Search results for: heat consumption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5977

Search results for: heat consumption

1237 Gap Formation into Bulk InSb Crystals Grown by the VDS Technique Revealing Enhancement in the Transport Properties

Authors: Dattatray Gadkari, Dilip Maske, Manisha Joshi, Rashmi Choudhari, Brij Mohan Arora

Abstract:

The vertical directional solidification (VDS) technique has been applied to the growth of bulk InSb crystals. The concept of practical stability is applied to the case of detached bulk crystal growth on earth in a simplified design. By optimization of the set up and growth parameters, 32 ingots of 65-75 mm in length and 10-22 mm in diameter have been grown. The results indicate that the wetting angle of the melt on the ampoule wall and the pressure difference across the interface are the crucial factors effecting the meniscus shape and stability. Taking into account both heat transfer and capillarity, it is demonstrated that the process is stable in case of convex menisci (seen from melt), provided that pressure fluctuations remain in a stable range. During the crystal growth process, it is necessary to keep a relationship between the rate of the difference pressure controls and the solidification to maintain the width of gas gap. It is concluded that practical stability gives valuable knowledge of the dynamics and could be usefully applied to other crystal growth processes, especially those involving capillary shaping. Optoelectronic properties were investigated in relation to the type of solidification attached and detached ingots growth. These samples, room temperature physical properties such as Hall mobility, FTIR, Raman spectroscopy and microhardness achieved for antimonide samples grown by VDS technique have shown the highest values gained till at this time. These results reveal that these crystals can be used to produce InSb with high mobility for device applications.

Keywords: alloys, electronic materials, semiconductors, crystal growth, solidification, etching, optical microscopy, crystal structure, defects, Hall effect

Procedia PDF Downloads 400
1236 Fabrication and Characterization of Ceramic Matrix Composite

Authors: Yahya Asanoglu, Celaletdin Ergun

Abstract:

Ceramic-matrix composites (CMC) have significant prominence in various engineering applications because of their heat resistance associated with an ability to withstand the brittle type of catastrophic failure. In this study, specific raw materials have been chosen for the purpose of having suitable CMC material for high-temperature dielectric applications. CMC material will be manufactured through the polymer infiltration and pyrolysis (PIP) method. During the manufacturing process, vacuum infiltration and autoclave will be applied so as to decrease porosity and obtain higher mechanical properties, although this advantage leads to a decrease in the electrical performance of the material. Time and temperature adjustment in pyrolysis parameters provide a significant difference in the properties of the resulting material. The mechanical and thermal properties will be investigated in addition to the measurement of dielectric constant and tangent loss values within the spectrum of Ku-band (12 to 18 GHz). Also, XRD, TGA/PTA analyses will be employed to prove the transition of precursor to ceramic phases and to detect critical transition temperatures. Additionally, SEM analysis on the fracture surfaces will be performed to see failure mechanism whether there is fiber pull-out, crack deflection and others which lead to ductility and toughness in the material. In this research, the cost-effectiveness and applicability of the PIP method will be proven in the manufacture of CMC materials while optimization of pyrolysis time, temperature and cycle for specific materials is detected by experiment. Also, several resins will be shown to be a potential raw material for CMC radome and antenna applications. This research will be distinguished from previous related papers due to the fact that in this research, the combination of different precursors and fabrics will be experimented with to specify the unique cons and pros of each combination. In this way, this is an experimental sum of previous works with unique PIP parameters and a guide to the manufacture of CMC radome and antenna.

Keywords: CMC, PIP, precursor, quartz

Procedia PDF Downloads 149
1235 Analysis of Eating Habits of Working People in Shopping Centers on a 12-Hour Basis

Authors: A. Sadowska, R. Polaniak, P. Boczarski, E. Grochowska-Niedworok

Abstract:

Working in a shopping center 12 hours a day as a shop assistant is a very demanding and stressful job, which is still underestimated. Proper eating habits, including recommended fruits, vegetables, products rich in fiber, omega-3 fatty acids, and proper hydration, can contribute to improvement in health and make shop assistants more resistant to stress. The aim of this study was to analyze the eating habits of shop assistants working in shopping centers 12 hours a day. Participant 101 sellers from Poland filled out authorial surveys. Nearly 50% of participants consumed the recommended number of 4 to 5 meals per day. There was a slight dependence between the number of meals consumed per day and the time that employers allowed for employee mealtimes. Respondents declared that they engaged in snacking, and they generally chose fruit, chocolates, and other sweets. Survey results indicated a low liquid intake, which was about 1,05 liters daily. Mineral water was chosen most often (63%) by participants. Participant fish consumption was very low in comparison with the norms, which can pose a risk of developing omega-3 fatty acids deficiency. Shop assistants stated that a change in their eating habits was necessary. Study findings suggest a moderate dependence between being on a diet and counting calories and macronutrients contained in meals. The number of meals eaten per day is correlated with the number of meals eaten at the worksite. The percentage of snacking by shop assistants was so high that it suggested a need for more nutrition education. The topic of eating habits among shop assistants should be examined using a larger group of participants. It is necessary to note a connection between nutrition and health problems.

Keywords: eating habits, work during 12 hours a day, shopping center, nutrition

Procedia PDF Downloads 109
1234 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration

Authors: Dina Magdy Abdo, Ayat N. El-Shazly, Hamdy Maamoun Abdel-Ghafar, E. A. Abdel-Aal

Abstract:

Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of the doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.

Keywords: forword, membrane, solar, water treatment

Procedia PDF Downloads 67
1233 Simulation of a Sustainable Irrigation System Development: The Case of Sitio Kantaling Village Farm Lands, Danao City, Cebu, Philippines

Authors: Amando A. Radomes Jr., LLoyd Jun Benjamin T. Embernatre, Cherssy Kaye F. Eviota, Krizia Allyn L. Nunez, Jose Thaddeus B. Roble III

Abstract:

Sitio Kantaling is one of the 34 villages in Danao City, Cebu, in the central Philippines. As of 2015, the eight households in the mountainous village extending over 40 hectares of land area, including 12 hectares of arable land, are the source of over a fifth of the agricultural products that go into the city. Over the years, however, the local government had been concerned with the decline in agricultural productivity because increasing number of residents are migrating into the urban areas of the region to look for better employment opportunities. One of the major reasons for the agricultural productivity decline is underdeveloped irrigation infrastructure. The local government had partnered with the University of San Carlos to conduct research on developing an irrigation system that could sustainably meet both agricultural and household consumption needs. From a macro-perspective, a dynamic simulation model was developed to understand the long-term behavior of the status quo and proposed the system. Data on population, water supply and demand, household income, and urban migration were incorporated in the 20-year horizon model. The study also developed a smart irrigation system design. Instead of using electricity to pump water, a network of aqueducts with three main nodes had been designed and strategically located to take advantage of gravity to transport water from a spring. Simulation results showed that implementing a sustainable irrigation system would be able to significantly contribute to the socio-economic progress of the local community.

