Search results for: green DME production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8861

Search results for: green DME production

8861 Analytic Hierarchy Process Method for Supplier Selection Considering Green Logistics: Case Study of Aluminum Production Sector

Authors: H. Erbiyik, A. Bal, M. Sirakaya, Ö. Yesildal, E. Yolcu

Abstract:

The emergence of many environmental issues began with the Industrial Revolution. The depletion of natural resources and emerging environmental challenges over time requires enterprises and managers to take into consideration environmental factors while managing business. If we take notice of these causes; the design and implementation of environmentally friendly green purchasing, production and waste management systems become very important at green logistics systems. Companies can adopt green supply chain with the awareness of these facts. The concept of green supply chain constitutes from green purchasing, green production, green logistics, waste management and reverse logistics. In this study, we wanted to identify the concept of green supply chain and why green supply chain should be applied. In the practice part of the study an analytic hierarchy process (AHP) study is conducted on an aluminum production company to evaluate suppliers.

Keywords: aluminum sector, analytic hierarchy process, decision making, green logistics

Procedia PDF Downloads 314
8860 Agriroofs and Agriwalls: Applications of Food Production in Green Roofs and Green Walls

Authors: Eman M. Elmazek

Abstract:

Green roofs and walls are a rising technology in the global sustainable architectural industry. The idea takes great steps towards the future of sustainable design due to its many benefits. However, there are many barriers and constraints. Economical, structural, and knowledge barriers prevent the spread of the usage of green roofs and living walls. Understanding the benefits and expanding them will spread the idea. Benefits provided by these green spots interrupt and maintain the current urban cover. Food production is one of the benefits of green roofs. It can save money and energy spent in food transportation. The goal of this paper is to put a better understanding of implementing green systems. The paper aims to identify gains versus challenges facing the technology. It surveys with case studies buildings with green roofs and walls used for food production.

Keywords: green roof, green walls, urban farming, roof herb garden

Procedia PDF Downloads 484
8859 Green Hydrogen: Exploring Economic Viability and Alluring Business Scenarios

Authors: S. Sakthivel

Abstract:

Currently, the global economy is based on the hydrocarbon economy, which is referencing the global hydrocarbon industry. Problems of using these fossil fuels (like oil, NG, coal) are emitting greenhouse gases (GHGs) and price fluctuation, supply/distribution, etc. These challenges can be overcome by using clean energy as hydrogen. The hydrogen economy is the use of hydrogen as a low carbon fuel, particularly for hydrogen vehicles, alternative industrial feedstock, power generation, and energy storage, etc. Engineering consulting firms have a significant role in this ambition and green hydrogen value chain (i.e., integration of renewables, production, storage, and distribution to end-users). Typically, the cost of green hydrogen is a function of the price of electricity needed, the cost of the electrolyser, and the operating cost to run the system. This article focuses on economic viability and explores the alluring business scenarios globally. Break-even analysis was carried out for green hydrogen production and in order to evaluate and compare the impact of the electricity price on the production costs of green hydrogen and relate it to fossil fuel-based brown/grey/blue hydrogen costs. It indicates that the cost of green hydrogen production will fall drastically due to the declining costs of renewable electricity prices and along with the improvement and scaling up of electrolyser manufacturing. For instance, in a scenario where electricity prices are below US$ 40/MWh, green hydrogen cost is expected to reach cost competitiveness.

Keywords: green hydrogen, cost analysis, break-even analysis, renewables, electrolyzer

Procedia PDF Downloads 106
8858 Green Logistics Management and Performance for Thailand’s Logistic Enterprises

Authors: Kittipong Tissayakorn, Fumio Akagi, Yu Song

Abstract:

Logistics is the integrated management of all of the activities required to move products through the supply chain. For a typical product, this supply chain extends from a raw material source through the production and distribution system to the point of consumption and the associated reverse logistics. The logistical activities are comprised of freight transport, storage, inventory management, materials handling and all related information processing. This paper analyzes the green management system of logistics enterprise for Thailand and advances the concept of Green Logistics, which should be held by the public. In addition, it proposes that the government should strengthen its supervision and support for green logistics, and companies should construct self-disciplined green logistics management systems and corresponding processes, a reverse logistics management system and a modern green logistics information collection and management system.

