Search results for: material library
3057 Generalized Correlation for the Condensation and Evaporation Heat Transfer Coefficients of Propane (R290), Butane (R600), R134a, and R407c in Porous Horizontal Tubes: Experimental Investigation
Authors: M. Tarawneh
Abstract:
This work is an experimental study on the heat transfer characteristics and pressure drop of different refrigerants during the condensation and evaporation processes in porous media. Four different refrigerants (R134a, R407C, 600a, R290), with different porosities were used to reach a real understanding of the actual heat transfer characteristics and pressure drop when using porous material inside the condenser and evaporator. Steel balls were used as porous media with different porosities (38%, 43%, 48%). The main goal of this project is to enhance the heat transfer coefficient during the condensation and evaporation processes when using different refrigerants and different porosities. Different correlations for the heat transfer coefficient and the pressure drop of the different refrigerants were developed. Also a generalized empirical correlation was developed for the different refrigerants. The experimental and predicted heat transfer coefficients and pressure drops were compared. It was found that, the Absolute standard deviation for the heat transfer coefficient and the pressure drop not exceeded values of 15% and 20%, respectively.Keywords: condensation, evaporation, porous media, horizontal tubes, heat transfer coefficient, propane, butane
Procedia PDF Downloads 5393056 Fe-BTC Based Electrochemical Sensor for Anti-Psychotic and Anti-Migraine Drugs: Aripiprazole and Rizatriptan
Authors: Sachin Saxena, Manju Srivastava
Abstract:
The present study describes a stable, highly sensitive and selective analytical sensor. Fe-BTC was synthesized at room temperature using the noble Iron-trimesate system. The high surface area of as synthesized Fe-BTC proved MOFs as ideal modifiers for glassy carbon electrode. The characterization techniques such as TGA, XRD, FT-IR, BET (BET surface area= 1125 m2/gm) analysis explained the electrocatalytic behaviour of Fe-BTC towards these two drugs. The material formed is cost effective and exhibit higher catalytic behaviour towards analyte systems. The synergism between synthesized Fe-BTC and electroanalytical techniques helped in developing a highly sensitive analytical method for studying the redox fate of ARP and RZ, respectively. Cyclic voltammetry of ferricyanide system proved Fe-BTC/GCE with an increase in 132% enhancement in peak current value as compared to that of GCE. The response characteristics of cyclic voltammetry (CV) and square wave voltammetry (SWV) revealed that the ARP and RZ could be effectively accumulated at Fe-BTC/GCE. On the basis of the electrochemical measurements, electrode dynamics parameters have been evaluated. Present study opens up new field of applications of MOFs modified GCE for drug sensing.Keywords: MOFs, anti-psychotic, electrochemical sensor, anti-migraine drugs
Procedia PDF Downloads 1703055 Influence of Vegetable Oil-Based Controlled Cutting Fluid Impinging Supply System on Micro Hardness in Machining of Ti-6Al-4V
Authors: Salah Gariani, Islam Shyha, Fawad Inam, Dehong Huo
Abstract:
A controlled cutting fluid impinging supply system (CUT-LIST) was developed to deliver an accurate amount of cutting fluid into the machining zone via well-positioned coherent nozzles based on a calculation of the heat generated. The performance of the CUT-LIST was evaluated against a conventional flood cutting fluid supply system during step shoulder milling of Ti-6Al-4V using vegetable oil-based cutting fluid. In this paper, the micro-hardness of the machined surface was used as the main criterion to compare the two systems. CUT-LIST provided significant reductions in cutting fluid consumption (up to 42%). Both systems caused increased micro-hardness value at 100 µm from the machined surface, whereas a slight reduction in micro-hardness of 4.5% was measured when using CUL-LIST. It was noted that the first 50 µm is the soft sub-surface promoted by thermal softening, whereas down to 100 µm is the hard sub-surface caused by the cyclic internal work hardening and then gradually decreased until it reached the base material nominal hardness. It can be concluded that the CUT-LIST has always given lower micro-hardness values near the machined surfaces in all conditions investigated.Keywords: impinging supply system, micro-hardness, shoulder milling, Ti-6Al-4V, vegetable oil-based cutting fluid
Procedia PDF Downloads 2883054 Creating a Critical Digital Pedagogy Context: Challenges and Potential of Designing and Implementing a Blended Learning Intervention for Adult Refugees in Greece
Authors: Roula Kitsiou, Sofia Tsioli, Eleni Gana
Abstract:
The current sociopolitical realities (displacement, encampment, and resettlement) refugees experience in Greece are a quite complex issue. Their educational and social ‘integration’ is characterized by transition, insecurity, and constantly changing needs. Based on the current research data, technology and more specifically mobile phones are one of the most important resources for refugees, regardless of their levels of conventional literacy. The proposed paper discusses the challenges encountered during the design and implementation of the educational Action 16 ‘Language Education for Adult Refugees’. Action 16 is one of the 24 Actions of the Project PRESS (Provision of Refugee Education and Support Scheme), funded by the Hellenic Open University (2016-2017). Project PRESS had two main objectives: a) to address the educational and integration needs of refugees in transit, who currently reside in Greece, and b) implement research-based educational interventions in online and offline sites. In the present paper, the focus is on reflection and discussion about the challenges and the potential of integrating technology in language learning for a target-group with many specific needs, which have been recorded in field notes among other research tools (ethnographic data) used in the context of PRESS. Action 16, explores if and how technology enhanced language activities in real-time and place mediated through teachers, as well as an autonomous computer-mediated learning space (moodle platform and application) builds on and expands the linguistic, cultural and digital resources and repertoires of the