Keywords: agriculture, aqueduct, simulation, sustainable irrigation system

Procedia PDF Downloads 152
1232 Bacteremia Caused by Nontoxigenic Vibrio cholerae in an Immunocompromised Patient in Istanbul, Turkey

Authors: Fatma Koksal Çakirlar, Si̇nem Ozdemir, Selcan Akyol, Revazi̇ye Gulesen, Murat Gunaydin, Nevri̇ye Gonullu, Belkis Levent, Nuri̇ Kiraz

Abstract:

Vibrio cholerae O1 and O139 are the causative agent of epidemic or pandemic cholera. V. cholerae O1 is generally accepted as a non-invasive enterotoxigenic organism causing gastroenteritis of various severities. Non-O1 V. cholerae can cause small outbreaks of diarrhea due to consumption of contaminated food and water. Particularly, the patients with achlorydria have a risk for vibrio infections. There are numerous case reports of bacteremia caused by vibrio in patients with predisposing conditions like cirrhosis, nephrotic syndrome, diabetes, hematologic malignancy, gastrectomy, and AIDS. We described in this study the first case of nontoxigenic, non-01/non-O139 V. cholerae isolated from the blood culture of a 77-year-old female patient with hipertension, diabetes, coronary artery disease, gout and about 9 years ago migrated breast cancer history. The patient with complaints of shortness of breath, fever and malaise admitted to our emergency clinic were evaluated. There was no diarrhea or abdominal symptoms in the patient. No growth in her urine culture, but blood culture (BACTEC 9120 system, Becton Dickinson, USA) was positive for non-01/non-O139 V. cholerae that was identified by conventional methods and Phoenix automated system (BD Diagnostic Systems, Sparks, MD). It does not secrete the cholera toxin. The agglutination test was negative with polyvalent O1 antisera and O139 antiserum. Empirically ceftriaxone was administered to the patient and she was discharged with improvement in general condition. In this study we report bacteremia by non-01/non-O139 V. cholerae that is rare in the worldwide and first in Turkey.

Keywords: bacteremia, blood culture, immunocompromised patient, Non-O1 vibrio cholerae

Procedia PDF Downloads 202
1231 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network

Authors: Ziying Wu, Danfeng Yan

Abstract:

Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.

Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network

Procedia PDF Downloads 92
1230 Quantitative Analysis of Potential Rainwater Harvesting and Supply to a Rural Community at Northeast of Amazon Region, Brazil

Authors: N. Y. H. Konagano

Abstract:

Riverside population of Brazilian amazon suffers drinking water scarcity, seeking alternative water resources such as well and rivers, ordinary polluted. Although Amazon Region holds high annual river inflow and enough available of underground water, human activities have compromised the conservation of water resources. In addition, decentralized rural households make difficult to access of potable water. Main objective is to analyze quantitatively the potential of rainwater harvesting to human consumption at Marupaúba community, located in northeast of Amazon region, Brazil. Methods such as historical rainfall data series of municipality of Tomé-Açu at Pará state were obtained from Hydrological Information System of National Water Agency (ANA). Besides, Rippl method was used to calculate, mainly, volume of the reservoir based on difference of water demand and volume available through rainwater using as references two houses (CA I and CA II) as model of rainwater catchment and supply. Results presented that, from years 1984 to 2017, average annual precipitation was 2.607 mm, average maximum precipitation peak was 474 mm on March and average minimum peak on September was 44 mm. All months, of a year, surplus volume of water have presented in relation to demand, considering catchment area (CA) I = 134.4m² and demand volume =0.72 m³/month; and, CA II = 81.84 m² and demand volume = 0.48 m³/month. Based on results, it is concluded that it is feasible to use rainwater for the supply of the rural community Marupaúba, since the access of drinking water is a human right and the lack of this resource compromises health and daily life of human beings.

Keywords: Amazon Region, rainwater harvesting, rainwater resource, rural community

Procedia PDF Downloads 138
1229 Neuroprotective Effects of Gly-Pro-Glu-Thr-Ala-Phe-Leu-Arg, a Peptide Isolated from Lupinus angustifolius L. Protein Hydrolysate

Authors: Maria Del Carmen Millan-Linares, Ana Lemus Conejo, Rocio Toscano, Alvaro Villanueva, Francisco Millan, Justo Pedroche, Sergio Montserrat-De La Paz

Abstract:

GPETAFLR (Glycine-Proline-Glutamine-Threonine-Alanine-Phenylalanine-Leucine-Arginine) is a peptide isolated from Lupinus angustifolius L. protein hydrolysate (LPH). Herein, the effect of this peptide was investigated in two different models of neuroinflammation: in the immortalized murine microglia cell line BV-2 and in a high-fat-diet-induced obesity mouse model. Methods and Results: Effects of GPETAFLR on neuroinflammation were evaluated by RT-qPCR, flow cytometry, and ELISA techniques. In BV-2 microglial cells, Lipopolysaccharides (LPS) enhanced the release of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) whereas GPETAFLR decreased pro-inflammatory cytokine levels and increased the release of the anti-inflammatory cytokine IL-10 in BV2 microglial cells. M1 (CCR7 and iNOS) and M2 (Arg-1 and Ym-1) polarization markers results showed how the GPETAFLR octapeptide was able to decrease M1 polarization marker expression and increase the M2 polarization marker expression compared to LPS. Animal model results indicate that GPETAFLR has an immunomodulatory capacity, both decreasing pro-inflammatory cytokine IL-6 and increasing the anti-inflammatory cytokine IL-10 in brain tissue. Polarization markers in the brain tissue were also modulated by GPETAFLR that decreased the pro-inflammatory expression (M1) and increased the anti-inflammatory expression (M2). Conclusion: Our results suggest that GPETAFLR isolated from LPH has significant potential for management of neuroinflammatory conditions and offer benefits derived from the consumption of Lupinus angustifolius L. in the prevention of neuroinflammatory-related diseases.

