under low pressure. While further testing is warranted, this unique valve could potentially alleviate problems associated with chronic venous insufficiency.

Keywords: prosthetic venous valve, bi-leaflet valve, chronic venous insufficiency, valve hemodynamics

Procedia PDF Downloads 169
938 Clinico-Microbiological Study of S. aureus from Various Clinical Samples with Reference to Methicillin Resistant S. aureus (MRSA)

Authors: T. G. Pathrikar, A. D. Urhekar, M. P. Bansal

Abstract:

To find out S. aureus from patient samples on the basis of coagulase test. We have evaluated slide coagulase (n=46 positive), tube coagulase (n=48 positive) and DNase test (n=44, positive) , We have isolated and identified MRSA from various clinical samples and specimens by disc diffusion method determined the incidence of MRSA 50% in patients. Found out the in vitro antimicrobial susceptibility pattern of MRSA isolates and also the MIC of MRSA of oxacillin by E-Test.

Keywords: cefoxitin disc diffusion MRSA detection, e – test, S. aureus devastating pathogen, tube coagulase confirmation

Procedia PDF Downloads 464
937 Berberine Ameliorates Glucocorticoid-Induced Hyperglycemia: An In-Vitro and In-Vivo Study

Authors: Mrinal Gupta, Mohammad Rumman, Babita Singh Abbas Ali Mahdi, Shivani Pandey

Abstract:

Introduction: Berberine (BBR), a bioactive compound isolated from Coptidis Rhizoma, possesses diverse pharmacological activities, including anti-bacterial, anti-inflammatory, antitumor, hypolipidemic, and anti-diabetic. However, its role as an anti-diabetic agent in animal models of dexamethasone (Dex)-induced diabetes remains unknown. Studies have shown that natural compounds, including aloe, caper, cinnamon, cocoa, green and black tea, and turmeric, can be used for treating Type 2 diabetes mellitus (DM). Compared to conventional drugs, natural compounds have fewer side effects and are easily available. Herein, we studied the anti-diabetic effects of BBR in a mice model of Dex-induced diabetes. Methods: HepG2 cell line was used for glucose release and glycogen synthesis studies. Cell proliferation was measured by methylthiotetrazole (MTT) assay. For animal studies, mice were treated with Dex (2 mg/kg, i.m.) for 30 days and the effect of BBR at the doses 100, 200, and 500 mg/kg (p.o.) was analyzed. Glucose, insulin, and pyruvate tests were performed to evaluate the development of the diabetic model. An echo MRI was performed to assess the fat mass. Further, to elucidate the mechanism of action of BBR, mRNA expression of genes regulating gluconeogenesis, glucose uptake, and glycolysis were analyzed. Results: In vitro BBR had no impact on cell viability up to a concentration of 50μM. Moreover, BBR suppressed the hepatic glucose release and improved glucose tolerance in HepG2 cells. In vivo, BBR improved glucose homeostasis in diabetic mice, as evidenced by enhanced glucose clearance, increased glycolysis, elevated glucose uptake, and decreased gluconeogenesis. Further, Dex treatment increased the total fat mass in mice, which was ameliorated by BBR treatment. Conclusion: BBR improves glucose tolerance by increasing glucose clearance, inhibiting hepatic glucose release, and decreasing obesity. Thus, BBR may become a potential therapeutic agent for treating glucocorticoid-induced diabetes and obesity in the future.

Keywords: glucocorticoid, hyperglycemia, berberine, HepG2 cells, insulin resistance, glucose

Procedia PDF Downloads 37
936 The in Vitro and in Vivo Antifungal Activity of Terminalia Mantaly on Aspergillus Species Using Drosophila melanogaster (UAS-Diptericin) As a Model

Authors: Ponchang Apollos Wuyep, Alice Njolke Mafe, Longchi Satkat Zacheaus, Dogun Ojochogu, Dabot Ayuba Yakubu

Abstract:

Fungi causes huge losses when infections occur both in plants and animals. Synthetic Antifungal drugs are mostly very expensive and highly cytotoxic when taken. This study was aimed at determining the in vitro and in vivo antifungal activities of the leaves and stem extracts of Terminalia mantaly (Umbrella tree)H. Perrier on Aspergillus species in a bid to identify potential sources of cheap starting materials for the synthesis of new drugs to address the growing antimicrobial resistance. T. mantaly leave and stem powdered plant was extracted by fractionation using the method of solvent partition co-efficient in their graded form in the order n-hexane, Ethyl acetate, methanol and distilled water and phytochemical screening of each fraction revealed the presence of alkaloids, saponins, Tannins, flavonoids, carbohydrates, steroids, anthraquinones, cardiac glycosides and terpenoids in varying degrees. The Agar well diffusion technique was used to screen for antifungal activity of the fractions on clinical isolates of Aspergillus species (Aspergillus flavus and Aspergillus fumigatus). Minimum inhibitory concentration (MIC50) of the most active extracts was determined by the broth dilution method. The fractions test indicated a high antifungal activity with zones of inhibition ranging from 6 to 26 mm and 8 to 30mm (leave fractions) and 10mm to 34mm and 14mm to36mm (stem fractions) on A. flavus and A. fumigatus respectively. All the fractions indicated antifungal activity in a dose response relationship at concentrations of 62.5mg/ml, 125mg/ml, 250mg/ml and 500mg/ml. Better antifungal efficacy was shown by the Ethyl acetate, Hexane and Methanol fractions in the in vitro as the most potent fraction with MIC ranging from 62.5 to 125mg/ml. There was no statistically significant difference (P>0.05) in the potency of the Eight fractions from leave and stem (Hexane, Ethyl acetate, methanol and distilled water, antifungal (fluconazole), which served as positive control and 10% DMSO(Dimethyl Sulfoxide)which served as negative control. In the in vivo investigations, the ingestion technique was used for the infectious studies Female Drosophilla melanogaster(UAS-Diptericin)normal flies(positive control),infected and not treated flies (negative control) and infected flies with A. fumigatus and placed on normal diet, diet containing fractions(MSM and HSM each at concentrations of 10mg/ml 20mg/ml, 30mg/ml, 40mg/ml, 50mg/ml, 60mg/ml, 70mg/ml, 80mg/ml, 90mg/ml and 100mg/ml), diet containing control drugs(fluconazole as positive control)and infected flies on normal diet(negative control), the flies were observed for fifteen(15) days. Then the total mortality of flies was recorded each day. The results of the study reveals that the flies were susceptible to infection with A. fumigatus and responded to treatment with more effectiveness at 50mg/ml, 60mg/ml and 70mg/ml for both the Methanol and Hexane stem fractions. Therefore, the Methanol and Hexane stem fractions of T. mantaly contain therapeutically useful compounds, justifying the traditional use of this plant for the treatment of fungal infections.