students by creating collaborative face-to-face and digital learning spaces. A broader view on language as a dynamic puzzle of semiotic resources and processes based on the concept of translanguaging is adopted. Specifically, designing the blended learning environment we draw on the construct of translanguaging a) as a symbolic means to valorize students’ repertoires and practices, b) as a method to reach to specific applications of a target-language that the context brings forward (Greek useful to them), and c) as a means to expand refugees’ repertoires. This has led to the creation of a learning space where students' linguistic and cultural resources can find paths to expression. In this context, communication and learning are realized by mutually investing multiple aspects of the team members' identities as educational material designers, teachers, and students on the teaching and learning processes. Therefore, creativity, humour, code-switching, translation, transference etc. are all possible means that can be employed in order to promote multilingual communication and language learning towards raising intercultural awareness in a critical digital pedagogy context. The qualitative analysis includes critical reflection on the developed educational material, team-based reflexive discussions, teachers’ reports data, and photographs from the interventions. The endeavor to involve women and men with a refugee background into a blended learning experience was quite innovative especially for the Greek context. It reflects a pragmatist ethos of the choices made in order to respond to the here-and-now needs of the refugees, and finally it was a very challenging task that has led all actors involved into Action 16 to (re)negotiations of subjectivities and products in a creative and hopeful way.Keywords: blended learning, integration, language education, refugees
Procedia PDF Downloads 1293053 Theoretical Approach to Kinetic of Heat Transfer under Irradiation
Authors: Pavlo Selyshchev
Abstract:
A theoretical approach to describe kinetic of heat transfer between an irradiated sample and environment is developed via formalism of the Complex systems and kinetic equations. The irradiated material is a metastable system with non-linear feedbacks, which can give rise to different regimes of buildup and annealing of radiation-induced defects, heating and heat transfer with environment. Irradiation with energetic particles heats the sample and produces defects of the crystal lattice of the sample. The crystal with defects accumulates extra (non-thermal) energy, which is transformed into heat during the defect annealing. Any increase of temperature leads to acceleration of defect annealing, to additional transformation of non-thermal energy into heat and to further growth of the temperature. Thus a non-linear feedback is formed. It is shown that at certain conditions of irradiation this non-linear feedback leads to self-oscillations of the defect density, the temperature of the irradiated sample and the heat transfer between the sample and environment. Simulation and analysis of these phenomena is performed. The frequency of the self-oscillations is obtained. It is determined that the period of the self-oscillations is varied from minutes to several hours depending on conditions of irradiation and properties of the sample. Obtaining results are compared with experimental ones.Keywords: irradiation, heat transfer, non-linear feed-back, self-oscillations
Procedia PDF Downloads 2313052 Shear Buckling of a Large Pultruded Composite I-Section under Asymmetric Loading
Authors: Jin Y. Park, Jeong Wan Lee
Abstract:
An experimental and analytical research on shear buckling of a comparably large polymer composite I-section is presented. It is known that shear buckling load of a large span composite beam is difficult to determine experimentally. In order to sensitively detect shear buckling of the tested I-section, twenty strain rosettes and eight displacement sensors were applied and attached on the web and flange surfaces. The tested specimen was a pultruded composite beam made of vinylester resin, E-glass, carbon fibers and micro-fillers. Various coupon tests were performed before the shear buckling test to obtain fundamental material properties of the I-section. An asymmetric four-point bending loading scheme was utilized for the shear test. The loading scheme resulted a high shear and almost zeros moment condition at the center of the web panel. The shear buckling load was successfully determined after analyzing the obtained test data from strain rosettes and displacement sensors. An analytical approach was also performed to verify the experimental results and to support the discussed experimental program.Keywords: strain sensor, displacement sensor, shear buckling, polymer composite I-section, asymmetric loading
Procedia PDF Downloads 4523051 Development of Nanocomposite from Poly (Lactic Acid) Plasticised Epoxidised Jatropha Oil and Nanocrystalline Cellulose
Authors: Siti Hasnah Kamarudin, Luqman Chuah Abdullah, Min Min Aung, Chantara Thevy Ratnam
Abstract:
The primary objective of this work was to develop fully nanocomposite material based on poly(lactic acid), epoxidized jatropha oil (EJO) and nanocrystalline cellulose. EJO was investigated as a sustainable alternative to petrochemical-based plasticizers to reinforce the ductility and toughness of plastics, in this case, nanocellulose/poly(lactic acid) (PLA). The EJO was melt blended into nanocellulose/PLA at concentrations from 1 wt% to 5 wt%. The blends were then hot-pressed into sheets to characterize their mechanical and physical properties. Microcrystalline cellulose had been converted to nanocrystalline cellulose by acid mercerisation technique and the effects thereof on the composites’ tensile, flexural, and impact properties, as well as their water absorption and density, were studied. The impact strengths of the nanocomposites were improved with the addition of NCC up to 0.5 wt%, with a maximum over 10 times that of the neat PLA. The flexural strength and modulus increased 4% and 50%, respectively, for NCC/PLA plasticized with EJO. This increase demonstrated the nanocrystalline cellulose addition gave notable improvements to the composites’ properties. Furthermore, analysis by scanning electron microscopy (SEM) of the nanocomposites’ tensile fracture surfaces indicated better interaction adhesion of the NCC/PLA plasticized with EJO compared with the PLA/EJO composites.Keywords: nanocrystalline cellulose, nanocomposite, poly (lactic acid), epoxidised jatropha oil