Keywords: GPETAFLR peptide, BV-2 cell line, neuroinflammation, cytokines, high-fat-diet

Procedia PDF Downloads 130
1228 Sustainable Use of Agricultural Waste to Enhance Food Security and Conserve the Environment

Authors: M. M. Tawfik, Ezzat M. Abd El Lateef, B. B. Mekki, Amany A. Bahr, Magda H. Mohamed, Gehan S. Bakhoom

Abstract:

The rapid increase in the world’s population coupled by decrease the arable land per capita has resulted into an increased demand for food which has in turn led to the production of large amounts of agricultural wastes, both at the farmer, municipality and city levels. Agricultural wastes can be a valuable resource for improving food security. Unfortunately, agricultural wastes are likely to cause pollution to the environment or even harm to human health. This calls for increased public awareness on the benefits and potential hazards of agricultural wastes, especially in developing countries. Agricultural wastes (residual stalks, straw, leaves, roots, husks, shells etcetera) and animal waste (manures) are widely available, renewable and virtually free, hence they can be an important resource. They can be converted into heat, steam, charcoal, methanol, ethanol, bio diesel as well as raw materials (animal feed, composting, energy and biogas construction etcetera). agricultural wastes are likely to cause pollution to the environment or even harm to human health, if it is not used in a sustainable manner. Organic wastes could be considered an important source of biofertilizer for enhancing food security in the small holder farming communities that would not afford use of expensive inorganic fertilizers. Moreover, these organic wastes contain high levels of nitrogen, phosphorus, potassium, and organic matter important for improving nutrient status of soils in urban agriculture. Organic compost leading to improved crop yields and its nutritional values as compared with inorganic fertilization. This paper briefly reviews how agricultural wastes can be used to enhance food security and conserve the environment.

Keywords: agricultural waste, organic compost, environment, valuable resources

Procedia PDF Downloads 502
1227 Evaluating Aquaculture Farmers Responses to Climate Change and Sustainable Practices in Kenya

Authors: Olalekan Adekola, Margaret Gatonye, Paul Orina

Abstract:

The growing demand for farmed fish by underdeveloped and developing countries as a means of contributing positively towards eradication of hunger, food insecurity, and malnutrition for their fast growing populations has implications to the environment. Likewise, climate change poses both an immediate and future threat to local fish production with capture fisheries already experiencing a global decline. This not only raises fundamental questions concerning how aquaculture practices affect the environment, but also how ready are aquaculture farmers to adapt to climate related hazards. This paper assesses existing aquaculture practices and approaches to adapting to climate hazards in Kenya, where aquaculture has grown rapidly since the year 2009. The growth has seen rise in aquaculture set ups mainly along rivers and streams, importation of seed and feed and intensification with possible environmental implications. The aquaculture value chain in the context of climate change and their implication for practice is further investigated, and the strategies necessary for an improved implementation of resilient aquaculture system in Kenya is examined. Data for the study are collected from interviews, questionnaires, two workshops and document analysis. Despite acclaimed nutritional benefit of fish consumption in Kenya, poor management of effluents enriched with nitrogen, phosphorus, organic matter, and suspended solids has implications not just on the ecosystem, goods, and services, but is also potential source of resource-use conflicts especially in downstream communities and operators in the livestock, horticulture, and industrial sectors. The study concluded that aquaculture focuses on future orientation, climate resilient infrastructure, appropriate site selection and invest on biosafety as the key sustainable strategies against climate hazards.

Keywords: aquaculture, resilience, environment, strategies, Kenya

Procedia PDF Downloads 149
1226 The Impact of Hospital Intensive Care Unit Window Design on Daylighting and Energy Performance in Desert Climate

Authors: A. Sherif, H. Sabry, A. Elzafarany, M. Gadelhak, R. Arafa, M. Aly

Abstract:

This paper addresses the design of hospital Intensive Care Unit windows for the achievement of visual comfort and energy savings. The aim was to identify the window size and shading system configurations that could fulfill daylighting adequacy, avoid glare and reduce energy consumption. The study focused on addressing the effect of utilizing different shading systems in association with a range of Window-to-Wall Ratios (WWR) in different orientations under the desert clear-sky of Cairo, Egypt. The results of this study demonstrated that solar penetration is a critical concern affecting the design of ICU windows in desert locations, as in Cairo, Egypt. Use of shading systems was found to be essential in providing acceptable daylight performance and energy saving. Careful positioning of the ICU window towards a proper orientation can dramatically improve performance. It was observed that ICU windows facing the north direction enjoyed the widest range of successful window configuration possibilities at different WWRs. ICU windows facing south enjoyed a reasonable number of configuration options as well. By contrast, the ICU windows facing the east orientation had a very limited number of options that provide acceptable performance. These require additional local shading measures at certain times due to glare incidence. Moreover, use of horizontal sun breakers and solar screens to protect the ICU windows proved to be more successful than the other alternatives in a wide range of Window to Wall Ratios. By contrast, the use of light shelves and vertical shading devices seemed questionable.