Keywords: logistics, green logistics, management system, ecological economics

Procedia PDF Downloads 362
8857 An Assessment of the Factors Affecting Green Building Technology (GBT) Adoption

Authors: Nuruddeen Usman, Usman Mohammed Gidado

Abstract:

A construction and post construction activity in buildings contributes to environmental degradation, because of the generation of solid waste during construction to the production of carbon dioxide by the occupants during utilization. These problems were caused as a result of lack of adopting green building technology during and after construction. However, this study aims at conceptualizing the factors that are affecting the adoption of green building technology with a view to suggest better ways for its successful adoption in the construction industry through developing a green building technology model. Thus, the research findings show that: Economic, social, cultural, and technological progresses are the factors affecting Green Building Technology Adoption. Therefore, identifying these factors and developing the model might help in the successful adoption of green building technology.

Keywords: green building technology, construction, post construction, degradation

Procedia PDF Downloads 619
8856 Assessment of the Relationship between Energy Price Dynamics and Green Growth in the Sub-Sharan Africa

Authors: Christopher I. Ifeacho, Adeleke Omolade

Abstract:

The paper examines the relationship between energy price dynamics and green growth in Sub Sahara African Countries. The quest for adopting green energy in order to improve green growth that can engender sustainability and stability has received more attention from researchers in recent times. This study uses a panel autoregressive distributed lag approach to investigate this relationship. Findings from the result showed that energy price dynamics and exchange rates have more short-run significant impacts on green growth in individual countries rather than the pooled result. Furthermore, the long-run result confirmed that inflation and capital have a significant long-run relationship with green growth. The causality test result revealed the existence of a bi-directional relationship between green growth and energy price dynamics. The study recommends caution in a currency devaluation and improvement in renewable energy production in the Sub Sahara Africa in order to achieve sustainable green growth.

Keywords: green growth, energy price dynamics, Sub Saharan Africa, relationship

Procedia PDF Downloads 54
8855 Electrolysis Ship for Green Hydrogen Production and Possible Applications

Authors: Julian David Hunt, Andreas Nascimento

Abstract:

Green hydrogen is the most environmental, renewable alternative to produce hydrogen. However, an important challenge to make hydrogen a competitive energy carrier is a constant supply of renewable energy, such as solar, wind and hydropower. Given that the electricity generation potential of these sources vary seasonally and interannually, this paper proposes installing an electrolysis hydrogen production plant in a ship and move the ship to the locations where electricity is cheap, or where the seasonal potential for renewable generation is high. An example of electrolysis ship application is to produce green hydrogen with hydropower from the North region of Brazil and then sail to the Northeast region of Brazil and generate hydrogen using excess electricity from offshore wind power. The electrolysis ship concept is interesting because it has the flexibility to produce green hydrogen using the cheapest renewable electricity available in the market.

Keywords: green hydrogen, electrolysis ship, renewable energies, seasonal variations

Procedia PDF Downloads 129
8854 Green Construction in EGYPT

Authors: Hanan A. Anwar

Abstract:

This paper introduces green building construction in Egypt with different concepts and practices. The following study includes green building applied definition, guidelines, regulations and Standards. Evaluation of cost/benefit of green construction methods and green construction rating systems are presented. Relevant case studies will be reviewed. Four sites will be included.

Keywords: green construction, ecofreindly, self-sufficient town, carbon neutral atmosphere

Procedia PDF Downloads 617
8853 Assessing the Competitiveness of Green Charcoal Energy as an Alternative Source of Cooking Fuel in Uganda

Authors: Judith Awacorach, Quentin Gausset

Abstract:

Wood charcoal and firewood are the primary sources of energy for cooking fuel in most Sub-Saharan African countries, including Uganda. This leads to unsustainable forest use and to rapid deforestation. Green charcoal (made out of agricultural residues that are carbonized, reduced in char powder, and glued in briquettes, using a binder such as sugar molasse, cassava flour or clay) is a promising and sustainable alternative to wood charcoal and firewood. It is considered as renewable energy because the carbon emissions released by the combustion of green charcoal are immediately captured again in the next agricultural cycle. If practiced on a large scale, this has the potential to replace wood charcoal and stop deforestation. However, the uptake of green charcoal for cooking remains low in Uganda despite the introduction of the technology 15 years ago. The present paper reviews the barriers to the production and commercialization of green charcoal. The paper is based on the study of 13 production sites, recording the raw materials used, the production techniques, the quantity produced, the frequency of production, and the business model. Observations were made on each site, and interviews were conducted with the managers of the facilities and with one or two employees in the larger facilities. We also interviewed project administrators from four funding agencies interested in financing green charcoal production. The results of our research identify the main barriers as follows: 1) The price of green charcoal is not competitive (it is more labor and capital-intensive than wood charcoal). 2) There is a problem with quality control and labeling (one finds a wide variety of green charcoal with very different performances). 3) The carbonization of agricultural crop residues is a major bottleneck in green char production. Most briquettes are produced with wood charcoal dust or powder, which is a by-product of wood charcoal. As such, they increase the efficiency of wood charcoal but do not yet replace it. 4) There is almost no marketing chain for the product (most green charcoal is sold directly from producer to consumer without any middleman). 5) The financing institutions are reluctant to lend money for this kind of activity. 6) Storage can be challenging since briquettes can dissolve due to moisture. In conclusion, a number of important barriers need to be overcome before green charcoal can become a serious alternative to wood charcoal.