Keywords: Terminalia mantaly, Aspergillus fumigatus, cytotoxic, Drosophila melanogaster, antifungal

Procedia PDF Downloads 58
935 Normal Hematopoietic Stem Cell and the Toxic Effect of Parthenolide

Authors: Alsulami H., Alghamdi N., Alasker A., Almohen N., Shome D.

Abstract:

Most conventional chemotherapeutic agents which are used for the treatment of cancers not only eradicate cancer cells but also affect normal hematopoietic Stem cells (HSCs) that leads to severe pancytopenia during treatment. Therefore, a need exists for novel approaches to treat cancer without or with minimum effect on normal HSCs. Parthenolide (PTL), a herbal product occurring naturally in the plant Feverfew, is a potential new chemotherapeutic agent for the treatment of many cancers such as acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL). In this study we investigated the effect of different PTL concentrations on the viability of normal HSCs and also on the ability of these cells to form colonies after they have been treated with PTL in vitro. Methods: In this study, 24 samples of bone marrow and cord blood were collected with consent, and mononuclear cells were separated using density gradient separation. These cells were then exposed to various concentrations of PTL for 24 hours. Cell viability after culture was determined using 7ADD in a flow cytometry test. Additionally, the impact of PTL on hematopoietic stem cells (HSCs) was evaluated using a colony forming unit assay (CFU). Furthermore, the levels of NFҝB expression were assessed by using a PE-labelled anti-pNFκBP65 antibody. Results: this study showed that there was no statistically significant difference in the percentage of cell death between untreated and PTL treated cells with 5 μM PTL (p = 0.7), 10 μM PTL (p = 0.4) and 25 μM (p = 0.09) respectively. However, at higher doses, PTL caused significant increase in the percentage of cell death. These results were significant when compared to untreated control (p < 0.001). The response of cord blood cells (n=4) on the other hand was slightly different from that for bone marrow cells in that the percentage of cell death was significant at 100 μM PTL. Therefore, cord blood cells seemed more resistant than bone marrow cells. Discussion &Conclusion: At concentrations ≤25 μM PTL has a minimum or no effect on HSCs in vitro. Cord blood HSCs are more resistant to PTL compared to bone marrow HSCs. This could be due to the higher percentage of T-lymphocytes, which are resistant to PTL, in CB samples (85% in CB vs. 56% in BM. Additionally, CB samples contained a higher proportion of CD34+ cells, with 14.5% of brightly CD34+ cells compared to only 1% in normal BM. These bright CD34+ cells in CB were mostly negative for early-stage stem cell maturation antigens, making them young and resilient to oxidative stress and high concentrations of PTL.

Keywords: stem cell, parthenolide, NFKB, CLL

Procedia PDF Downloads 22
934 Inhibitory Effect of Hydroalcoholic Extract of Cestrum Nocturnum on α-Amylase Activity

Authors: Rajesh Kumar, Anil Kamboj

Abstract:

Inhibition of α- amylase play a vital role in the clinical management of postprandial hyperglycemia. Although, powerful synthetic inhibitors are available, natural inhibitors are potentially safer. The present study was carried out to evaluate α- amylase inhibition activity from hydroalcoholic extracts from aerial parts of Cestrum nocturnum. Hydroalcoholic extract was prepared by Soxhletation Method. The extract showed strong inhibition towards α- amylase activity and IC50 value were 45.9 µg. This In vitro studies indicate the potential of C. nocturnum in the development of effective anti-diabetic agents.