Keywords: daylighting, desert, energy efficiency, shading

Procedia PDF Downloads 419
1225 Nighttime Power Generation Using Thermoelectric Devices

Authors: Abdulrahman Alajlan

Abstract:

While the sun serves as a robust energy source, the frigid conditions of outer space present promising prospects for nocturnal power generation due to its continuous accessibility during nighttime hours. This investigation illustrates a proficient methodology facilitating uninterrupted energy capture throughout the day. This method involves the utilization of water-based heat storage systems and radiative thermal emitters implemented across thermometric devices. Remarkably, this approach permits an enhancement of nighttime power generation that exceeds the level of 1 Wm-2, which is unattainable by alternative methodologies. Outdoor experiments conducted at the King Abdulaziz City for Science and Technology (KACST) have demonstrated unparalleled performance, surpassing prior experimental benchmarks by nearly an order of magnitude. Furthermore, the developed device exhibits the capacity to concurrently supply power to multiple light-emitting diodes, thereby showcasing practical applications for nighttime power generation. This research unveils opportunities for the creation of scalable and efficient 24-hour power generation systems based on thermoelectric devices. Central findings from this study encompass the realization of continuous 24-hour power generation from clean and sustainable energy sources. Theoretical analyses indicate the potential for nighttime power generation reaching up to 1 Wm-2, while experimental results have reached nighttime power generation at a density of 0.5 Wm-2. Additionally, the efficiency of multiple light-emitting diodes (LEDs) has been evaluated when powered by the nighttime output of the integrated thermoelectric generator (TEG). Therefore, this methodology exhibits promise for practical applications, particularly in lighting, marking a pivotal advancement in the utilization of renewable energy for both on-grid and off-grid scenarios.

Keywords: nighttime power generation, thermoelectric devices, radiative cooling, thermal management

Procedia PDF Downloads 43
1224 Feasibility Study on the Use of HEMS for Thermal Comfort and Energy Saving in Japanese Residential Buildings

Authors: K. C. Rajan, H. B. Rijal, Kazui Yoshida, Masanori Shukuya

Abstract:

The electricity consumption in the Japanese household sector has increased with higher rate than that of other sectors. This may be because of aging and information oriented society that requires more electrical appliances to make the life better and easier, under this circumstances, energy saving is one of the essential necessity in Japanese society. To understand the way of energy use and demand response of the residential occupants, it is important to understand the structure of energy used. Home Energy Management System (HEMS) may be used for understanding the pattern and the structure of energy used. HEMS is a visualization system of the energy usage by connecting the electrical equipment in the home and thereby automatically control the energy use in each device, so that the energy saving is achieved. Therefore, the HEMS can provide with the easiest way to understand the structure of energy use. The HEMS has entered the mainstream of the Japanese market. The objective of this study is to understand the pattern of energy saving and cost saving in different regions including Japan during HEMS use. To observe thermal comfort level of HEMS managed residential buildings in Japan, the field survey was made and altogether, 1534 votes from 37 occupants related to thermal comfort, occupants’ behaviors and clothing insulation were collected and analyzed. According to the result obtained, approximately 17.9% energy saving and 8.9% cost saving is possible if HEMS is applied effectively. We found the thermal sensation and overall comfort level of the occupants is high in the studied buildings. The occupants residing in those HEMS buildings are satisfied with the thermal environment and they have accepted it. Our study concluded that the significant reduction in Japanese residential energy use can be achieved by the proper utilization of the HEMS. Better thermal comfort is also possible with the use of HEMS if energy use is managed in a rationally effective manner.

Keywords: energy reduction, thermal comfort, HEMS utility, thermal environment

Procedia PDF Downloads 263
1223 Study of the Composition of Lipids in Different Kinds of Packaged Food Products

Authors: Zineb Taidirt, Fathia Sebahi, Mohamed Karim Guarchani, Anissa Berkane, Noureddine Smail, Ouahiba Hadjoudj

Abstract:

Cardiovascular diseases are one of the most important causes of death in Algeria. Several risk factors are responsible for this, including the consumption of foods containing saturated fat and trans fatty acids TFAs. This brief presents the results of a descriptive study of the lipid composition of 251 food products marketed in Algeria. The objective of the study is to describe the nature and composition of lipids and to verify the compliance of saturated and trans fatty acids intakes with the regulations. The study is based on data from the nutrition labelling of marketed food products. The results showed that the lipids in foodstuffs are diverse in nature and of varying amounts, but their nature is not specified on all products. In addition, the required content of saturated fatty acids is mentioned only in 29.48% of the products; 21.62% of them do not comply with the standard. Hydrogenation of fats, which produced Trans fatty acids, is common: 19.92% of products contain hydrogenated fats, and 74.89% may contain them according to the aspect of the lipid (solid fat). However, the trans fatty acid content is only mentioned in 5.18% of the products. The latter is above the limits set by Algerian regulations in 50% of the butter samples studied. The composition of lipids in mono- and polyunsaturated fatty acids essential for the body is insufficient: only 13.94% of the products inform their contents on their labels. It is necessary to adopt mandatory restriction of trans fatty acids, to ban the use of partially-hydrogenated oils, and to require required mandatory labeling of the TFAs and the other fatty acids on packaged foods, and to conduct more studies in order to appreciate the intake of TFAs and saturated fat and appreciate their effects on the Algerian population and to get more informed about the composition of the lipid in packaged foods.

Keywords: cardiovascular diseases, lipids, nutrition labelling, lipids, trans fatty acids

Procedia PDF Downloads 113
1222 A Prediction of Cutting Forces Using Extended Kienzle Force Model Incorporating Tool Flank Wear Progression

Authors: Wu Peng, Anders Liljerehn, Martin Magnevall

Abstract:

In metal cutting, tool wear gradually changes the micro geometry of the cutting edge. Today there is a significant gap in understanding the impact these geometrical changes have on the cutting forces which governs tool deflection and heat generation in the cutting zone. Accurate models and understanding of the interaction between the work piece and cutting tool leads to improved accuracy in simulation of the cutting process. These simulations are useful in several application areas, e.g., optimization of insert geometry and machine tool monitoring. This study aims to develop an extended Kienzle force model to account for the effect of rake angle variations and tool flank wear have on the cutting forces. In this paper, the starting point sets from cutting force measurements using orthogonal turning tests of pre-machined flanches with well-defined width, using triangular coated inserts to assure orthogonal condition. The cutting forces have been measured by dynamometer with a set of three different rake angles, and wear progression have been monitored during machining by an optical measuring collaborative robot. The method utilizes the measured cutting forces with the inserts flank wear progression to extend the mechanistic cutting forces model with flank wear as an input parameter. The adapted cutting forces model is validated in a turning process with commercial cutting tools. This adapted cutting forces model shows the significant capability of prediction of cutting forces accounting for tools flank wear and different-rake-angle cutting tool inserts. The result of this study suggests that the nonlinear effect of tools flank wear and interaction between the work piece and the cutting tool can be considered by the developed cutting forces model.