Keywords: briquettes, competitiveness, deforestation, green charcoal, renewable energy

Procedia PDF Downloads 12
8852 The Application of Green Technology to Residential Architecture in Hangzhou

Authors: Huiru Chen, Xuran Zhang

Abstract:

At present, the residential architecture in China are still causing high energy consumption and high pollution during their whole life cycle, which can be backward compared with the developed countries. The aim of this paper is to discuss the application of green technology to residential architecture in Hangzhou. This article will start with the development of green buildings, then analyzes the use status of green technology in Hangzhou from several specific measures. Analysis of the typical existing green residential buildings in Hangzhou is an attempt to form a preliminary Hangzhou’s green technology application strategy system. Through research, it has been found that the application of green technology in Hangzhou has changed from putting green to the facade, to the combination of the preservation of the traditional green concept and the modern green technology.

Keywords: application, green technology, Hangzhou, residential architecture

Procedia PDF Downloads 173
8851 Effects of Increased Green Surface on a Densely Built Urban Fabric: The Case of Budapest

Authors: Viktória Sugár, Orsolya Frick, Gabriella Horváth, A. Bendegúz Vöröss, Péter Leczovics, Géza Baráth

Abstract:

Urban greenery has multiple positive effects both on the city and its residents. Apart from the visual advantages, it changes the micro-climate by cooling and shading, also increasing vapor and oxygen, reducing dust and carbon-dioxide content at the same time. The above are all critical factors of livability of an urban fabric. Unfortunately, in a dense, historical district there are restricted possibilities to build green surfaces. The present study collects and systemizes the applicable green solutions in the case of a historical downtown district of Budapest. The study contains a GIS-based measurement of the eligible surfaces for greenery, and also calculates the potential of oxygen production, carbon-dioxide reduction and cooling effect of an increased green surface.  It can be concluded that increasing the green surface has measurable effects on a densely built urban fabric, including air quality, micro-climate and other environmental factors.

Keywords: urban greenery, green roof, green wall, green surface potential, sustainable city, oxygen production, carbon-dioxide reduction, geographical information system

Procedia PDF Downloads 195
8850 Fuzzy Climate Control System for Hydroponic Green Forage Production

Authors: Germán Díaz Flórez, Carlos Alberto Olvera Olvera, Domingo José Gómez Meléndez, Francisco Eneldo López Monteagudo

Abstract:

In recent decades, population growth has exerted great pressure on natural resources. Two of the most scarce and difficult to obtain resources, arable land, and water, are closely interrelated, to the satisfaction of the demand for food production. In Mexico, the agricultural sector uses more than 70% of water consumption. Therefore, maximize the efficiency of current production systems is inescapable. It is essential to utilize techniques and tools that will enable us to the significant savings of water, labor and fertilizer. In this study, we present a production module of hydroponic green forage (HGF), which is a viable alternative in the production of livestock feed in the semi-arid and arid zones. The equipment in addition to having a forage production module, has a climate and irrigation control system that operated with photovoltaics. The climate control, irrigation and power management is based on fuzzy control techniques. The fuzzy control provides an accurate method in the design of controllers for nonlinear dynamic physical phenomena such as temperature and humidity, besides other as lighting level, aeration and irrigation control using heuristic information. In this working, firstly refers to the production of the hydroponic green forage, suitable weather conditions and fertigation subsequently presents the design of the production module and the design of the controller. A simulation of the behavior of the production module and the end results of actual operation of the equipment are presented, demonstrating its easy design, flexibility, robustness and low cost that represents this equipment in the primary sector.