Keywords: α- amylase, cestrum nocturnum, hyperglycemia, hydroalcoholic extracts, diabetes

Procedia PDF Downloads 296
933 Prednisone and Its Active Metabolite Prednisolone Attenuate Lipid Accumulation in Macrophages

Authors: H. Jeries, N. Volkova, C. G. Iglesias, M. Najjar, M. Rosenblat, M. Aviram, T. Hayek

Abstract:

Background: Synthetic forms of glucocorticoids (e.g., prednisone, prednisolone) are anti-inflammatory drugs which are widely used in clinical practice. The role of glucocorticoids (GCs) in cardiovascular diseases including atherosclerosis is highly controversial, and their impact on macrophage foam cell formation is still unknown. Our aim was to investigate the effects of prednisone or its active metabolite, prednisolone, on macrophage oxidative stress and lipid metabolism using in-vivo, ex-vivo and in-vitro systems. Methods: The in-vivo study included C57BL/6 mice which were intraperitoneally injected with prednisone or prednisolone (5mg/kg) for 4 weeks, followed by lipid metabolism analyses in the mice aorta, and in peritoneal macrophages (MPM). In the ex-vivo study, we analyzed the effect of serum samples obtained from 9 healthy volunteers before or after treatment with oral prednisone (20mg for 5 days), on J774A.1 macrophage atherogenicity. In-vitro studies were conducted using J774A.1 macrophages, human monocyte derived macrophages (HMDM) and fibroblasts. Cells were incubated with increasing concentrations (0-200 ng/ml) of prednisone or prednisolone, followed by determination of cellular oxidative status, triglyceride and cholesterol metabolism. Results: Prednisone or prednisolone treatment resulted in a significant reduction in triglycerides and mainly in cholesterol cellular accumulation in MPM or in J774A.1 macrophages incubated with human serum. Similar resulted were noted in HMDM or in J774A.1 macrophages which were directly incubated with the GCs. These effects were associated with GCs inhibitory effect on triglycerides and cholesterol biosynthesis rates, throughout downregulation of diacylglycerol acyltransferase1 (DGAT1) expression, and of the sterol regulatory element binding protein (SREBP2) and HMGCR expression, respectively. In parallel to prednisone or prednisolone induced reduction in macrophage triglyceride content, paraoxonase 2 (PON2) expression was significantly upregulated. GCs-induced reduction of cellular triglyceride and cholesterol mass was mediated by the GCs receptors on macrophages since the GCs receptor antagonist (RU 486) abolished these effects. In fibroblasts, unlike macrophages, prednisone or prednisolone showed no anti-atherogenic effects. Conclusions: Prednisone or prednisolone are anti-atherogenic since they protected macrophages from lipid accumulation and foam cell formation.

Keywords: atherosclerosis, cholesterol, foam cell, macrophage, prednisone, prednisolone, triglycerides

Procedia PDF Downloads 123
932 Cytokine Profiling in Cultured Endometrial Cells after Hormonal Treatment

Authors: Mark Gavriel, Ariel J. Jaffa, Dan Grisaru, David Elad

Abstract:

The human endometrium-myometrium interface (EMI) is the uterine inner barrier without a separatig layer. It is composed of endometrial epithelial cells (EEC) and endometrial stromal cells (ESC) in the endometrium and myometrial smooth muscle cells (MSMC) in the myometrium. The EMI undergoes structural remodeling during the menstruation cycle which are essential for human reproduction. Recently, we co-cultured a layer-by-layer in vitro model of EEC, ESC and MSMC on a synthetic membrane for mechanobiology experiments. We also treated the model with progesterone and β-estradiol in order to mimic the in vivo receptive uterus In the present study we analyzed the cytokines profile in a single layer of EEC the hormonal treated in vitro model of the EMI. The methodologies of this research include simple tissue-engineering . First, we cultured commercial EEC (RL95-2, ATCC® CRL-1671™) in 24-wellplate. Then, we applied an hormonal stimuli protocol with 17-β-estradiol and progesterone in time dependent concentration according to the human physiology that mimics the menstrual cycle. We collected cell supernatant samples of control, pre-ovulation, ovulation and post-ovulaton periods for analysis of the secreted proteins and cytokines. The cytokine profiling was performed using the Proteome Profiler Human XL Cytokine Array Kit (R&D Systems, Inc., USA) that can detect105 human soluble cytokines. The relative quantification of all the cytokines will be analyzed using xMAP – LUMINEX. We conducted a fishing expedition with the 4 membranes Proteome Profiler. We processed the images, quantified the spots intensity and normalized these values by the negative control and reference spots at the membrane. Analyses of the relative quantities that reflected change higher than 5% of the control points of the kit revealed the The results clearly showed that there are significant changes in the cytokine level for inflammation and angiogenesis pathways. Analysis of tissue-engineered models of the uterine wall will enable deeper investigation of molecular and biomechanical aspects of early reproductive stages (e.g. the window of implantation) or developments of pathologies.

Keywords: tissue-engineering, hormonal stimuli, reproduction, multi-layer uterine model, progesterone, β-estradiol, receptive uterine model, fertility

Procedia PDF Downloads 104
931 Population Pharmacokinetics of Levofloxacin and Moxifloxacin, and the Probability of Target Attainment in Ethiopian Patients with Multi-Drug Resistant Tuberculosis

Authors: Temesgen Sidamo, Prakruti S. Rao, Eleni Akllilu, Workineh Shibeshi, Yumi Park, Yong-Soon Cho, Jae-Gook Shin, Scott K. Heysell, Stellah G. Mpagama, Ephrem Engidawork

Abstract:

The fluoroquinolones (FQs) are used off-label for the treatment of multidrug-resistant tuberculosis (MDR-TB), and for evaluation in shortening the duration of drug-susceptible TB in recently prioritized regimens. Within the class, levofloxacin (LFX) and moxifloxacin (MXF) play a substantial role in ensuring success in treatment outcomes. However, sub-therapeutic plasma concentrations of either LFX or MXF may drive unfavorable treatment outcomes. To the best of our knowledge, the pharmacokinetics of LFX and MXF in Ethiopian patients with MDR-TB have not yet been investigated. Therefore, the aim of this study was to develop a population pharmacokinetic (PopPK) model of levofloxacin (LFX) and moxifloxacin (MXF) and assess the percent probability of target attainment (PTA) as defined by the ratio of the area under the plasma concentration-time curve over 24-h (AUC0-24) and the in vitro minimum inhibitory concentration (MIC) (AUC0-24/MIC) in Ethiopian MDR-TB patients. Steady-state plasma was collected from 39 MDR-TB patients enrolled in the programmatic treatment course and the drug concentrations were determined using optimized liquid chromatography-tandem mass spectrometry. In addition, the in vitro MIC of the patients' pretreatment clinical isolates was determined. PopPK and simulations were run at various doses, and PK parameters were estimated. The effect of covariates on the PK parameters and the PTA for maximum mycobacterial kill and resistance prevention was also investigated. LFX and MXF both fit in a one-compartment model with adjustments. The apparent volume of distribution (V) and clearance (CL) of LFX were influenced by serum creatinine (Scr), whereas the absorption constant (Ka) and V of MXF were influenced by Scr and BMI, respectively. The PTA for LFX maximal mycobacterial kill at the critical MIC of 0.5 mg/L was 29%, 62%, and 95% with the simulated 750 mg, 1000 mg, and 1500 mg doses, respectively, whereas the PTA for resistance prevention at 1500 mg was only 4.8%, with none of the lower doses achieving this target. At the critical MIC of 0.25 mg/L, there was no difference in the PTA (94.4%) for maximum bacterial kill among the simulated doses of MXF (600 mg, 800 mg, and 1000 mg), but the PTA for resistance prevention improved proportionately with dose. Standard LFX and MXF doses may not provide adequate drug exposure. LFX PopPK is more predictable for maximum mycobacterial kill, whereas MXF's resistance prevention target increases with dose. Scr and BMI are likely to be important covariates in dose optimization or therapeutic drug monitoring (TDM) studies in Ethiopian patients.

Keywords: population PK, PTA, moxifloxacin, levofloxacin, MDR-TB patients, ethiopia

Procedia PDF Downloads 93
930 In vitro Susceptibility of Isolated Shigella flexneri and Shigella dysenteriae to the Ethanolic Extracts of Trachyspermum ammi and Peganum harmala

Authors: Ibrahim Siddig Hamid, Ikram Mohamed Eltayeb

Abstract:

Trachyspermum ammi belongs to the family Apiaceae, is used traditionally for the treatment of gastrointestinal ailments, lack of appetite and bronchial problems as well used as antiseptic, antimicrobial, antipyretic, febrifugal and in the treatment of typhoid fever. Peganum harmala belongs to the family Zygophyllaceae it has been reported to have an antibacterial activity and used to treat depression and recurring fevers. It also used to kill algae, bacteria, intestinal parasites and molds. In Sudan, the combination of two plants are traditionally used for the treatment of bacillary dysentery. Bacillary dysentery is caused by one or more types of Shigella species bacteria mainly Shigella dysenteri and shigella flexneri. Bacillary dysentery is mainly found in hot countries like Sudan with poor hygiene and sanitation. Bacillary dysentery causes sudden onset of high fever and chills, abdominal pain, cramps and bloating, urgency to pass stool, weight loss, and dehydration and if left untreated it can lead to serious complications including delirium, convulsions and coma. A serious infection like this can be fatal within 24 hours. The objective of this study is to investigate the in vitro susceptibility of Sh. flexneri and Sh. dysenteriae to the T. ammi and P. harmala. T. ammi and P. harmala were extracted by 96% ethanol using Soxhlet apparatus. The antimicrobial activity of the extracts was investigated according to the disc diffusion method. The discs were prepared by soaking sterilized filter paper discs in 20 microliter of serially diluted solutions of each plant extract with the concentrations (100, 50, 25, 12.5, 6.25mg/dl) then placing them on Muller Hinton Agar plates that were inoculated with bacterial suspension separately, the plates were incubated for 24 hours at 37c and the minimum inhibitory concentration of the extract which was the least concentration of the extract to inhibit fungal growth was determined. The results showed the high antimicrobial activity of T. ammi extract with an average diameter zone ranging from 18-20 mm and its minimum inhibitory concentration was found to be 25 mg/ml against the two shigella species. P. harmala extract was found to have slight antibacterial effect against the two bacteria. This result justified the Sudanese traditional use of Trachyspermum ammi plant for the treatment of bacillary dysentery.

Keywords: harmala, peganum, shigella, trachyspermum

Procedia PDF Downloads 216
929 The Optimization of Topical Antineoplastic Therapy Using Controlled Release Systems Based on Amino-functionalized Mesoporous Silica

Authors: Lacramioara Ochiuz, Aurelia Vasile, Iulian Stoleriu, Cristina Ghiciuc, Maria Ignat

Abstract:

Topical administration of chemotherapeutic agents (eg. carmustine, bexarotene, mechlorethamine etc.) in local treatment of cutaneous T-cell lymphoma (CTCL) is accompanied by multiple side effects, such as contact hypersensitivity, pruritus, skin atrophy or even secondary malignancies. A known method of reducing the side effects of anticancer agent is the development of modified drug release systems using drug incapsulation in biocompatible nanoporous inorganic matrices, such as mesoporous MCM-41 silica. Mesoporous MCM-41 silica is characterized by large specific surface, high pore volume, uniform porosity, and stable dispersion in aqueous medium, excellent biocompatibility, in vivo biodegradability and capacity to be functionalized with different organic groups. Therefore, MCM-41 is an attractive candidate for a wide range of biomedical applications, such as controlled drug release, bone regeneration, protein immobilization, enzymes, etc. The main advantage of this material lies in its ability to host a large amount of the active substance in uniform pore system with adjustable size in a mesoscopic range. Silanol groups allow surface controlled functionalization leading to control of drug loading and release. This study shows (I) the amino-grafting optimization of mesoporous MCM-41 silica matrix by means of co-condensation during synthesis and post-synthesis using APTES (3-aminopropyltriethoxysilane); (ii) loading the therapeutic agent (carmustine) obtaining a modified drug release systems; (iii) determining the profile of in vitro carmustine release from these systems; (iv) assessment of carmustine release kinetics by fitting on four mathematical models. Obtained powders have been described in terms of structure, texture, morphology thermogravimetric analysis. The concentration of the therapeutic agent in the dissolution medium has been determined by HPLC method. In vitro dissolution tests have been done using cell Enhancer in a 12 hours interval. Analysis of carmustine release kinetics from mesoporous systems was made by fitting to zero-order model, first-order model Higuchi model and Korsmeyer-Peppas model, respectively. Results showed that both types of highly ordered mesoporous silica (amino grafted by co-condensation process or post-synthesis) are thermally stable in aqueous medium. In what regards the degree of loading and efficiency of loading with the therapeutic agent, there has been noticed an increase of around 10% in case of co-condensation method application. This result shows that direct co-condensation leads to even distribution of amino groups on the pore walls while in case of post-synthesis grafting many amino groups are concentrated near the pore opening and/or on external surface. In vitro dissolution tests showed an extended carmustine release (more than 86% m/m) both from systems based on silica functionalized directly by co-condensation and after synthesis. Assessment of carmustine release kinetics revealed a release through diffusion from all studied systems as a result of fitting to Higuchi model. The results of this study proved that amino-functionalized mesoporous silica may be used as a matrix for optimizing the anti-cancer topical therapy by loading carmustine and developing prolonged-release systems.

Keywords: carmustine, silica, controlled, release

Procedia PDF Downloads 233
928 In vivo Antidiabetic and in vitro Antioxidant Activity of Myrica salicifolia Hochst. ex A. Rich. (Myricaceae) Root Extract in Streptozotocin-Induced Diabetic Mice

Authors: Yohannes Kelifa, Gomathi Periasamy, Aman Karim

Abstract:

Introduction: Diabetes mellitus has become a major public health and economical problem across the globe. Modern antidiabetic drugs have a number of limitations, and scientific investigation of traditional herbal remedies used for diabetes may provide novel leads for the development of new antidiabetic drugs that can be used as alternative or complementary to available antidiabetic allopathic medications. Though Myrica salicifolia Hochst. ex A. Rich. is used for the management of diabetes in Ethiopian traditional medicine, there was no previous scientific evidence about its antidiabetic effect to the authors’ knowledge. This study was undertaken to evaluate the antidiabetic activity the root extracts of Myrica salicifolia in streptozotocin (STZ)-induced diabetic mice. Methods: Experimental diabetes was induced by intraperitoneal administration of STZ (150 mg/kg) in male mice. Diabetic mice were treated with oral doses of M. salicifolia root extracts at 200, 400 and 600 mg/kg, and its fractions (chloroform, ethyl acetate, n-butanol and aqueous) at a dose of 400 mg/kg daily for 15 days. Fasting blood glucose level (BGL) was measured at 0, 5th,10th, and 15th day. The free radical scavenging activity of the crude extract was determined using in vitro by DPPH assay. The statistical significance was assessed by one-way ANOVA, followed by Tukey’s multiple comparison tests. Results were considered significant when p < 0.05. Results: Daily administration of the M. salicifolia 80% methanol root extracts (at three different doses (200, 400 and 600 mg/kg) significantly (p < 0.05, p < 0.01 and p < 0.001) reduced fasting BGL compared with diabetic control. The aqueous and butanol fractions at a dose of 400 mg/kg resulted in maximum reduction of fasting BGL by 42.39%, and 52.13%, respectively at the 15th day in STZ-induced diabetic mice. Free radical scavenging activity of the 80% methanol extract of M. salicifolia was comparable to ascorbic acid. The IC50 values of the crude extract and ascorbic acid (a reference compound) were found to be 4.54 μg/ml and 4.39 μg/ml, respectively. Conclusion: These findings demonstrated that the methanolic extracts of M. salicifolia root and its fractions (n-butanol and aqueous) exhibit a significant antihyperglycemic activity in STZ-induced diabetic mice. Furthermore, the result of the present study indicates that M. salicifolia root extract is a potential source of natural antioxidants.

Keywords: antidiabetic, diabetes mellitus, DPPH, mice, Myrica salicifolia, streptozotocin

Procedia PDF Downloads 172
927 In vitro Plant Regeneration of Gonystylus Bancanus (Miq) Kurz. Through Direct Organogenesis

Authors: Grippin Akeng, Suresh Kumar Muniandy, Nor Aini Ab Shukor

Abstract:

Plant regeneration was achieved from shoot tip and nodal segment of Gonystylus bancanus (Miq) Kurz. cultured in Murashige and Skoog’s medium supplemented with various concentrations of 6-benzylaminopurine (BAP). The most optimum concentration of BAP for shoot initiation is 10.0 mgl⁻¹ with approximately 10% of shoot tip and 15% of nodal segment produced single shoot after 28 and 15 days of culture incubation respectively. Rooting was achieved when shoots were transferred into MS medium supplemented with 5.0 mgl⁻¹ Naphthalene acetic acid (NAA). Synthesizing results developed through this research can be a starting point for the upscalling and optimization process in future.