Keywords: cutting force, kienzle model, predictive model, tool flank wear

Procedia PDF Downloads 96
1221 Consumer Behavior in Buying Organic Product: A Case Study of Consumer in the Bangkok Metropolits and Vicinity

Authors: Piluntana Panpluem, Monticha Putsakum

Abstract:

The objectives of this study were to investigate 1) consumers’ behaviors in buying organic products; and 2) the relationships between personal factors, cultural factors, social factors, psychological factors and marketing mix factors, and the behavior in buying organic products of consumers in the greater Bangkok metropolitan area. The sample group was 400 consumers at the age of 15 and older, who bought organic agricultural products from green markets and green shops in Bangkok, including its suburbs. The data were collected by using a questionnaire, which were analyzed by descriptive statistics and chi-square test. The results showed that the consumers bought 3 – 4 types of fresh vegetables with a total expenditure of less than 499 Baht each time. They purchased organic products mainly at a supermarket, 2 – 4 times per month, most frequently on Sundays, which took less than 30 minutes of shopping each time. The purpose of the purchase was for self-consuming. Gaining or retaining good health was the reason for the consumption of the products. Additionally, the first considered factor in the organic product selection was the quality. The decisions in purchasing the products were made directly by consumers, who were influenced mainly by advertising media on television. For the relationships among personal, cultural, social, psychological and marketing mix factors, and consumers’ behavior in buying organic products, the results showed the following: 1) personal factors, which were gender, age and educational level, were related to the behavior in terms of “What”, “Why”, and “Where” the consumers bought organic products (p<0.05); 2) cultural factors were related to “Why” the consumers bought organic products (p<0.05); 3) social factors were related to “Where” and “How” the consumers bought organic products (p<0.05); 4) psychological factors were related to “When” the consumers bought organic products (p<0.05). 5) For the marketing mix factors, “Product” was related to “Who participated” in buying, “What” and “Where” the consumers bought organic products (p<0.05), while “Price” was related to “What” and “When” the consumers bought organic products (p<0.05). “Place” was related to “What” and “How” the consumers bought organic products (p<0.05). Furthermore, “Promotion” was related to “What” and “Where” the consumers bought organic products (p<0.05).

Keywords: consumer behavior, organic products, Bangkok Metropolis and Vicinity

Procedia PDF Downloads 273
1220 Exergy Analysis of a Green Dimethyl Ether Production Plant

Authors: Marcello De Falco, Gianluca Natrella, Mauro Capocelli

Abstract:

CO₂ capture and utilization (CCU) is a promising approach to reduce GHG(greenhouse gas) emissions. Many technologies in this field are recently attracting attention. However, since CO₂ is a very stable compound, its utilization as a reagent is energetic intensive. As a consequence, it is unclear whether CCU processes allow for a net reduction of environmental impacts from a life cycle perspective and whether these solutions are sustainable. Among the tools to apply for the quantification of the real environmental benefits of CCU technologies, exergy analysis is the most rigorous from a scientific point of view. The exergy of a system is the maximum obtainable work during a process that brings the system into equilibrium with its reference environment through a series of reversible processes in which the system can only interact with such an environment. In other words, exergy is an “opportunity for doing work” and, in real processes, it is destroyed by entropy generation. The exergy-based analysis is useful to evaluate the thermodynamic inefficiencies of processes, to understand and locate the main consumption of fuels or primary energy, to provide an instrument for comparison among different process configurations and to detect solutions to reduce the energy penalties of a process. In this work, the exergy analysis of a process for the production of Dimethyl Ether (DME) from green hydrogen generated through an electrolysis unit and pure CO₂ captured from flue gas is performed. The model simulates the behavior of all units composing the plant (electrolyzer, carbon capture section, DME synthesis reactor, purification step), with the scope to quantify the performance indices based on the II Law of Thermodynamics and to identify the entropy generation points. Then, a plant optimization strategy is proposed to maximize the exergy efficiency.

Keywords: green DME production, exergy analysis, energy penalties, exergy efficiency

Procedia PDF Downloads 228
1219 Wood Decay Fungal Strains Useful for Bio-Composite Material Production

Authors: C. Girometta, S. Babbini, R. M. Baiguera, D. S. Branciforti, M. Cartabia, D. Dondi, M. Pellegrini, A. M. Picco, E. Savino

Abstract:

Interest on wood decay fungi (WDF) has been increasing in the last year's thanks to the potentiality of this kind of fungi; research on new WDF strains has increased as well thus pointing out the key role of the culture collections. One of the most recent biotechnological application of WDF is the development of novel materials from natural or recycled resources. Based on different combinations of fungal species, substrate, and processing treatment involved (e.g. heat pressing), it is possible to achieve a wide variety of materials with different features useful for many industrial applications: from packaging to thermal and acoustic insulation. In comparison with the conventional ones, these materials represent a 100% natural and compostable alternative involving low amounts of energy in the production process. The purpose of the present work was to isolate and select WDF strains able to colonize and degrade different plant wastes thus producing a fungal biomass shapeable to achieve bio-composite materials. Strains were selected within the mycological culture collection of Pavia University (MicUNIPV, over 300 strains of WDF). The selected strains have been investigated with regards their ability to colonize and degrade plant residues from the local major cultivations (e.g. poplar, alfalfa, maize, rice, and wheat) and produce the fungal biomass. The degradation of the substrate was assessed by Thermogravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). Chemical characterization confirmed that TGA and FTIR are complementary techniques able to provide quality-quantitative information on compositional and structural variation that occurs during the transformation from the substrate to the bio-composite material. This pilot study provides a fundamental step to tune further applications in fungus-residues composite biomaterials.