Keywords: fuzzy, climate control system, hydroponic green forage, forage production module

Procedia PDF Downloads 362
8849 Comprehensive Analysis and Optimization of Alkaline Water Electrolysis for Green Hydrogen Production: Experimental Validation, Simulation Study, and Cost Analysis

Authors: Umair Ahmed, Muhammad Bin Irfan

Abstract:

This study focuses on designing and optimization of an alkaline water electrolyser for the production of green hydrogen. The aim is to enhance the durability and efficiency of this technology while simultaneously reducing the cost associated with the production of green hydrogen. The experimental results obtained from the alkaline water electrolyser are compared with simulated results using Aspen Plus software, allowing a comprehensive analysis and evaluation. To achieve the aforementioned goals, several design and operational parameters are investigated. The electrode material, electrolyte concentration, and operating conditions are carefully selected to maximize the efficiency and durability of the electrolyser. Additionally, cost-effective materials and manufacturing techniques are explored to decrease the overall production cost of green hydrogen. The experimental setup includes a carefully designed alkaline water electrolyser, where various performance parameters (such as hydrogen production rate, current density, and voltage) are measured. These experimental results are then compared with simulated data obtained using Aspen Plus software. The simulation model is developed based on fundamental principles and validated against the experimental data. The comparison between experimental and simulated results provides valuable insight into the performance of an alkaline water electrolyser. It helps to identify the areas where improvements can be made, both in terms of design and operation, to enhance the durability and efficiency of the system. Furthermore, the simulation results allow cost analysis providing an estimate of the overall production cost of green hydrogen. This study aims to develop a comprehensive understanding of alkaline water electrolysis technology. The findings of this research can contribute to the development of more efficient and durable electrolyser technology while reducing the cost associated with this technology. Ultimately, these advancements can pave the way for a more sustainable and economically viable hydrogen economy.

Keywords: sustainable development, green energy, green hydrogen, electrolysis technology

Procedia PDF Downloads 46
8848 CertifHy: Developing a European Framework for the Generation of Guarantees of Origin for Green Hydrogen

Authors: Frederic Barth, Wouter Vanhoudt, Marc Londo, Jaap C. Jansen, Karine Veum, Javier Castro, Klaus Nürnberger, Matthias Altmann

Abstract:

Hydrogen is expected to play a key role in the transition towards a low-carbon economy, especially within the transport sector, the energy sector and the (petro)chemical industry sector. However, the production and use of hydrogen only make sense if the production and transportation are carried out with minimal impact on natural resources, and if greenhouse gas emissions are reduced in comparison to conventional hydrogen or conventional fuels. The CertifHy project, supported by a wide range of key European industry leaders (gas companies, chemical industry, energy utilities, green hydrogen technology developers and automobile manufacturers, as well as other leading industrial players) therefore aims to: 1. Define a widely acceptable definition of green hydrogen. 2. Determine how a robust Guarantee of Origin (GoO) scheme for green hydrogen should be designed and implemented throughout the EU. It is divided into the following work packages (WPs). 1. Generic market outlook for green hydrogen: Evidence of existing industrial markets and the potential development of new energy related markets for green hydrogen in the EU, overview of the segments and their future trends, drivers and market outlook (WP1). 2. Definition of “green” hydrogen: step-by-step consultation approach leading to a consensus on the definition of green hydrogen within the EU (WP2). 3. Review of existing platforms and interactions between existing GoO and green hydrogen: Lessons learnt and mapping of interactions (WP3). 4. Definition of a framework of guarantees of origin for “green” hydrogen: Technical specifications, rules and obligations for the GoO, impact analysis (WP4). 5. Roadmap for the implementation of an EU-wide GoO scheme for green hydrogen: the project implementation plan will be presented to the FCH JU and the European Commission as the key outcome of the project and shared with stakeholders before finalisation (WP5 and 6). Definition of Green Hydrogen: CertifHy Green hydrogen is hydrogen from renewable sources that is also CertifHy Low-GHG-emissions hydrogen. Hydrogen from renewable sources is hydrogen belonging to the share of production equal to the share of renewable energy sources (as defined in the EU RES directive) in energy consumption for hydrogen production, excluding ancillary functions. CertifHy Low-GHG hydrogen is hydrogen with emissions lower than the defined CertifHy Low-GHG-emissions threshold, i.e. 36.4 gCO2eq/MJ, produced in a plant where the average emissions intensity of the non-CertifHy Low-GHG hydrogen production (based on an LCA approach), since sign-up or in the past 12 months, does not exceed the emissions intensity of the benchmark process (SMR of natural gas), i.e. 91.0 gCO2eq/MJ.

Keywords: green hydrogen, cross-cutting, guarantee of origin, certificate, DG energy, bankability

Procedia PDF Downloads 453
8847 Addressing the Oracle Problem: Decentralized Authentication in Blockchain-Based Green Hydrogen Certification

Authors: Volker Wannack

Abstract:

The aim of this paper is to present a concept for addressing the Oracle Problem in the context of hydrogen production using renewable energy sources. The proposed approach relies on the authentication of the electricity used for hydrogen production by multiple surrounding actors with similar electricity generation facilities, which attest to the authenticity of the electricity production. The concept introduces an Authenticity Score assigned to each certificate, as well as a Trust Score assigned to each witness. Each certificate must be attested by different actors with a sufficient Trust Score to achieve an Authenticity Score above a predefined threshold, thereby demonstrating that the produced hydrogen is indeed "green."