Procedia PDF Downloads 1493050 Investigations on the Seismic Performance of Hot-Finished Hollow Steel Sections
Authors: Paola Pannuzzo, Tak-Ming Chan
Abstract:
In seismic applications, hollow steel sections show, beyond undeniable esthetical appeal, promising structural advantages since, unlike open section counterparts, they are not susceptible to weak-axis and lateral-torsional buckling. In particular, hot-finished hollow steel sections have homogeneous material properties and favorable ductility but have been underutilized for cyclic bending. The main reason is that the parameters affecting their hysteretic behaviors are not yet well understood and, consequently, are not well exploited in existing codes of practice. Therefore, experimental investigations have been conducted on a wide range of hot-finished rectangular hollow section beams with the aim to providing basic knowledge for evaluating their seismic performance. The section geometry (width-to-thickness and depth-to-thickness ratios) and the type of loading (monotonic and cyclic) have been chosen as the key parameters to investigate the cyclic effect on the rotational capacity and to highlight the differences between monotonic and cyclic load conditions. The test results provide information on the parameters that affect the cyclic performance of hot-finished hollow steel beams and can be used to assess the design provisions stipulated in the current seismic codes of practice.Keywords: bending, cyclic test, finite element modeling, hollow sections, hot-finished sections
Procedia PDF Downloads 1573049 The Role of Facades in Conserving the Image of the City
Authors: Hemadri Raut
Abstract:
The city is a blend of the possible interactions of the built form, open spaces and their spatial organization layout in a geographical area to obtain an integrated pattern and environment with building facades being a dominant figure in the body of a city. Façades of each city have their own inherent properties responsive to the human behaviour, weather conditions, safety factors, material availability and composition along with the necessary aesthetics in coordination with adjacent building facades. Cities experience a huge transformation in the culture, lifestyle; socioeconomic conditions and technology nowadays because of the increasing population, urban sprawl, industrialization, contemporary architectural style, post-disaster consequences, war reconstructions, etc. This leads to the loss of the actual identity and architectural character of the city which in turn induces chaos and turbulence in the city. This paper attempts to identify and learn from the traditional elements that would make us more aware of the unique identity of the local communities in a city. It further studies the architectural style, color, shape, and design techniques through the case studies of contextual cities. The work focuses on the observation and transformation of the image of the city through these considerations in the designing of the facades to achieve the reconciliation of the people with urban spaces.Keywords: building facades, city, community, heritage, identity, transformation, urban
Procedia PDF Downloads 2173048 An Appraisal of the Utilization of the New International Academy of Cytology Yokohama Standardized Reporting System: A Study of Diagnostic Accuracy and Calculation of the Risk of Malignancy Along with Histopathological Correlation in Fine-Needle Aspiratio
Authors: Deepika Gupta, Namita Bhutani, Mithlesh Bhargav
Abstract:
Objective: Breast cancer is the most commonly encountered lesion in females after non-melanoma skin malignancies. The triple assessment is an important approach in pre-operative lesions in developing countries. The objectives of the present study were to determine diagnostic accuracy and calculation of ROM along with cyto-histopathological correlation with the incorporation of a new IAC reporting system. Material and Methods: A total of 940 FNAC slides were retrieved from December 2019 to December 2020 and categorized according to the new IAC system. The diagnostic accuracy and calculation of ROM, along with cyto-histopathological correlation, were determined. Results: All the breast FNAC lesions were categorized from C1 to C5. Of the 940 cases, 358 cases had cyto-histopathological correlation. The ROM was ranging from 0% to 99%. All the statistical parameters were calculated along with diagnostic accuracy which was 97%. Conclusion: The new IAC standardized reporting system of breast FNAC evoked the utilization of rapid, accurate, and low-cost diagnostic tests and broadened the understanding and application of breast FNAC.Keywords: accuracy, fine needle aspiration cytology, IAC, risk of malignancy, Yokohama system
Procedia PDF Downloads 123047 Effect of Chlorophyll Concentration Variations from Extract of Papaya Leaves on Dye-Sensitized Solar Cell
Authors: Eka Maulana, Sholeh Hadi Pramono, Dody Fanditya, M. Julius
Abstract:
In this paper, extract of papaya leaves are used as a natural dye and combined by variations of solvent concentration applied on DSSC (Dye-Sensitized Solar Cell). Indonesian geographic located on the equator line occasions the magnitude of the potential to develop organic solar cells made from extracts of chlorophyll as a substitute for inorganic materials or synthetic dye on DSSC material. Dye serves as absorbing photons which are then converted into electrical energy. A conductive coated glass layer called TCO (Transparent Conductive Oxide) is used as a substrate of electrode. TiO2 nanoparticles as binding dye molecules, redox couple iodide/ tri-iodide as the electrolyte and carbon as the counter electrode in the DSSC are used. TiO2 nanoparticles, organic dyes, electrolytes and counter electrode are arranged and combined with the layered structure of the photo-catalyst absorption layer. Dye absorption measurements using a spectrophotometer at 200-800 nm light spectrum produces a total amount of chlorophyll 80.076 mg/l. The test cell at 7 watt LED light with 5000 lux luminescence were obtained Voc and Isc of 235.5 mV and 14 μA, respectively.Keywords: DSSC (Dye-Sensitized Solar Cell), natural dye, chlorophyll, absorption
Procedia PDF Downloads 4983046 Onion Storage and the Roof Influence in the Tropics