Keywords: bio-composite material, lignocellulosic residues, sustainable materials, wood decay fungi

Procedia PDF Downloads 130
1218 Nutriscience Project: A Web-Based Intervention to Improve Nutritional Literacy among Families and Educators of Pre-School Children

Authors: R. Barros, J. Azevedo, P. Padrão, M. Gregório, I. Pádua, C. Almeida, C. Rodrigues, P. Fontes, A. Coelho

Abstract:

Recent evidence shows a positive association between nutritional literacy and healthy eating. Traditional nutrition education strategies for childhood obesity prevention have shown weak effect. The Nutriscience project aims to create and evaluate an innovative and multidisciplinary strategy for promoting effective and accessible nutritional information to children, their families, and educators. Nutriscience is a one-year prospective follow-up evaluation study including pre-school children (3-5 y), who attend national schools’ network (29). The project is structured around a web-based intervention, using an on-line interactive platform, and focus on increasing fruit and vegetable consumption, and reducing sugar and salt intake. The platform acts as a social network where educational materials, games, and nutritional challenges are proposed in a gamification approach that promotes family and community social ties. A nutrition Massive Online Open Course is developed for educators, and a national healthy culinary contest will be promoted on TV channel. A parental self-reported questionnaire assessing sociodemographic and nutritional literacy (knowledge, attitudes, skills) is administered (baseline and end of the intervention). We expect that results on nutritional literacy from the presented strategy intervention will give us important information about the best practices for health intervention with kindergarten families. This intervention program using a digital interactive platform could be an educational tool easily adapted and disseminated for childhood obesity prevention.

Keywords: childhood obesity, educational tool, nutritional literacy, web-based intervention

Procedia PDF Downloads 325
1217 Difficulties in the Emotional Processing of Intimate Partner Violence Perpetrators

Authors: Javier Comes Fayos, Isabel RodríGuez Moreno, Sara Bressanutti, Marisol Lila, Angel Romero MartíNez, Luis Moya Albiol

Abstract:

Given the great impact produced by gender-based violence, its comprehensive approach seems essential. Consequently, research has focused on risk factors for violent behaviour, linking various psychosocial variables, as well as cognitive and neuropsychological deficits with the aggressors. However, studies on affective processing are scarce, so the present study investigates possible emotional alterations in men convicted of gender violence. The participants were 51 aggressors, who attended the CONTEXTO program with sentences of less than two years, and 47 men with no history of violence. The sample did not differ in age, socioeconomic level, education, or alcohol and other substances consumption. Anger, alexithymia and facial recognition of other people´s emotions were assessed through the State-Trait Anger Expression Inventory (STAXI-2), the Toronto Alexithymia Scale (TAS-20) and Reading the mind in the eyes (REM), respectively. Men convicted of gender-based violence showed higher scores on the anger trait and temperament dimensions, as well as on the anger expression index. They also scored higher on alexithymia and in the identification and emotional expression subscales. In addition, they showed greater difficulties in the facial recognition of emotions by having a lower score in the REM. These results seem to show difficulties in different affective areas in men condemned for gender violence. The deficits are reflected in greater difficulty in identifying and expressing emotions, in processing anger and in recognizing the emotions of others. All these difficulties have been related to the use of violent behavior. Consequently, it is essential and necessary to include emotional regulation in intervention programs for men who have been convicted of gender-based violence.

Keywords: alexithymia, anger, emotional processing, emotional recognition, empathy, intimate partner violence

Procedia PDF Downloads 176
1216 Household's Willingness to Pay for Safe Non-Timber Forest Products at Morikouali-Ye Community Forest in Cameroon

Authors: Eke Balla Sophie Michelle

Abstract:

Forest provides a wide range of environmental goods and services among which, biodiversity or consumption goods and constitute public goods. Despite the importance of non-timber forest products (NTFPs) in sustaining livelihood and poverty smoothening in rural communities, they are highly depleted and poorly conserved. Yokadouma is a town where NTFPs is a renewable resource in active exploitation. It has been found that such exploitation is done in the same conditions as other localities that have experienced a rapid depletion of their NTFPs in destination to cities across Cameroon, Central Africa, and overseas. Given these realities, it is necessary to access the consequences of this overexploitation through negative effects on both the population and the environment. Therefore, to enhance participatory conservation initiatives, this study determines the household’s willingness to pay in community forest (CF) of Morikouali-ye, eastern region of Cameroon, for sustainable exploitation of NTFPs using contingent valuation method (CVM) through two approaches, one parametric (Logit model) and the other non-parametric (estimator of the Turnbull lower bound). The results indicate that five species are the most collected in the study area: Irvingia gabonensis, the Ricinodendron heudelotii, Gnetum, the Jujube and bark, their sale contributes significantly to 41 % of total household income. The average willingness to pay through the Logit model and the Turnbull estimator is 6845.2861 FCFA and 4940 FCFA respectively per household per year with a social cost of degradation estimated at 3237820.3253 FCFA years. The probability to pay increases with income, gender, number of women in the household, age, the commercial activity of NTFPs and decreases with the concept of sustainable development.

Keywords: non timber forest product, contingent valuation method, willingness to pay, sustainable development

Procedia PDF Downloads 425
1215 Low-Complex, High-Fidelity Two-Grades Cyclo-Olefin Copolymer (COC) Based Thermal Bonding Technique for Sealing a Thermoplastic Microfluidic Biosensor

Authors: Jorge Prada, Christina Cordes, Carsten Harms, Walter Lang

Abstract:

The development of microfluidic-based biosensors over the last years has shown an increasing employ of thermoplastic polymers as constitutive material. Their low-cost production, high replication fidelity, biocompatibility and optical-mechanical properties are sought after for the implementation of disposable albeit functional lab-on-chip solutions. Among the range of thermoplastic materials on use, the Cyclo-Olefin Copolymer (COC) stands out due to its optical transparency, which makes it a frequent choice as manufacturing material for fluorescence-based biosensors. Moreover, several processing techniques to complete a closed COC microfluidic biosensor have been discussed in the literature. The reported techniques differ however in their implementation, and therefore potentially add more or less complexity when using it in a mass production process. This work introduces and reports results on the application of a purely thermal bonding process between COC substrates, which were produced by the hot-embossing process, and COC foils containing screen-printed circuits. The proposed procedure takes advantage of the transition temperature difference between two COC grades foils to accomplish the sealing of the microfluidic channels. Patterned heat injection to the COC foil through the COC substrate is applied, resulting in consistent channel geometry uniformity. Measurements on bond strength and bursting pressure are shown, suggesting that this purely thermal bonding process potentially renders a technique which can be easily adapted into the thermoplastic microfluidic chip production workflow, while enables a low-cost as well as high-quality COC biosensor manufacturing process.