Keywords: hydrogen, blockchain, sustainability, structural change

Procedia PDF Downloads 22
8846 Isolated Microspore Culture in Durum Wheat

Authors: Zelikha Labbani

Abstract:

Since its creation in 1964 by Guha and Maheshwari in India on Datura innoxia Mill, in vitro androgenesis has become the method of choice in the production of doubled haploid in many species. However in durum wheat, the Doubled haploid plant breeding programs remained limited due to the low production of androgenetic embryos and converting them into fertile green plants. We describe here an efficient method for inducing embryos and regenerating green plants directly from isolated microspores of durum wheat.

Keywords: Durum wheat, haploid embryos, on in vitro, pretreatment

Procedia PDF Downloads 315
8845 On In vitro Durum Wheat Isolated Microspore Culture

Authors: Zelikha Labbani

Abstract:

Since its creation in 1964 by Guha and Maheshwari in India on Datura innoxia Mill, in vitro androgenesis has become the method of choice in the production of doubled haploid in many species. However, in durum wheat, the Doubled haploid plant breeding programs remained limited due to the low production of androgenetic embryos and converting them into fertile green plants. We describe here an efficient method for inducing embryos and regenerating green plants directly from isolated microspores of durum wheat.

Keywords: durum wheat, haploid embryos, on in vitro, pretreatment

Procedia PDF Downloads 321
8844 Green Chemical Processing in the Teaching Laboratory: A Convenient Solvent Free Microwave Extraction of Natural Products

Authors: Mohamed Amine Ferhat, Mohamed Nadjib Bouhatem, Farid Chemat

Abstract:

One of the principal aims of sustainable and green processing development remains the dissemination and teaching of green chemistry to both developed and developing nations. This paper describes one attempt to show that “north-south” collaborations yield innovative sustainable and green technologies which give major benefits for both nations. In this paper we present early results from a solvent free microwave extraction (SFME) of essential oils using fresh orange peel, a byproduct in the production of orange juice. SFME is performed at atmospheric pressure without added any solvent or water. SFME increases essential oil yield and eliminate wastewater treatment. The procedure is appropriate for the teaching laboratory, and allows the students to learn extraction, chromatographic and spectroscopic analysis skills, and are expose to dramatic visual example of rapid, sustainable and green extraction of essential oil, and are introduced to commercially successful sustainable and green chemical processing with microwave energy.

Keywords: essential oil, extraction, green processing, microwave

Procedia PDF Downloads 509
8843 Opportunities and Challenges for Decarbonizing Steel Production by Creating Markets for ‘Green Steel’ Products

Authors: Hasan Muslemani, Xi Liang, Kathi Kaesehage, Francisco Ascui, Jeffrey Wilson

Abstract:

The creation of a market for lower-carbon steel products, here called ‘green steel’, has been identified as an important means to support the introduction of breakthrough emission reduction technologies into the steel sector. However, the definition of what ‘green’ entails in the context of steel production, the implications on the competitiveness of green steel products in local and international markets, and the necessary market mechanisms to support their successful market penetration remain poorly explored. This paper addresses this gap by holding semi-structured interviews with international sustainability experts and commercial managers from leading steel trade associations, research institutes and steelmakers. Our findings show that there is an urgent need to establish a set of standards to define what ‘greenness’ means in the steelmaking context; standards that avoid market disruptions, unintended consequences, and opportunities for greenwashing. We also highlight that the introduction of green steel products will have implications on product competitiveness on three different levels: 1) between primary and secondary steelmaking routes, 2) with traditional, lesser green steel, and 3) with other substitutable materials (e.g. cement and plastics). This paper emphasises the need for steelmakers to adopt a transitional approach in deploying different low-carbon technologies, based on their stage of technological maturity, applicability in certain country contexts, capacity to reduce emissions over time, and the ability of the investment community to support their deployment. We further identify market mechanisms to support green steel production, including carbon border adjustments and public procurement, highlighting a need for implementing a combination of complementary policies to ensure the products’ roll-out. The study further shows that the auto industry is a likely candidate for green steel consumption, where a market would be supported by price premiums paid by willing consumers, such as those of high-end luxury vehicles.