Authors: O. B. Imoukhuede, M. O. Ale
Abstract:
The periodic scarcity of onion requires an urgent solution in Nigerian agro- economy. The high percentage of onion losses incurred after the harvesting period is due to non-availability of appropriate facility for its storage. Therefore, some storage structures were constructed with different roofing materials. The response of the materials to the weather parameters like temperature and relative humidity were evaluated to know their effects on the performance of the storage structures. The temperature and relative humidity were taken three times daily alongside with the weight of the onion in each of the structures; the losses as indicated by loss indices like shrinkage, rottenness, sprouting, and colour were identified and percentage loss per week determined. The highest mean percentage loss (22%) was observed in the structure with iron roofing materials while structure with thatched materials had the lowest (9.4%); The highest temperature was observed in the structure with Asbestos roofing materials and no significant difference in the temperature value in the structure with thatched and Iron materials; highest relatively humidity was found in Asbestos roofing material while the lowest in the structure with iron matetrials. It was conclusively found that the storage structure with thatched roof had the best performance in terms of losses.Keywords: Nigeria, onion, storage structures, weather parameters, roof materials, losses
Procedia PDF Downloads 5613045 An Integrated Supply Chain Management to Manufacturing Industries
Authors: Kittipong Tissayakorn, Fumio Akagi, Yu Song
Abstract:
Manufacturers have been exploring innovative strategies to achieve and sustain competitive advantages as they face a new era of intensive global competition. Such strategy is known as Supply Chain Management (SCM), which has gained a tremendous amount of attention from both researchers and practitioners over the last decade. Supply chain management (SCM) is considered as the most popular operating strategy for improving organizational competitiveness in the twenty-first century. It has attracted a lot of attention recently due to its role involving all of the activities in industrial organizations, ranging from raw material procurement to final product delivery to customers. Well-designed supply chain systems can substantially improve efficiency and product quality, and eventually enhance customer satisfaction and profitability. In this paper, a manufacturing engineering perspective on supply chain integration is presented. Research issues discussed include the product and process design for the supply chain, design evaluation of manufacturing in the supply chain, agent-based techniques for supply chain integration, intelligent information for sharing across the supply chain, and a development of standards for product, process, and production data exchange to facilitate electronic commerce. The objective is to provide guidelines and references for manufacturing engineers and researchers interested in supply chain integration.Keywords: supply chain, supply chain management, supply chain integration, manufacturing industries
Procedia PDF Downloads 3533044 The Evolving Customer Experience Management Landscape: A Case Study on the Paper Machine Companies
Authors: Babak Mohajeri, Sen Bao, Timo Nyberg
Abstract:
Customer experience is increasingly the differentiator between successful companies and those who struggle. Currently, customer experiences become more dynamic; and they advance with each interaction between the company and a customer. Every customer conversation and any effort to evolve these conversations would be beneficial and should ultimately result in a positive customer experience. The aim of this paper is to analyze the evolving customer experience management landscape and the relevant challenges and opportunities. A case study on the “paper machine” companies is chosen. Hence, this paper analyzes the challenges and opportunities in customer experience management of paper machine companies for the case of “road to steel”. Road to steel shows the journey of steel from raw material to end product (i.e. paper machine in this paper). ALPHA (Steel company) and BETA (paper machine company), are chosen and their efforts to evolve the customer experiences are investigated. Semi-structured interviews are conducted with experts in those companies to identify the challenges and opportunities of the evolving customer experience management from their point of view. The findings of this paper contribute to the theory and business practices in the realm of the evolving customer experience management landscape.Keywords: Customer Experience Management, Paper Machine , Value Chain Management, Risk Analysis
Procedia PDF Downloads 3653043 Subsurface Elastic Properties Determination for Site Characterization Using Seismic Refraction Tomography at the Pwalugu Dam Area
Authors: Van-Dycke Sarpong Asare, Vincent Adongo
Abstract:
Field measurement of subsurface seismic p-wave velocities was undertaken through seismic refraction tomography. The aim of this work is to obtain a model of the shallow subsurface material elastic properties relevant for geotechnical site characterization. The survey area is at Pwalugu in Northern Ghana, where a multipurpose dam, for electricity generation, irrigation, and potable water delivery, is being planned. A 24-channel seismograph and 24, 10 Hz electromagnetic geophones, deployed 5 m apart constituted the acquisition hardware. Eleven (2-D) seismic refraction profiles, nine of which ran almost perpendicular and two parallel to the White Volta at Pwalugu, were acquired. The refraction tomograms of the thirteen profiles revealed a subsurface model consisting of one minor and one major acoustic impedance boundaries – the top dry/loose sand and the variably weathered sandstone contact, and the overburden-sandstones bedrock contact respectively. The p-wave velocities and by inference, with a priori values of poison ratios, the s-wave velocities, assisted in characterizing the geotechnical conditions of the proposed site and also in evaluating the dynamic properties such as the maximum shear modulus, the bulk modulus, and the Young modulus.Keywords: tomography, characterization, consolidated, Pwalugu and seismograph
Procedia PDF Downloads 1313042 Analyzing the Performance Properties of Stress Absorbing Membrane Interlayer Modified with Recycled Crumb Rubber