Keywords: biosensor, cyclo-olefin copolymer, hot embossing, thermal bonding, thermoplastics

Procedia PDF Downloads 225
1214 The Fundamental Research and Industrial Application on CO₂+O₂ in-situ Leaching Process in China

Authors: Lixin Zhao, Genmao Zhou

Abstract:

Traditional acid in-situ leaching (ISL) is not suitable for the sandstone uranium deposit with low permeability and high content of carbonate minerals, because of the blocking of calcium sulfate precipitates. Another factor influences the uranium acid in-situ leaching is that the pyrite in ore rocks will react with oxidation reagent and produce lots of sulfate ions which may speed up the precipitation process of calcium sulphate and consume lots of oxidation reagent. Due to the advantages such as less chemical reagent consumption and groundwater pollution, CO₂+O₂ in-situ leaching method has become one of the important research areas in uranium mining. China is the second country where CO₂+O₂ ISL has been adopted in industrial uranium production of the world. It is shown that the CO₂+O₂ ISL in China has been successfully developed. The reaction principle, technical process, well field design and drilling engineering, uranium-bearing solution processing, etc. have been fully studied. At current stage, several uranium mines use CO₂+O₂ ISL method to extract uranium from the ore-bearing aquifers. The industrial application and development potential of CO₂+O₂ ISL method in China are summarized. By using CO₂+O₂ neutral leaching technology, the problem of calcium carbonate and calcium sulfate precipitation have been solved during uranium mining. By reasonably regulating the amount of CO₂ and O₂, related ions and hydro-chemical conditions can be controlled within the limited extent for avoiding the occurrence of calcium sulfate and calcium carbonate precipitation. Based on this premise, the demand of CO₂+O₂ uranium leaching has been met to the maximum extent, which not only realizes the effective leaching of uranium, but also avoids the occurrence and precipitation of calcium carbonate and calcium sulfate, realizing the industrial development of the sandstone type uranium deposit.

Keywords: CO₂+O₂ ISL, industrial production, well field layout, uranium processing

Procedia PDF Downloads 153
1213 Assessment of Physical and Mechanical Properties of Perlite Mortars with Recycled Cement

Authors: Saca Nastasia, Radu Lidia, Dobre Daniela, Calotă Razvan

Abstract:

In order to achieve the European Union's sustainable and circular economy goals, strategies for reducing raw material consumption, reusing waste, and lowering CO₂ emissions have been developed. In this study, expanded perlite mortars with recycled cement (RC) were obtained and characterized. The recycled cement was obtained from demolition concrete waste. The concrete waste was crushed in a jaw and grinded in a horizontal ball mill to reduce the material's average grain size. Finally, the fine particles were sieved through a 125 µm sieve. The recycled cement was prepared by heating demolition concrete waste at 550°C for 3 hours. At this temperature, the decarbonization does not occur. The utilization of recycled cement can minimize the negative environmental effects of demolished concrete landfills as well as the demand for natural resources used in cement manufacturing. Commercial cement CEM II/A-LL 42.5R was substituted by 10%, 20%, and 30% recycled cement. By substituting reference cement (CEM II/A-LL 42.5R) by RC, a decrease in cement aqueous suspension pH, electrical conductivity, and Ca²⁺ concentration was observed for all measurements (2 hours, 6 hours, 24 hours, 4 days, and 7 days). After 2 hours, pH value was 12.42 for reference and conductivity of 2220 µS/cm and decreased to 12.27, respectively 1570 µS/cm for 30% RC. The concentration of Ca²⁺ estimated by complexometric titration was 20% lower in suspension with 30% RC in comparison to reference for 2 hours. The difference significantly diminishes over time. The mortars have cement: expanded perlite volume ratio of 1:3 and consistency between 140 mm and 200 mm. The density of fresh mortar was about 1400 kg/m3. The density, flexural and compressive strengths, water absorption, and thermal conductivity of hardened mortars were tested. Due to its properties, expanded perlite mortar is a good thermal insulation material.

Keywords: concrete waste, expanded perlite, mortar, recycled cement, thermal conductivity, mechanical strength

Procedia PDF Downloads 71
1212 Microstructural Evolution of an Interface Region in a Nickel-Based Superalloy Joint Produced by Direct Energy Deposition

Authors: Matthew Ferguson, Tatyana Konkova, Ioannis Violatos

Abstract:

Microstructure analysis of additively manufactured (AM) materials is an important step in understanding the interrelationship between mechanical properties and materials performance. Literature on the effect of laser-based AM process parameters on the microstructure in the substrate-deposit interface is limited. The interface region, the adjoining area of substrate and deposit, is characterized by the presence of the fusion zone (FZ) and heat-affected zone (HAZ), experiencing rapid thermal gyrations resulting in thermal-induced transformations. Inconel 718 was utilized as work material for both the substrate and deposit. Three blocks of Inconel 718 material were deposited by Direct Energy Deposition (DED) using three different laser powers, 550W, 750W and 950W, respectively. A coupled thermo-mechanical transient approach was utilized to correlate temperature history to the evolution of microstructure. The thermal history of the deposition process was monitored with the thermocouples installed inside the substrate material. The interface region of the blocks was analyzed with Optical Microscopy (OM) and Scanning Electron Microscopy (SEM), including the electron back-scattered diffraction (EBSD) technique. Laser power was found to influence the dissolution of intermetallic precipitated phases in the substrate and grain growth in the interface region. Microstructure and thermal history data were utilized to draw conclusive comparisons between the investigated process parameters.