Keywords: green steel, decarbonisation, business model innovation, market analysis

Procedia PDF Downloads 101
8842 Co-Gasification Process for Green and Blue Hydrogen Production: Innovative Process Development, Economic Analysis, and Exergy Assessment

Authors: Yousaf Ayub

Abstract:

A co-gasification process, which involves the utilization of both biomass and plastic waste, has been developed to enable the production of blue and green hydrogen. To support this endeavor, an Aspen Plus simulation model has been meticulously created, and sustainability analysis is being conducted, focusing on economic viability, energy efficiency, advanced exergy considerations, and exergoeconomics evaluations. In terms of economic analysis, the process has demonstrated strong economic sustainability, as evidenced by an internal rate of return (IRR) of 8% at a process efficiency level of 70%. At present, the process has the potential to generate approximately 1100 kWh of electric power, with any excess electricity, beyond meeting the process requirements, capable of being harnessed for green hydrogen production via an alkaline electrolysis cell (AEC). This surplus electricity translates to a potential daily hydrogen production of around 200 kg. The exergy analysis of the model highlights that the gasifier component exhibits the lowest exergy efficiency, resulting in the highest energy losses, amounting to approximately 40%. Additionally, advanced exergy analysis findings pinpoint the gasifier as the primary source of exergy destruction, totaling around 9000 kW, with associated exergoeconomics costs amounting to 6500 $/h. Consequently, improving the gasifier's performance is a critical focal point for enhancing the overall sustainability of the process, encompassing energy, exergy, and economic considerations.

Keywords: blue hydrogen, green hydrogen, co-gasification, waste valorization, exergy analysis

Procedia PDF Downloads 28
8841 A Study on Marble-Slag Based Geopolymer Green Concrete

Authors: Zong-Xian Qiu, Ta-Wui Cheng, Wei-Hao Lee, Yung-Chin Ding

Abstract:

The greenhouse effect is an important issue since it has been responsible for global warming. Carbon dioxide plays an important part of role in the greenhouse effect. Therefore, human has the responsibility for reducing CO₂ emissions in their daily operations. Except iron making and power plants, another major CO₂ production industry is cement industry. According to the statistics by EPA of Taiwan, production 1 ton of Portland cement will produce 520.29 kg of CO₂. There are over 7.8 million tons of CO₂ produced annually. Thus, trying to development low CO₂ emission green concrete is an important issue, and it can reduce CO₂ emission problems in Taiwan. The purpose of this study is trying to use marble wastes and slag as the raw materials to fabricate geopolymer green concrete. The result shows the marble based geopolymer green concrete have good workability and the compressive strength after curing for 28 days and 365 days can be reached 44MPa and 53MPa in indoor environment, 28MPa and 40.43MPa in outdoor environment. The acid resistance test shows the geopolymer green concrete have good resistance for chemical attack. The coefficient of permeability of geopolymer green concrete is better than Portland concrete. By comparing with Portland cement products, the marble based geopolymer not only reduce CO₂ emission problems but also provides great performance in practices. According to the experiment results shown that geopolymer concrete has great potential for further engineering development in the future, the new material could be expected to replace the Portland cement products in the future days.

Keywords: marble, slag, geopolymer, green concrete, CO₂ emission

Procedia PDF Downloads 106
8840 Contextual Paper on Green Finance: Analysis of the Green Bonds Market

Authors: Dina H. Gabr, Mona A. El Bannan

Abstract:

With growing worldwide concern for global warming, green finance has become the fuel that pushes the world to act in combating and mitigating climate change. Coupled with adopting the Paris Agreement and the United Nations Sustainable Development Goals, Green finance became a vital tool in creating a pathway to sustainable development, as it connects the financial world with environmental and societal benefits. This paper provides a comprehensive review of the concepts and definitions of green finance and the importance of 'green' impact investments today. The core challenge in combating climate change is reducing and controlling Greenhouse gas emissions; therefore, this study explores the solutions green finance provides putting emphasis on the use of renewable energy, which is necessary for enhancing the transition to the green economy. With increasing attention to the concept of green finance, multiple forms of green investments and financial tools have come to fruition; the most prominent are green bonds. The rise of green bonds, a debt market to finance climate solutions, provide a promising mechanism for sustainable finance. Following the review, this paper compiles a comprehensive green bond dataset, presenting a statistical study of the evolution of the green bonds market from its first appearance in 2006 until 2021.