Authors: Seyed Mohammad Asgharzadeh, Moein Biglari
Abstract:
Asphalt overlay is the most commonly used technique of pavement rehabilitation. However, the reflective cracks which occur on the overlay surface after a short period of time are the most important distresses threatening the durability of new overlays. Stress Absorbing Membrane Interlayers (SAMIs) are used to postpone the reflective cracking in the overlays. Sand asphalt mixtures, in unmodified or crumb rubber modified (CRM) conditions, can be used as an SAMI material. In this research, the performance properties of different SAMI applications were evaluated in the laboratory using an Indirect Tensile (IDT) fracture energy. The IDT fracture energy of sand asphalt samples was also evaluated and then compared to that of the regular dense graded asphalt used as an overlay. Texas boiling water and modified Lottman tests were also conducted to evaluate the moisture susceptibility of sand asphalt mixtures. The test results showed that sand asphalt mixtures can stand higher levels of energy before cracking, and this is even more pronounced for the CRM sand mix. Sand asphalt mixture using CRM binder was also shown to be more resistance to moisture induced distresses.Keywords: SAMI, sand asphalt, crumb rubber, indirect tensile test
Procedia PDF Downloads 2283041 Biocellulose as Platform for the Development of Multifunctional Materials
Authors: Junkal Gutierrez, Hernane S. Barud, Sidney J. L. Ribeiro, Agnieszka Tercjak
Abstract:
Nowadays the interest on green nanocomposites and on the development of more environmental friendly products has been increased. Bacterial cellulose has been recently investigated as an attractive environmentally friendly material for the preparation of low-cost nanocomposites. The formation of cellulose by laboratory bacterial cultures is an interesting and attractive biomimetic access to obtain pure cellulose with excellent properties. Additionally, properties as molar mass, molar mass distribution, and the supramolecular structure could be control using different bacterial strain, culture mediums and conditions, including the incorporation of different additives. This kind of cellulose is a natural nanomaterial, and therefore, it has a high surface-to-volume ratio which is highly advantageous in composites production. Such property combined with good biocompatibility, high tensile strength, and high crystallinity makes bacterial cellulose a potential material for applications in different fields. The aim of this investigation work was the fabrication of novel hybrid inorganic-organic composites based on bacterial cellulose, cultivated in our laboratory, as a template. This kind of biohybrid nanocomposites gathers together excellent properties of bacterial cellulose with the ones displayed by typical inorganic nanoparticles like optical, magnetic and electrical properties, luminescence, ionic conductivity and selectivity, as well as chemical or biochemical activity. In addition, the functionalization of cellulose with inorganic materials opens new pathways for the fabrication of novel multifunctional hybrid materials with promising properties for a wide range of applications namely electronic paper, flexible displays, solar cells, sensors, among others. In this work, different pathways for fabrication of multifunctional biohybrid nanopapers with tunable properties based on BC modified with amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (EPE) block copolymer, sol-gel synthesized nanoparticles (titanium, vanadium and a mixture of both oxides) and functionalized iron oxide nanoparticles will be presented. In situ (biosynthesized) and ex situ (at post-production level) approaches were successfully used to modify BC membranes. Bacterial cellulose based biocomposites modified with different EPE block copolymer contents were developed by in situ technique. Thus, BC growth conditions were manipulated to fabricate EPE/BC nanocomposite during the biosynthesis. Additionally, hybrid inorganic/organic nanocomposites based on BC membranes and inorganic nanoparticles were designed via ex-situ method, by immersion of never-dried BC membranes into different nanoparticle solutions. On the one hand, sol-gel synthesized nanoparticles (titanium, vanadium and a mixture of both oxides) and on the other hand superparamagnetic iron oxide nanoparticles (SPION), Fe2O3-PEO solution. The morphology of designed novel bionanocomposites hybrid materials was investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). In order to characterized obtained materials from the point of view of future applications different techniques were employed. On the one hand, optical properties were analyzed by UV-vis spectroscopy and spectrofluorimetry and on the other hand electrical properties were studied at nano and macroscale using electric force microscopy (EFM), tunneling atomic force microscopy (TUNA) and Keithley semiconductor analyzer, respectively. Magnetic properties were measured by means of magnetic force microscopy (MFM). Additionally, mechanical properties were also analyzed.Keywords: bacterial cellulose, block copolymer, advanced characterization techniques, nanoparticles
Procedia PDF Downloads 2313040 Electronic Nose for Monitoring Fungal Deterioration of Stored Rapeseed
Authors: Robert Rusinek, Marek Gancarz, Jolanta Wawrzyniak, Marzena Gawrysiak-Witulska, Dariusz Wiącek, Agnieszka Nawrocka
Abstract:
Investigations were performed to examine the possibility of using an electronic nose to monitor the development of fungal microflora during the first eighteen days of rapeseed storage. The Cyranose 320 device with polymer-composite sensors was used. Each sample of infected material was divided into three parts, and the degree of spoilage was measured in three ways: analysis of colony forming units (CFU), determination of ergosterol content (ERG), and measurement with the eNose. Principal component analysis (PCA) was performed on the generated patterns of signals, and six groups of different spoilage levels were isolated. The electronic nose with polymer-composite sensors under laboratory conditions distinguished between species of spoiled and unspoiled seeds with 100% accuracy. Despite some minor differences in the CFU and ergosterol content, the electronic nose provided responses correctly corresponding to the level of spoilage with 85% accuracy. Therefore, the main conclusion from the study is that the electronic nose is a promising tool for quick and non-destructive detection of the level of oil seed spoilage. The research was supported by the National Centre for Research and Development (NCBR), Grant No. PBS2/A8/22/2013.Keywords: colony forming units, electronic nose, ergosterol, rapeseed