Keywords: gonystylus bancanus, organogenesis, shoot initiation, shoot tip

Procedia PDF Downloads 222
926 Biochemical and Cellular Correlates of Essential Oil of Pistacia Integerrima against in vitro and Murine Models of Bronchial Asthma

Authors: R. L. Shirole, N. L. Shirole, R. B. Patil, M. N. Saraf

Abstract:

The present investigation aimed to elucidate the probable mechanism of antiasthmatic action of essential oil of Pistacia integerrima J.L. Stewart ex Brandis galls (EOPI). EOPI was investigated for its potential antiasthmatic action using in vitro antiallergic assays mast cell degranulation and soyabean lipoxidase enzyme activit, and spasmolytic action using isolated guinea pig ileum preparation. In vivo studies included lipopolysaccharide-induced bronchial inflammation in rats and airway hyperresponsiveness in ovalbumin in sensitized guinea pigs using spirometry. Data was analysed by GraphPad Prism 5.01 and results were expressed as means ± SEM. P < 0.05 was considered to be significant. EOPI inhibits 5-lipoxidase enzyme activity, DPPH scavenging activity and erythropoietin- induced angiogenesis. It showed dose dependent anti-allergic activity by inhibiting compound 48/80 induced mast cell degranulation. The finding that essential oil induced inhibition of transient contraction of acetylcholine in calcium free medium, and relaxation of S-(-)-Bay 8644-precontracted isolated guinea pig ileum jointly suggest that suggesting that the L-subtype Cav channel is involved in spasmolytic action of EOPI. Treatment with EOPI dose dependently (7.5, 15 and 30 mg/kg i.p.) inhibited lipopolysaccharide- induced increased in total cell count, neutrophil count, nitrate-nitrite, total protein, albumin levels in bronchoalveolar fluid and myeloperoxidase levels in lung homogenates. Mild diffused lesions involving focal interalveolar septal, intraluminal infiltration of neutrophils were observed in EOPI (7.5 &15 mg/kg) pretreated while no abnormality was detected in EOPI (30 mg/kg) and roflumilast (1mg/kg) pretreated rats. Roflumilast was used as standard. EOPI reduced the respiratory flow due to gasping in ovalbumin sensitized guinea pigs. The study demonstrates the effectiveness of EOPI in bronchial asthma possibly related to its ability to inhibit L-subtype Cav channel, mast cell stabilization, antioxidant, angiostatic and through inhibition of 5-lipoxygenase enzyme.

Keywords: asthma, lipopolysaccharide, spirometry, Pistacia integerrima J.L. Stewart ex Brandis, essential oil

Procedia PDF Downloads 265
925 Curcumin Loaded Modified Chitosan Nanocarrier for Tumor Specificity

Authors: S. T. Kumbhar, M. S. Bhatia, R. C. Khairate

Abstract:

An effective nanodrug delivery system was developed by using chitosan for increased encapsulation efficiency and retarded release of curcumin. Potential ionotropic gelation method was used for the development of chitosan nanoparticles with TPP as cross-linker. The characterization was done for analysis of size, structure, surface morphology, and thermal behavior of synthesized chitosan nanoparticles. The encapsulation efficiency was more than 80%, with improved drug loading capacity. The in-vitro drug release study showed that curcumin release rate was decreased significantly. These chitosan nanoparticles could be a suitable platform for co-delivery of curcumin and anticancer agent for enhanced cytotoxic effect on tumor cells.

Keywords: Curcumin, chitosan, nanoparticles, anticancer activity

Procedia PDF Downloads 153
924 Prospects of Regenerative Medicine with Human Allogeneic Adipose Tissue-Derived Mesenchymal Stem Cell Sheets: Achievements and Future Outlook in Clinical Trials for Myopic Chorioretinal Atrophy

Authors: Norimichi Nagano, Yoshio Hirano, Tsutomu Yasukawa

Abstract:

Mesenchymal stem cells are thought to confer neuroprotection, facilitate tissue regeneration and exert their effects on retinal degenerative diseases, however, adverse events such as proliferative vitreoretinopathy and preretinal membrane disease associated with cell suspension transplantation have also been reported. We have recently developed human (allogeneic) adipose tissue-derived mesenchymal stem cell (adMSC) sheets through our proprietary sheet transformation technique, which could potentially mitigate these adverse events. To clarify the properties of our adMSC sheets named PAL-222, we performed in vitro studies such as viability testing, cytokine secretions by ELISA, immunohistochemical study, and migration assay. The viability of the cells exceeded 70%. Vascular Endothelial Growth Factor (VEGF) and Pigment Epithelium-Derived Factor (PEDF), which are quite important cytokines for the retinal area, were observed. PAL-222 expressed type I collagen, a strength marker, type IV collagen, a marker of the basement membrane, and elastin, an elasticity marker. Finally, the migration assay was performed and showed negative, which means that PAL-222 is stably kept in the topical area and does not come to pieces. Next, to evaluate the efficacy in vivo, we transplanted PAL-222 into the subretinal space of the eye of Royal College of Surgeons rats with congenital retinal degeneration and assessed it for three weeks after transplantation. We confirmed that PAL-222 suppressed the decrease in the thickness of the outer nuclear layer, which means that the photoreceptor protective effect treated with PAL-222 was significantly higher than that in the sham group. (p < 0.01). This finding demonstrates that PAL-222 showed their retinoprotective effect in a model of congenital retinal degeneration. As the study suggested the efficacy of PAL-222 in both in vitro and in vivo studies, we are presently engaged in clinical trials of PAL-222 for myopic chorioretinal atrophy, which is one of the retinal degenerative diseases, for the purpose of regenerative medicine.