Keywords: climate change, GHG emissions, green bonds, green finance, sustainable finance

Procedia PDF Downloads 84
8839 Integrated Evaluation of Green Design and Green Manufacturing Processes Using a Mathematical Model

Authors: Yuan-Jye Tseng, Shin-Han Lin

Abstract:

In this research, a mathematical model for integrated evaluation of green design and green manufacturing processes is presented. To design a product, there can be alternative options to design the detailed components to fulfill the same product requirement. In the design alternative cases, the components of the product can be designed with different materials and detailed specifications. If several design alternative cases are proposed, the different materials and specifications can affect the manufacturing processes. In this paper, a new concept for integrating green design and green manufacturing processes is presented. A green design can be determined based the manufacturing processes of the designed product by evaluating the green criteria including energy usage and environmental impact, in addition to the traditional criteria of manufacturing cost. With this concept, a mathematical model is developed to find the green design and the associated green manufacturing processes. In the mathematical model, the cost items include material cost, manufacturing cost, and green related cost. The green related cost items include energy cost and environmental cost. The objective is to find the decisions of green design and green manufacturing processes to achieve the minimized total cost. In practical applications, the decision-making can be made to select a good green design case and its green manufacturing processes. In this presentation, an example product is illustrated. It shows that the model is practical and useful for integrated evaluation of green design and green manufacturing processes.

Keywords: supply chain management, green supply chain, green design, green manufacturing, mathematical model

Procedia PDF Downloads 770
8838 The Effect of Global Value Chain Participation on Environment

Authors: Piyaphan Changwatchai

Abstract:

Global value chain is important for current world economy through foreign direct investment. Multinational enterprises' efficient location seeking for each stage of production lead to global production network and more global value chain participation of several countries. Global value chain participation has several effects on participating countries in several aspects including the environment. The effect of global value chain participation on the environment is ambiguous. As a result, this research aims to study the effect of global value chain participation on countries' CO₂ emission and methane emission by using quantitative analysis with secondary panel data of sixty countries. The analysis is divided into two types of global value chain participation, which are forward global value chain participation and backward global value chain participation. The results show that, for forward global value chain participation, GDP per capita affects two types of pollutants in downward bell curve shape. Forward global value chain participation negatively affects CO₂ emission and methane emission. As for backward global value chain participation, GDP per capita affects two types of pollutants in downward bell curve shape. Backward global value chain participation negatively affects methane emission only. However, when considering Asian countries, forward global value chain participation positively affects CO₂ emission. The recommendations of this research are that countries participating in global value chain should promote production with effective environmental management in each stage of value chain. The examples of policies are providing incentives to private sectors, including domestic producers and MNEs, for green production technology and efficient environment management and engaging in international agreements in terms of green production. Furthermore, government should regulate each stage of production in value chain toward green production, especially for Asia countries.

Keywords: CO₂ emission, environment, global value chain participation, methane emission

Procedia PDF Downloads 162
8837 Sustainable Building Law - The Legal Issues Abound

Authors: Richard J. Sobelsohn

Abstract:

Green Building and Sustainable Development help fight climate change, and protects the ozone, animal habitats, air quality, and ground water. The myriad of reasons to go Green has multiplied to the point that a developer that is building a ground-up or renovating/retrofitting a property has a plethora of choices to get to the green goal post. Sustainability not affects the bottom line but satisfies corporate mandates (ESG), consumer demand, market requirements, and the many laws dictating green building practices. The good news is that there are many paths a property owner can take to become green. The bad news is that there are many paths a property owner can take to become green, and they need to choose which direction to take. Certification of a building used to be the highest achievement in the Green building world. Now there are so many variables and laws with which a property owner must comply, and the legal analysis has mushroomed. Operation and Maintenance have also become one of the most important functions for a prudent Green Building owner. So adding to the “development/retrofit” parties involved in the sustainable building legal world, we now need to include all those people who keep the building green, and there are a lot of them!

Keywords: green building, sustainable development, legal issues, greenwashing, green cleaning, compliance, ESQ

Procedia PDF Downloads 87
8836 Evaluating the Green Marketing Performance, an Empirical Study for Dates Factories in Al-Kharj Province, Saudi Arabia

Authors: Saleh Abdullah Dabil

Abstract:

The research aims to survey the dates factories in Al-Kharj Province, and then identify the nature of a series of different production processes and the using of raw materials, as well as their finished products, and the extent of their impact on the environment or consumers satisfaction. Twenty dates factories were selected according to their willingness to participate. The participants of dates factories consist of approximately 40 % of all dates factories in Al-Kharj province. All of the dates factories which were visited were observed. The research team also administered number of questionnaires to the public to know their satisfaction levels of the dates products as well as their suggestions. It is accounted to 237 participants who gave their opinion about the dates products and their suggestions. This study is one of rare studies about green marketing in dates factories. What is new about this study is that it depends upon both of the managers and consumers as well as the researchers to look into the factories’ production line and to observe the level of satisfaction. The study resulted in a very good ending because that the green marketing of dates is in its highest level. This indicates that the factories in general using natural materials and no bad materials or subsides used in the production, the levels of satisfaction by consumers are very good, preferring mostly lose product of dates. The preference of lose dates means the tendency to use the dates in their natural product. The recommendations of this study suggest solving marketing problems in transforming raw dates into manufacturing products. This includes biscuits and other types of sweet products.