Procedia PDF Downloads 3243039 Energy Potential of Organic Fraction of Municipal Solid Waste - Colombian Housing
Authors: Esteban Hincapie
Abstract:
The growing climate change, global warming and population growth have contributed to the energy crisis, aggravated by the generation of organic solid waste, as a material with high energy potential. From the context of waste generation in the Metropolitan Area of the Aburrá Valley, was evaluated the potential of energy content in organic solid waste generated in La Herradura housing complex, through anaerobic digestion process in batch reactors, with mixtures of substrate, water and inoculum 1: 3: 0.2 and 1: 3: 0, reaching a total biogas production of 0,2 m³/Kg y 0,14 m³/Kg respectively, in a period of 38 days under temperature conditions of 24°C. The volume of biogas obtained was equivalent to the monthly consumption of natural gas for 75 apartments or 1.856 Kw of electric power. For the Metropolitan Area of the Aburrá Valley, a production of 7.152Kw of electric power was estimated for a month, from the treatment of 22.319 tons of organic solid waste that would not be taken to the landfill. The results indicate that the treatment of organic waste from anaerobic digestion is a sustainable option to reduce pollution, contribute to the production of alternative energies and improve the efficiency of urban metabolism.Keywords: alternative energies, anaerobic digestion, solid waste, sustainable construction, urban metabolism, waste management
Procedia PDF Downloads 1823038 Immobilization of Cobalt Ions on F-Multi-Wall Carbon Nanotubes-Chitosan Thin Film: Preparation and Application for Paracetamol Detection
Authors: Shamima Akhter, Samira Bagheri, M. Shalauddin, Wan Jefrey Basirun
Abstract:
In the present study, a nanocomposite of f-MWCNTs-Chitosan was prepared by the immobilization of Co(II) transition metal through self-assembly method and used for the simultaneous voltammetric determination of paracetamol (PA). The composite material was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-Ray analysis (EDX). The electroactivity of cobalt immobilized f-MWCNTs with excellent adsorptive polymer chitosan was assessed during the electro-oxidation of paracetamol. The resulting GCE modified f-MWCNTs/CTS-Co showed electrocatalytic activity towards the oxidation of PA. The electrochemical performances were investigated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) methods. Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range for paracetamol solution in the range of 0.1 to 400µmol L⁻¹ with a detection limit of 0.01 µmol L⁻¹. The proposed sensor exhibited significant selectivity for the paracetamol detection. The proposed method was successfully applied for the determination of paracetamol in commercial tablets and human serum sample.Keywords: nanomaterials, paracetamol, electrochemical technique, multi-wall carbon nanotube
Procedia PDF Downloads 2053037 Optimizing of the Micro EDM Parameters in Drilling of Titanium Ti-6Al-4V Alloy for Higher Machining Accuracy-Fuzzy Modelling
Authors: Ahmed A. D. Sarhan, Mum Wai Yip, M. Sayuti, Lim Siew Fen
Abstract:
Ti6Al4V alloy is highly used in the automotive and aerospace industry due to its good machining characteristics. Micro EDM drilling is commonly used to drill micro hole on extremely hard material with very high depth to diameter ratio. In this study, the parameters of micro-electrical discharge machining (EDM) in drilling of Ti6Al4V alloy is optimized for higher machining accuracy with less hole-dilation and hole taper ratio. The micro-EDM machining parameters includes, peak current and pulse on time. Fuzzy analysis was developed to evaluate the machining accuracy. The analysis shows that hole-dilation and hole-taper ratio are increased with the increasing of peak current and pulse on time. However, the surface quality deteriorates as the peak current and pulse on time increase. The combination that gives the optimum result for hole dilation is medium peak current and short pulse on time. Meanwhile, the optimum result for hole taper ratio is low peak current and short pulse on time.Keywords: Micro EDM, Ti-6Al-4V alloy, fuzzy logic based analysis, optimization, machining accuracy
Procedia PDF Downloads 4963036 Redefinition of Village Landscape with Ruins-Taking Cunwei Village in Nanping City, Fujian Province as Example
Authors: Siyu Bu, Jie Wang, Yajing Jiang
Abstract:
Nowadays, villages still occupying 94.7% of the national territorial area (almost nine million square kilometers) of China. Some of them are meeting urbanization and grow as satellite; however, others are witnessing more and more citizens swarming into with nostalgia, seek enjoyment from the beautiful green countryside. In villages, new types of house come and we see billions of old houses lay unused, or even be dying at every second, which cause a lot of 'bad palaces', decadent and dangerous. In this context, there are lots of tries for gearing villages in China. This article deconstructs the traditional village house to excavate its’ landscape potential for future. By research in CunWei Village, Nanping City, Fujian Province, China, a method of reconstruction of old houses comes out: the wreckage will be a strong landscape, showing the great beauty of nature. It will be a better use of the old material as well as the space pattern. It was supposed to gain a juxtaposition of traditional village life and modern social life by offering possibilities of multiple event, replacing the bad space to attractive one by strengthen the old structures without destroy traditional patterns. Furthermore , this method acts as an exploring for building redefinition of village landscape that fit Chinese villages, using local nature resource and traditional construction logic.Keywords: juxtaposition, replace, village, ruins
Procedia PDF Downloads 2533035 Ethical Leadership: A Theological and Ethical Alternative to the Culture of Greed in South African Government
Authors: Mookgo Solomon Kgatle
Abstract:
Introductory Statement: The effect of corruption in South Africa has seriously constrained development of the national economy and has significantly inhibited good governance in the country. The significance of this paper is a demonstration that Corruption in a South African government is greatly influenced by the culture of greed by leaders in government. Many leaders in government are not satisfied with what they receive on monthly basis in the form of salaries and allowances. Thus, the quest to accumulate, as many material possessions by cabinet ministers and public servants is what is crippling the annual budget and disadvantaging the poor masses of our people including women, children and the elderly. Basic Methodology: In order to deal with this dilemma, this paper proposes ethical leadership as a theological and ethical alternative and antidote to the culture of greed in government. Research Findings: Ethical leadership is proposed because unlike the culture of greed, it is a leadership that is based on respect for ethical principles and standards and for the dignity and privileges of others. Ethical leadership is synonymous with principles like trust, morality, consideration, equality, and justice. Conclusion: The conclusion is that ethical leadership is one of the solutions that can assist the South African government to deal with the root causes of corruption, that is, the culture of greed.Keywords: ethical leadership, theological ethics, culture of greed, corruption, governance
Procedia PDF Downloads 1893034 Auto-Tuning of CNC Parameters According to the Machining Mode Selection
Authors: Jenq-Shyong Chen, Ben-Fong Yu
Abstract:
CNC(computer numerical control) machining centers have been widely used for machining different metal components for various industries. For a specific CNC machine, its everyday job is assigned to cut different products with quite different attributes such as material type, workpiece weight, geometry, tooling, and cutting conditions. Theoretically, the dynamic characteristics of the CNC machine should be properly tuned match each machining job in order to get the optimal machining performance. However, most of the CNC machines are set with only a standard set of CNC parameters. In this study, we have developed an auto-tuning system which can automatically change the CNC parameters and in hence change the machine dynamic characteristics according to the selection of machining modes which are set by the mixed combination of three machine performance indexes: the HO (high surface quality) index, HP (high precision) index and HS (high speed) index. The acceleration, jerk, corner error tolerance, oscillation and dynamic bandwidth of machine’s feed axes have been changed according to the selection of the machine performance indexes. The proposed auto-tuning system of the CNC parameters has been implemented on a PC-based CNC controller and a three-axis machining center. The measured experimental result have shown the promising of our proposed auto-tuning system.Keywords: auto-tuning, CNC parameters, machining mode, high speed, high accuracy, high surface quality
Procedia PDF Downloads 3823033 Techno-Economic Study on the Potential of Dimethyl Ether (DME) as a Substitute for LPG
Authors: Widya Anggraini Pamungkas, Rosana Budi Setyawati, Awaludin Fitroh Rifai, Candra Pangesti Setiawan, Anatta Wahyu Budiiman, Inayati, Joko Waluyo, Sunu Herwi Pranolo
Abstract:
The increase in LPG consumption in Indonesia is not balanced with the amount of supply. The high demand for LPG due to the success of the government's kerosene-to-LPG conversion program and the Covid-19 pandemic in 2020 led to an increase in LPG consumption in the household sector and caused Indonesia's trade balance to experience a deficit. The high consumption of LPG encourages the need for alternative fuels as a substitute or which aims to substitute LPG; one of the materials that can be used is Dimethyl Ether (DME). Dimethyl ether (DME) is an organic compound with the chemical formula CH 3. OCH 3 has a high cetane number and has characteristics similar to LPG. DME can be produced from various sources, such as coal, biomass and natural gas. Based on the economic analysis conducted at 10% IRR, coal has the largest NPV of Rp. 20,034,837,497,241 with a payback period of 3.86 years, then biomass with an NPV of Rp. 10,401,526,072,850 and a payback period of 5.16. the latter is natural gas with an NPV of IDR 7,401,272,559,191 and a payback period of 6.17 years. Of the three sources of raw materials used, if the sensitivity is calculated using the selling price of DME equal to the selling price of LPG, it will get an NPV value that is greater than the NPV value when using the current DME price. The advantages of coal as a raw material for DME are not only because it is profitable, namely: low price and abundant resources, but has high greenhouse gas emissions.Keywords: LPG, DME, coal, biomass, natural gas
Procedia PDF Downloads 1263032 Characteristics of Cumulative Distribution Function of Grown Crack Size at Specified Fatigue Crack Propagation Life under Different Maximum Fatigue Loads in AZ31
Authors: Seon Soon Choi
Abstract:
Magnesium alloy has been widely used in structure such as an automobile. It is necessary to consider probabilistic characteristics of a structural material because a fatigue behavior of a structure has a randomness and uncertainty. The purpose of this study is to find the characteristics of the cumulative distribution function (CDF) of the grown crack size at a specified fatigue crack propagation life and to investigate a statistical crack propagation in magnesium alloys. The statistical fatigue data of the grown crack size are obtained through the fatigue crack propagation (FCP) tests under different maximum fatigue load conditions conducted on the replicated specimens of magnesium alloys. The 3-parameter Weibull distribution is used to find the CDF of grown crack size. The CDF of grown crack size in case of larger maximum fatigue load has longer tail in below 10 percent and above 90 percent. The fatigue failure occurs easily as the tail of CDF of grown crack size becomes long. The fatigue behavior under the larger maximum fatigue load condition shows more rapid propagation and failure mode.Keywords: cumulative distribution function, fatigue crack propagation, grown crack size, magnesium alloys, maximum fatigue load