Keywords: cell sheet, clinical trial, mesenchymal stem cell, myopic chorioretinal atrophy

Procedia PDF Downloads 61
923 Effect of Fermentation on the Bioavailability of Some Fruit Extracts

Authors: Kubra Ozkan, Osman Sagdic

Abstract:

To better understand the benefits of these fresh and fermented fruits on human health, the consequences of human metabolism and the bioavailability must be known. In this study, brine with 10% salt content, sugar, and vinegar (5% acetic acid) was added to fruits (Prunus domestica L. and Prunus amygdalus Batsch) in different formulations. Samples were stored at 20±2˚C for their fermentation for 21 days. The effects of in vitro digestion were determined on the bioactive compounds in fresh and fermented fruits ((Prunus domestica L. and Prunus amygdalus Batsch). Total phenolic compounds, total flavonoid compounds and antioxidant capacities of post gastric (PG), IN (with small intestinal absorbers) and OUT (without small intestine absorbers) samples obtained as gastric and intestinal digestion in vitro were measured. Bioactive compounds and antioxidant capacity were determined by spectrophotometrically. Antioxidant capacity was tested by the CUPRAC methods, the total phenolic content (TPC) was determined by the Folin-Ciocalteu method, the total flavonoid content (TFC) determined by Aluminium trichloride (AlCl3) method. While the antioxidant capacity of fresh Prunus domestica L. and Prunus amygdalus Batsch samples were 2.21±0.05 mg TEAC/g, 4.39±0.02mg TEAC/g; these values for fermented fruits were found 2.37±0.08mg TEAC/g, 5.38±0.07mg TEAC/g respectively. While the total phenolic contents of fresh fruits namely, Prunus domestica L. and Prunus amygdalus Batsch samples were 0.51±0.01mg GAE/g, 5.56±0.01mg GAE/g; these values for fermented fruits were found as 0.52±0.01mg GAE/g, 6.81±0.03mg GAE/g, respectively. While the total flavonoid amounts of fresh Prunus domestica L. and Prunus amygdalus Batsch samples were 0.19±0.01mg CAE/g, 2.68±0.02mg CAE/g, these values for fermented fruits were found 0.20±0.01mg CAE/g, 2.93±0.02mg CAE/g, respectively. This study showed that phenolic, flavonoid compounds and antioxidant capacities of the samples were increased during the fermantation process. As a result of digestion, the amounts of bioactive components decreased in the stomach and intestinal environment. The bioavailability values of the phenolic compounds in fresh and fermented Prunus domestica L. fruits are 40.89% and 43.28%, respectively. The bioavailability values of the phenolic compounds in fresh and fermented Prunus amygdalus Batsch fruits 4.27% and 3.82%, respectively. The bioavailability values of the flavonoid compounds in fresh and fermented Prunus domestica L. fruits are 5.32% and 19.98%, respectively. The bioavailability values of the flavonoid compounds in fresh and fermented Prunus amygdalus Batsch fruits 2.22% and 1.53%, respectively. The bioavailability values of antioxidant capacity in fresh and fermented Prunus domestica L. fruits are 33.06% and 33.51, respectively. The bioavailability values of antioxidant capacity in fresh and fermented Prunus amygdalus Batsch fruits 14.50% and 15.31%, respectively. Fermentation process; Prunus amygdalus Batsch decreased bioavailability while Prunus domestica increased bioavailability. When two fruits are compared; Prunus domestica bioavailability is more than Prunus amygdalus Batsch.

Keywords: bioactivity, bioavailability, fermented, fruit, nutrition

Procedia PDF Downloads 144
922 Microwave-Assisted Synthesis of a Class of Pyridine and Purine Thioglycoside Analogs

Authors: Mamdouh Abu-Zaied, K. Mohamed, Galal A. Nawwar

Abstract:

Microwave-assisted synthesis of a new class of pyridine or purine thioglycoside analogs from readily available starting materials has been described. The key step of this protocol is the formation of sodium pyridine 4-thiolate 4 and pyrazolo[1,5-a]pyrimidine-7-thiolate 5 derivatives via condensation of 1 with cyanoacetanilide derivative 2 or 5-aminopyrazole derivative 3 respectively under microwave irradiation, followed by coupling with halo sugars to give the corresponding pyridine and purine thioglycoside analogs. The obtained compounds were evaluated in vitro against lung (A549), colon (HCT116), liver (HEPG2), and MCF-7(breast) cancer cell lines. Some of them recorded promising activities.