Keywords: green marketing, dates factories, environment impact, consumer satisfaction

Procedia PDF Downloads 241
8835 Using a GIS-Based Method for Green Infrastructure Accessibility of Different Socio-Economic Groups in Auckland, New Zealand

Authors: Jing Ma, Xindong An

Abstract:

Green infrastructure, the most important aspect of improving the quality of life, has been a crucial element of the liveability measurement. With demanding of more liveable urban environment from increasing population in city area, access to green infrastructure in walking distance should be taken into consideration. This article exemplifies the study on accessibility measurement of green infrastructure in central Auckland (New Zealand), using network analysis tool on the basis of GIS, to verify the accessibility levels of green infrastructure. It analyses the overall situation of green infrastructure and draws some conclusions on the city’s different levels of accessibility according to the categories and facilities distribution, which provides valuable references and guidance for the future facility improvement in planning strategies.

Keywords: quality of life, green infrastructure, GIS, accessibility

Procedia PDF Downloads 243
8834 A Framework for Green Use and Disposal of Information Communication Technology Devices

Authors: Frezer Alem Kebede

Abstract:

The notion of viewing ICT as merely support for the business process has shifted towards viewing ICT as a critical business enabler. As such, the need for ICT devices has increased, contributing to high electronic equipment acquisition and disposal. Hence, its use and disposal must be seen in light of environmental sustainability, i.e., in terms of green use and disposal. However, there are limited studies on green Use and Disposal framework to be used as guiding lens by organizations in developing countries. And this study endeavors to address that need taking one of the largest multinational ICT intensive company in the country. The design and development of this framework passed through several stages, initially factors affecting green use and disposal were identified after quantitative and qualitative data analysis then there were multiple brainstorming sessions for the design enhancement as participative modelling was employed. Given the difference in scope and magnitude of the challenges identified, the proposed framework approaches green use and disposal in four imperatives; strategically, tactically, operationally and through continuous improvement.

Keywords: energy efficiency, green disposal, green ICT, green use, green use and disposal framework, sustainability

Procedia PDF Downloads 158
8833 Building Green Infrastructure Networks Based on Cadastral Parcels Using Network Analysis

Authors: Gon Park

Abstract:

Seoul in South Korea established the 2030 Seoul City Master Plan that contains green-link projects to connect critical green areas within the city. However, the plan does not have detailed analyses for green infrastructure to incorporate land-cover information to many structural classes. This study maps green infrastructure networks of Seoul for complementing their green plans with identifying and raking green areas. Hubs and links of main elements of green infrastructure have been identified from incorporating cadastral data of 967,502 parcels to 135 of land use maps using geographic information system. Network analyses were used to rank hubs and links of a green infrastructure map with applying a force-directed algorithm, weighted values, and binary relationships that has metrics of density, distance, and centrality. The results indicate that network analyses using cadastral parcel data can be used as the framework to identify and rank hubs, links, and networks for the green infrastructure planning under a variable scenarios of green areas in cities.

Keywords: cadastral data, green Infrastructure, network analysis, parcel data

Procedia PDF Downloads 163
8832 Magnitude of Green Computing in Trending IT World

Authors: Raghul Vignesh Kumar, M. Vadivel

Abstract:

With the recent years many industries and companies have turned their attention in realizing how going 'green' can benefit public relations, lower cost, and reduce global emissions from industrial manufacturing. Green Computing has become an originative way on how technology and ecology converge together. It is a growing import subject that creates an urgent need to train next generation computer scientists or practitioners to think ‘green’. However, green computing has not yet been well taught in computer science or computer engineering courses as a subject. In this modern IT world it’s impossible for an organization or common man to work without hardware like servers, desktop, IT devices, smartphones etc. But it is also important to consider the harmful impact of those devices and steps to achieve energy saving and environmental protection. This paper presents the magnitude of green computing and steps to be followed to go green.

Keywords: green computing, carbon-dioxide, greenhouse gas, energy saving, environmental protection agency

Procedia PDF Downloads 370