Keywords: additive manufacturing, direct energy deposition, electron back-scattered diffraction, finite element analysis, inconel 718, microstructure, optical microscopy, scanning electron microscopy, substrate-deposit interface region

Procedia PDF Downloads 187
1211 Ontology based Fault Detection and Diagnosis system Querying and Reasoning examples

Authors: Marko Batic, Nikola Tomasevic, Sanja Vranes

Abstract:

One of the strongholds in the ubiquitous efforts related to the energy conservation and energy efficiency improvement is represented by the retrofit of high energy consumers in buildings. In general, HVAC systems represent the highest energy consumers in buildings. However they usually suffer from mal-operation and/or malfunction, causing even higher energy consumption than necessary. Various Fault Detection and Diagnosis (FDD) systems can be successfully employed for this purpose, especially when it comes to the application at a single device/unit level. In the case of more complex systems, where multiple devices are operating in the context of the same building, significant energy efficiency improvements can only be achieved through application of comprehensive FDD systems relying on additional higher level knowledge, such as their geographical location, served area, their intra- and inter- system dependencies etc. This paper presents a comprehensive FDD system that relies on the utilization of common knowledge repository that stores all critical information. The discussed system is deployed as a test-bed platform at the two at Fiumicino and Malpensa airports in Italy. This paper aims at presenting advantages of implementation of the knowledge base through the utilization of ontology and offers improved functionalities of such system through examples of typical queries and reasoning that enable derivation of high level energy conservation measures (ECM). Therefore, key SPARQL queries and SWRL rules, based on the two instantiated airport ontologies, are elaborated. The detection of high level irregularities in the operation of airport heating/cooling plants is discussed and estimation of energy savings is reported.

Keywords: airport ontology, knowledge management, ontology modeling, reasoning

Procedia PDF Downloads 515
1210 Amazonian Native Biomass Residue for Sustainable Development of Isolated Communities

Authors: Bruna C. Brasileiro, José Alberto S. Sá, Brigida R. P. Rocha

Abstract:

The Amazon region development was related to large-scale projects associated with economic cycles. Economic cycles were originated from policies implemented by successive governments that exploited the resources and have not yet been able to improve the local population's quality of life. These implanted development strategies were based on vertical planning centered on State that didn’t know and showed no interest in know the local needs and potentialities. The future of this region is a challenge that depends on a model of development based on human progress associated to intelligent, selective and environmentally safe exploitation of natural resources settled in renewable and no-polluting energy generation sources – a differential factor of attraction of new investments in a context of global energy and environmental crisis. In this process the planning and support of Brazilian State, local government, and selective international partnership are essential. Residual biomass utilization allows the sustainable development by the integration of production chain and energy generation process which could improve employment condition and income of riversides. Therefore, this research discourses how the use of local residual biomass (açaí lumps) could be an important instrument of sustainable development for isolated communities located at Alcobaça Sustainable Development Reserve (SDR), Tucuruí, Pará State, since in this region the energy source more accessible for who can pay are the fossil fuels that reaches about 54% of final energy consumption by the integration between the açaí productive chain and the use of renewable energy source besides it can promote less environmental impact and decrease the use of fossil fuels and carbon dioxide emissions.

Keywords: Amazon, biomass, renewable energy, sustainability

Procedia PDF Downloads 294
1209 The Identification of Environmentally Friendly People: A Case of South Sumatera Province, Indonesia

Authors: Marpaleni

Abstract:

The intergovernmental Panel on Climate Change (IPCC) declared in 2007 that global warming and climate change are not just a series of events caused by nature, but rather caused by human behaviour. Thus, to reduce the impact of human activities on climate change it is required to have information about how people respond to the environmental issues and what constraints they face. However, information on these and other phenomena remains largely missing, or not fully integrated within the existing data systems. The proposed study is aimed at filling the gap in this knowledge by focusing on Environmentally Friendly Behaviour (EFB) of the people of Indonesia, by taking the province of South Sumatera as a case of study. EFB is defined as any activity in which people engage to improve the conditions of the natural resources and/or to diminish the impact of their behaviour on the environment. This activity is measured in terms of consumption in five areas at the household level, namely housing, energy, water usage, recycling and transportation. By adopting the Indonesia’s Environmentally Friendly Behaviour conducted by Statistics Indonesia in 2013, this study aims to precisely identify one’s orientation towards EFB based on socio demographic characteristics such as: age, income, occupation, location, education, gender and family size. The results of this research will be useful to precisely identify what support people require to strengthen their EFB, to help identify specific constraints that different actors and groups face and to uncover a more holistic understanding of EFB in relation to particular demographic and socio-economics contexts. As the empirical data are examined from the national data sample framework, which will continue to be collected, it can be used to forecast and monitor the future of EFB.

Keywords: environmentally friendly behavior, demographic, South Sumatera, Indonesia

Procedia PDF Downloads 268
1208 CAGE Questionnaire as a Screening Tool for Hazardous Drinking in an Acute Admissions Ward: Frequency of Application and Comparison with AUDIT-C Questionnaire

Authors: Ammar Ayad Issa Al-Rifaie, Zuhreya Muazu, Maysam Ali Abdulwahid, Dermot Gleeson

Abstract:

The aim of this audit was to examine the efficiency of alcohol history documentation and screening for hazardous drinkers at the Medical Admission Unit (MAU) of Northern General Hospital (NGH), Sheffield, to identify any potential for enhancing clinical practice. Data were collected from medical clerking sheets, ICE system and directly from 82 patients by three junior medical doctors using both CAGE questionnaire and AUDIT-C tool for newly admitted patients to MAU in NGH, in the period between January and March 2015. Alcohol consumption was documented in around two-third of the patient sample and this was documented fairly accurately by health care professionals. Some used subjective words such as 'social drinking' in the alcohol units’ section of the history. CAGE questionnaire was applied to only four patients and none of the patients had documented advice, education or referral to an alcohol liaison team. AUDIT-C tool had identified 30.4%, while CAGE 10.9%, of patients admitted to the NGH MAU as hazardous drinkers. The amount of alcohol the patient consumes positively correlated with the score of AUDIT-C (Pearson correlation 0.83). Re-audit is planned to be carried out after integrating AUDIT-C tool as labels in the notes and presenting a brief teaching session to junior doctors. Alcohol misuse screening is not adequately undertaken and no appropriate action is being offered to hazardous drinkers. CAGE questionnaire is poorly applied to patients and when satisfactory and adequately used has low sensitivity to detect hazardous drinkers in comparison with AUDIT-C tool. Re-audit of alcohol screening practice after introducing AUDIT-C tool in clerking sheets (as labels) is required to compare the findings and conclude the audit cycle.

Keywords: alcohol screening, AUDIT-C, CAGE, hazardous drinking

Procedia PDF Downloads 392