Keywords: antitumor, cyclic sugars, pyrazoles, pyridines, pyrimidines, purines, thioglycosides

Procedia PDF Downloads 222
921 The Usefulness of Premature Chromosome Condensation Scoring Module in Cell Response to Ionizing Radiation

Authors: K. Rawojć, J. Miszczyk, A. Możdżeń, A. Panek, J. Swakoń, M. Rydygier

Abstract:

Due to the mitotic delay, poor mitotic index and disappearance of lymphocytes from peripheral blood circulation, assessing the DNA damage after high dose exposure is less effective. Conventional chromosome aberration analysis or cytokinesis-blocked micronucleus assay do not provide an accurate dose estimation or radiosensitivity prediction in doses higher than 6.0 Gy. For this reason, there is a need to establish reliable methods allowing analysis of biological effects after exposure in high dose range i.e., during particle radiotherapy. Lately, Premature Chromosome Condensation (PCC) has become an important method in high dose biodosimetry and a promising treatment modality to cancer patients. The aim of the study was to evaluate the usefulness of drug-induced PCC scoring procedure in an experimental mode, where 100 G2/M cells were analyzed in different dose ranges. To test the consistency of obtained results, scoring was performed by 3 independent persons in the same mode and following identical scoring criteria. Whole-body exposure was simulated in an in vitro experiment by irradiating whole blood collected from healthy donors with 60 MeV protons and 250 keV X-rays, in the range of 4.0 – 20.0 Gy. Drug-induced PCC assay was performed on human peripheral blood lymphocytes (HPBL) isolated after in vitro exposure. Cells were cultured for 48 hours with PHA. Then to achieve premature condensation, calyculin A was added. After Giemsa staining, chromosome spreads were photographed and manually analyzed by scorers. The dose-effect curves were derived by counting the excess chromosome fragments. The results indicated adequate dose estimates for the whole-body exposure scenario in the high dose range for both studied types of radiation. Moreover, compared results revealed no significant differences between scores, which has an important meaning in reducing the analysis time. These investigations were conducted as a part of an extended examination of 60 MeV protons from AIC-144 isochronous cyclotron, at the Institute of Nuclear Physics in Kraków, Poland (IFJ PAN) by cytogenetic and molecular methods and were partially supported by grant DEC-2013/09/D/NZ7/00324 from the National Science Centre, Poland.

Keywords: cell response to radiation exposure, drug induced premature chromosome condensation, premature chromosome condensation procedure, proton therapy

Procedia PDF Downloads 322
920 Innovative Preparation Techniques: Boosting Oral Bioavailability of Phenylbutyric Acid Through Choline Salt-Based API-Ionic Liquids and Therapeutic Deep Eutectic Systems

Authors: Lin Po-Hsi, Sheu Ming-Thau

Abstract:

Urea cycle disorders (UCD) are rare genetic metabolic disorders that compromise the body's urea cycle. Sodium phenylbutyrate (SPB) is a medication commonly administered in tablet or powder form to lower ammonia levels. Nonetheless, its high sodium content poses risks to sodium-sensitive UCD patients. This necessitates the creation of an alternative drug formulation to mitigate sodium load and optimize drug delivery for UCD patients. This study focused on crafting a novel oral drug formulation for UCD, leveraging choline bicarbonate and phenylbutyric acid. The active pharmaceutical ingredient-ionic liquids (API-ILs) and therapeutic deep eutectic systems (THEDES) were formed by combining these with choline chloride. These systems display characteristics like maintaining a liquid state at room temperature and exhibiting enhanced solubility. This in turn amplifies drug dissolution rate, permeability, and ultimately oral bioavailability. Incorporating choline-based phenylbutyric acid as a substitute for traditional SPB can effectively curtail the sodium load in UCD patients. Our in vitro dissolution experiments revealed that the ILs and DESs, synthesized using choline bicarbonate and choline chloride with phenylbutyric acid, surpassed commercial tablets in dissolution speed. Pharmacokinetic evaluations in SD rats indicated a notable uptick in the oral bioavailability of phenylbutyric acid, underscoring the efficacy of choline salt ILs in augmenting its bioavailability. Additional in vitro intestinal permeability tests on SD rats authenticated that the ILs, formulated with choline bicarbonate and phenylbutyric acid, demonstrate superior permeability compared to their sodium and acid counterparts. To conclude, choline salt ILs developed from choline bicarbonate and phenylbutyric acid present a promising avenue for UCD treatment, with the added benefit of reduced sodium load. They also hold merit in formulation engineering. The sustained-release capabilities of DESs position them favorably for drug delivery, while the low toxicity and cost-effectiveness of choline chloride signal potential in formulation engineering. Overall, this drug formulation heralds a prospective therapeutic avenue for UCD patients.

Keywords: phenylbutyric acid, sodium phenylbutyrate, choline salt, ionic liquids, deep eutectic systems, oral bioavailability

Procedia PDF Downloads 82
919 Effect of Interaction between Colchicine Concentrations and Treatment Time Duration on the Percentage of Chromosome Polyploidy of Crepis capillaris (with and without 2B Chromosome) in vitro Culture

Authors: Payman A. A. Zibari, Mosleh M. S. Duhoky

Abstract:

These experiments were conducted at Tissue Culture Laboratory/ Faculty of Agriculture / University of Duhok during the period from January 2011 to May 2013. The objectives of this study were to study the effects of interaction between colchcine concentrations and treatment time duration of Creps capilaris (with and without 2B chromosome) on chromosome polyploidy during fifteen passages until regeneration of plants from the callus. Data showed that high percentage of chromosome polyploidy approximately can be obtained from high concentration of colchicin and long time of duration.

Keywords: polyploidy, Crepis capilaris, colchicine, B chromosome

Procedia PDF Downloads 167