Procedia PDF Downloads 2883031 Implementation of a Photo-Curable 3D Additive Manufacturing Technology with Grey Capability by Using Piezo Ink-jets
Authors: Ming-Jong Tsai, Y. L. Cheng, Y. L. Kuo, S. Y. Hsiao, J. W. Chen, P. H. Liu, D. H. Chen
Abstract:
The 3D printing is a combination of digital technology, material science, intelligent manufacturing and control of opto-mechatronics systems. It is called the third industrial revolution from the view of the Economist Journal. A color 3D printing machine may provide the necessary support for high value-added industrial and commercial design, architectural design, personal boutique, and 3D artist’s creation. The main goal of this paper is to develop photo-curable color 3D manufacturing technology and system implementation. The key technologies include (1) Photo-curable color 3D additive manufacturing processes development and materials research (2) Piezo type ink-jet head control and Opto-mechatronics integration technique of the photo-curable color 3D laminated manufacturing system. The proposed system is integrated with single Piezo type ink-jet head with two individual channels for two primary UV light curable color resins which can provide for future colorful 3D printing solutions. The main research results are 16 grey levels and grey resolution of 75 dpi.Keywords: 3D printing, additive manufacturing, color, photo-curable, Piezo type ink-jet, UV Resin
Procedia PDF Downloads 5633030 Gasification of Groundnut Shell in an Air Bubbling Fluidized Bed Gasifier
Authors: Dharminer Singh, Sanjeev Yadav, Pravakar Mohanty
Abstract:
In this work, gasification of groundnut shell was carried out in an air bubbling fluidized bed gasifier. Atmospheric air used as gasification agent in the gasifier. The groundnut shell used for gasification was in powder form and the locally available river sand was used as bed material. Conventional charcoal was used for heating sand bed. Two cyclones were used for proper segregation of char particles and for proper cleaning and cooling the product gas. Experiments were performed on different equivalence ratio (ER) 0.3 - 0.33 by varying feeding rate 36 - 32.8 kg/h of biomass and by keeping the air flow rate constant at bed temperature between 700 °C – 800 °C. Performance of gasifier was evaluated on the basis of different parameters such as cold gas efficiency, carbon conversion efficiency (CCE), Tar and Suspended particles matter (SPM) generation, gas yield, and Higher heating value (HHV) of gas. The optimal ER value for gasification of groundnut shell (GNS) powder in an air bubbling fluidized bed gasifier was found to be 0.31. Cold gas efficiency and CCE value at optimal ER was found to be 63.7 %, and 91 %, respectively. Concentration of Tar and SPM, HHV of gas, and gas yield at optimal ER was found to be 11.88 g/Nm3, 2.38 MJ/Nm3, and 2.01m3/kg, respectively. In the product gas, concentrations of CO, CO2, CH4 and H2 were found to be 12.94%, 13.5%, 5.74% and 13.77%, respectively. At ER 0.31, it was observed that bed temperature of gasifier was in steady state for long time at 714 °C with 5 – 10 °C fluctuation.Keywords: air bubbling fluidized bed gasifier, groundnut shell powder, equivalence ratio (ER), cold gas efficiency, carbon conversion efficiency (CCE), high heating value (HHV)
Procedia PDF Downloads 2823029 Heater and Substrate Profile Optimization for Low Power Portable Breathalyzer to Diagnose Diabetes Mellitus
Authors: Ramji Kalidoss, Snekhalatha Umapathy, V. Dhinakaran, J. M. Mathana
Abstract:
Chemi-resistive sensors used in breathalyzers have become a hotspot between the international breath research communities. These sensors exhibit a significant change in its resistance depending on the temperature it gets heated thus demanding high power leading to non-portable instrumentation. In this work, numerical simulation to identify the suitable combination of substrate and heater profile using COMSOL multiphysics was studied. Ni-Cr and Pt-100 joule resistive heater with various profiles were studied beneath the square and circular alumina substrates. The temperature distribution was uniform throughout the square substrate with the meander shaped pt100 heater with 48 mW power consumption for 200 oC. Moreover, this heater profile induced minimal stress on the substrate with 0.5 mm thick. A novel Graphene based ternary metal oxide nanocomposite (GO/SnO2/TiO2) was coated on the optimized substrate and heater to elucidate the response of diabetes biomarker (acetone). The sensor exhibited superior gas sensing performance towards acetone in the exhaled breath concentration range for diabetes (0.25 – 3 ppm). These results indicated the importance of substrate and heater properties along with sensing material for low power portable breathalyzers.Keywords: Breath Analysis, Chemical Sensors, Diabetes Mellitus, Graphene Nanocomposites, Heater, Substrate
Procedia PDF Downloads 1373028 Obtaining High Purity Hydroxyapatite from Bovine Bone: Effect of Chemical and Thermal Treatments
Authors: Hernandez Pardo Diego F., Guiza Arguello Viviana R., Coy Echeverria Ana, Viejo Abrante Fernando
Abstract:
The biological hydroxyapatite obtained from bovine bone arouses great interest in its application as a material for bone regeneration due to its better bioactive behavior in comparison with synthetic hydroxyapatite. For this reason, the objective of the present investigation was to determine the effect of chemical and thermal treatments in obtaining biological bovine hydroxyapatite of high purity and crystallinity. Two different chemical reagents were evaluated (NaOH and HCl) with the aim to remove the organic matrix of the bovine cortical bone. On the other hand, for analyzing the effect of thermal treatment temperature was ranged between 500 and 1000°C for a holding time of 4 hours. To accomplish the above, the materials before and after the chemical and thermal treatments were characterized by elemental compositional analysis (CHN), infrared spectroscopy by Fourier transform (FTIR), RAMAN spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction (XRD) and energy dispersion X-ray spectroscopy (EDS). The results allowed to establish that NaOH is more effective in the removal of the organic matrix of the bone when compared to HCl, whereas a thermal treatment at 700ºC for 4 hours was enough to obtain biological hydroxyapatite of high purity and crystallinity.Keywords: bovine bone, hydroxyapatite, biomaterials, thermal treatment
Procedia PDF Downloads 117