Search results for: agricultural soils
2390 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran
Authors: Saba Gachpaz, Hamid Reza Heidari
Abstract:
The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. To achieve this, more resources should be consumed and, besides other environmental concerns, highlight sustainable agricultural development. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for ten different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.Keywords: land suitability, machine learning, random forest, sustainable agriculture
Procedia PDF Downloads 842389 Static Response of Homogeneous Clay Stratum to Imposed Structural Loads
Authors: Aaron Aboshio
Abstract:
Numerical study of the static response of homogeneous clay stratum considering a wide range of cohesion and subject to foundation loads is presented. The linear elastic–perfectly plastic constitutive relation with the von Mises yield criterion were utilised to develop a numerically cost effective finite element model for the soil while imposing a rigid body constrain to the foundation footing. From the analyses carried out, estimate of the bearing capacity factor, Nc as well as the ultimate load-carrying capacities of these soils, effect of cohesion on foundation settlements, stress fields and failure propagation were obtained. These are consistent with other findings in the literature and hence can be a useful guide in design of safe foundations in clay soils for buildings and other structure.Keywords: bearing capacity factors, finite element method, safe bearing pressure, structure-soil interaction
Procedia PDF Downloads 3022388 Comparative Study on the Effect of Compaction Energy and Moisture Content on the Strength Properties of Lateritic Soil
Authors: Ahmad Idris, O.A. Uche, Ado Y Abdulfatah
Abstract:
Lateritic soils are found in abundance and are the most common types of soils used in construction of roads and embankments in Nigeria. Strength properties of the soils depend on the amount of compaction applied and the amount of water available in the soil at the time of compaction. In this study, the influence of the compactive effort and that of the amount of water in the soil in the determination of the shear strength properties of lateritic soil was investigated. Lateritic soil sample was collected from an existing borrow pit in Kano, Nigeria and its basic characteristics were determined and the soil was classified according to AASHTO classification method. The soil was then compacted under various compactive efforts and at wide range of moisture contents. The maximum dry density (MDD) and optimum moisture content (OMC) at each compactive effort was determined. Unconfined undrained triaxial test was carried out to determine the shear strength properties of the soil under various conditions of moisture and energy. Preliminary results obtained indicated that the soil is an A-7-5 soil. The final results obtained shows that as the compaction energy is increased, both the cohesion and friction angle increased irrespective of the moisture content used in the compaction. However, when the amount of water in the soil was increased and compaction effort kept constant, only the cohesion of the soil increases while the friction angle shows no any pattern of variation. It was also found that the highest values for cohesion and friction angle were obtained when the soil was compacted at the highest energy and at OMC.Keywords: laterite, OMC, compaction energy, moisture content
Procedia PDF Downloads 4072387 A Review: Global Crisis Effects on Agriculture and Animal Production in Turkey
Authors: Muhittin Fatih Demirhan, Sibel Alapala Demirhan
Abstract:
Agriculture, is also regarded as the primary activity area in all economies. When international comparisons are made Turkey has comparative advantages in agricultural potential. However, it is diffi cult to say that Turkey's agricultural productivity and use of technology is well developed in terms of sufficieny. Turkey, in terms of agricultural production, is one of the rare self-sufficient countries, but for supplying excessive demand of its domesticproduction to foreign markets to obtain the necessary income it is rather insufficient. On the basis of wrong policies implemented during the crisis and found that bottlenecks in agriculture and animal husbandry or agriculture policies of the IMF and World Bank are imposed on countries like Turkey. The IMF and the World Bank, the reduction of support in the agricultural and livestock Turkey, is known to put pressure for the abolition. Under these circumstances, our farmers, livestock producers and breeders of, not a chance to compete in the same market with EU producers. Animal products that capture the productivity levels of developed countries, seems to be our chance to compete with the quality and hygiene criteria. Thus, the discussion of the issue must be raised as for the sector's contribution to the economy in terms of further increasing production of the existing potential in mobilization.Keywords: agricultural development, animal production, competition, economic crisis, food supply
Procedia PDF Downloads 2372386 Channel That Can Be Used on Slope, Slide Prone and Seismic Areas, Swelling and Collapsing Soils
Authors: Sabir Tehrankhan Hasanov, Mir Movsum Anar Dadashev
Abstract:
The article provides a brief overview of irrigation systems and canals applied to slopes, landslide-prone, seismic areas, and swelling and collapsing soils. The contemporary construction of the canal used for irrigation, energy, and water supply purposes is described. In order to ensure the durability, longevity, and reliability of the channel, a damping mat made of cast material is created under its cover, and the top is covered with a waterproof screen. Dowels are placed on the bottom and sides of the channel, and the bottom dowel is riveted to the solid bedrock and connected with piles placed at certain distances. Drainage was placed next to the bottom dowel, an operation road was created on one side of the channel, and a berm road was created on the other side. A bathtub was built on the side of the road, and a forest-bush strip was built on its bank.Keywords: slope, channel, landslide, collapse, swell, soil, structure
Procedia PDF Downloads 862385 Assessing and Managing the Risk of Inland Acid Sulfate Soil Drainage via Column Leach Tests and 1D Modelling: A Case Study from South East Australia
Authors: Nicolaas Unland, John Webb
Abstract:
The acidification and mobilisation of metals during the oxidation of acid sulfate soils exposed during lake bed drying is an increasingly common phenomenon under climate scenarios with reduced rainfall. In order to assess the risk of generating high concentrations of acidity and dissolved metals, chromium suite analysis are fundamental, but sometimes limited in characterising the potential risks they pose. This study combines such fundamental test work, along with incubation tests and 1D modelling to investigate the risks associated with the drying of Third Reedy Lake in South East Australia. Core samples were collected from a variable depth of 0.5 m below the lake bed, at 19 locations across the lake’s footprint, using a boat platform. Samples were subjected to a chromium suite of analysis, including titratable actual acidity, chromium reducible sulfur and acid neutralising capacity. Concentrations of reduced sulfur up to 0.08 %S and net acidities up to 0.15 %S indicate that acid sulfate soils have formed on the lake bed during permanent inundation over the last century. A further sub-set of samples were prepared in 7 columns and subject to accelerated heating, drying and wetting over a period of 64 days in laboratory. Results from the incubation trial indicate that while pyrite oxidation proceeded, minimal change to soil pH or the acidity of leachate occurred, suggesting that the internal buffering capacity of lake bed sediments was sufficient to neutralise a large proportion of the acidity produced. A 1D mass balance model was developed to assess potential changes in lake water quality during drying based on the results of chromium suite and incubation tests. Results from the above test work and modelling suggest that acid sulfate soils pose a moderate to low risk to the Third Reedy Lake system. Further, the risks can be effectively managed during the initial stages of lake drying via flushing with available mildly alkaline water. The study finds that while test work such as chromium suite analysis are fundamental in characterizing acid sulfate soil environments, they can the overestimate risks associated with the soils. Subsequent incubation test work may more accurately characterise such soils and lead to better-informed management strategies.Keywords: acid sulfate soil, incubation, management, model, risk
Procedia PDF Downloads 3582384 Evaluating the Terrace Benefits of Erosion in a Terraced-Agricultural Watershed for Sustainable Soil and Water Conservation
Authors: Sitarrine Thongpussawal, Hui Shao, Clark Gantzer
Abstract:
Terracing is a conservation practice to reduce erosion and widely used for soil and water conservation throughout the world but is relatively expensive. A modification of the Soil and Water Assessment Tool (called SWAT-Terrace or SWAT-T) explicitly aims to improve the simulation of the hydrological process of erosion from the terraces. SWAT-T simulates erosion from the terraces by separating terraces into three segments instead of evaluating the entire terrace. The objective of this work is to evaluate the terrace benefits on erosion from the Goodwater Creek Experimental Watershed (GCEW) at watershed and Hydrologic Response Unit (HRU) scales using SWAT-T. The HRU is the smallest spatial unit of the model, which lumps all similar land uses, soils, and slopes within a sub-basin. The SWAT-T model was parameterized for slope length, steepness and the empirical Universal Soil Erosion Equation support practice factor for three terrace segments. Data from 1993-2010 measured at the watershed outlet were used to evaluate the models for calibration and validation. Results of SWAT-T calibration showed good performance between measured and simulated erosion for the monthly time step, but poor performance for SWAT-T validation. This is probably because of large storms in spring 2002 that prevented planting, causing poorly simulated scheduling of actual field operations. To estimate terrace benefits on erosion, models were compared with and without terraces. Results showed that SWAT-T showed significant ~3% reduction in erosion (Pr <0.01) at the watershed scale and ~12% reduction in erosion at the HRU scale. Studies using the SWAT-T model indicated that the terraces have advantages to reduce erosion from terraced-agricultural watersheds. SWAT-T can be used in the evaluation of erosion to sustainably conserve the soil and water.Keywords: Erosion, Modeling, Terraces, SWAT
Procedia PDF Downloads 2062383 Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests
Authors: Ivandic Kreso, Spiranec Miljenko, Kavur Boris, Strelec Stjepan
Abstract:
This article discusses the possibility of using dilatometer tests (DMT) together with in situ seismic tests (MASW) in order to get the shape of G-g degradation curve in cohesive soils (clay, silty clay, silt, clayey silt and sandy silt). MASW test provides the small soil stiffness (Go from vs) at very small strains and DMT provides the stiffness of the soil at ‘work strains’ (MDMT). At different test locations, dilatometer shear stiffness of the soil has been determined by the theory of elasticity. Dilatometer shear stiffness has been compared with the theoretical G-g degradation curve in order to determine the typical range of shear deformation for different types of cohesive soil. The analysis also includes factors that influence the shape of the degradation curve (G-g) and dilatometer modulus (MDMT), such as the overconsolidation ratio (OCR), plasticity index (IP) and the vertical effective stress in the soil (svo'). Parametric study in this article defines the range of shear strain gDMT and GDMT/Go relation depending on the classification of a cohesive soil (clay, silty clay, clayey silt, silt and sandy silt), function of density (loose, medium dense and dense) and the stiffness of the soil (soft, medium hard and hard). The article illustrates the potential of using MASW and DMT to obtain G-g degradation curve in cohesive soils.Keywords: dilatometer testing, MASW testing, shear wave, soil stiffness, stiffness reduction, shear strain
Procedia PDF Downloads 3162382 Diversity of Arachnological Fauna in an Agricultural Environment: Inventory and Effect of Herbicides
Authors: Benslimane Marwa, Benabbas-Sahki Ilham
Abstract:
Spiders play an important role in agroecosystems due to their great abundance. They are considered a valuable group of invertebrates in agricultural land. They are predators of insects harmful to crops, but their use in biological control requires in-depth research on their ecology. During our study, we counted a total of 768 spiders, which we were able to identify and classify into 14 families over a period between March 2021 and October of the same year. This study aims to compare a station subjected to agricultural practices, including the spreading of herbicides, with another station subjected to the same practices but without the use of phytosanitary products. The inventory shows a strong dominance of the Gnaphosidae family (75.8%). This result affirms that the proliferation of this family is very favorable to the knowledge of the fruits by limiting the populations of aphids infesting the plot, which can therefore be proposed for biological control. The comparative study of the populations of spiders in the stations studied shows the negative effect of agricultural practices on the species richness and abundance of these species; as for the diversity, this one is only slightly affected. Finally, we can note that the effects of herbicides did not cause a significant imbalance in this agroecosystem, unlike plowing, which showed harmful consequences on spiders.Keywords: spiders, predator, species richness, herbicides, agricultural practices
Procedia PDF Downloads 922381 Geotechnical Properties and Compressibility Behavior of Organic Dredged Soils
Authors: Inci Develioglu, Hasan Firat Pulat
Abstract:
Sustainable development is one of the most important topics in today's world, and it is also an important research topic for geoenvironmental engineering. Dredging process is performed to expand the river and port channel, flood control and accessing harbors. Every year large amount of sediment are dredged for these purposes. Dredged marine soils can be reused as filling materials, road and foundation embankments, construction materials and wildlife habitat developments. In this study, geotechnical engineering properties and compressibility behavior of dredged soil obtained from the Izmir Bay were investigated. The samples with four different organic matter contents were obtained and particle size distributions, consistency limits, pH and specific gravity tests were performed. The consolidation tests were conducted to examine organic matter content (OMC) effects on compressibility behavior of dredged soil. This study has shown that the OMC has an important effect on the engineering properties of dredged soils. The liquid and plastic limits increased with increasing OMC. The lowest specific gravity belonged to sample which has the maximum OMC. The specific gravity values ranged between 2.76 and 2.52. The maximum void ratio difference belongs to sample with the highest OMC (De11% = 0.38). As the organic matter content of the samples increases, the change in the void ratio has also increased. The compression index increases with increasing OMC.Keywords: compressibility, consolidation, geotechnical properties, organic matter content, dredged soil
Procedia PDF Downloads 2582380 Effect of Land Use and Abandonment on Soil Carbon and Nitrogen Depletion by Runoff in Shallow Soils under Semi-Arid Mediterranean Climate
Authors: Mohamed Emran, Giovanni Pardini, Maria Gispert, Mohamed Rashad
Abstract:
Land use and abandonment in semi-arid degraded ecosystems may cause regressive dynamics in vegetation cover affecting organic matter contents, soil nutrients and structural stability, thus reducing soil resistance to erosion. Mediterranean areas are generally subjected to climatic fluctuations, which modify soil conditions and hydrological processes, such as runoff and water infiltration within the upper soil horizons. Low erosion rates occur in very fragile and shallow soils with minor clay content progressively decrease organic carbon C and nitrogen N pools in the upper soil horizons. Seven soils were selected representing variant context of land use and abandonment at the Cap de Creus Peninsula, Catalonia, NE Spain, from recent cultivated vines and olive groves, mid abandoned forests standing under cork and pine trees, pasture to late abandoned Cistus and Erica scrubs. The aim of this work was to study the effect of changes in land use and abandonment on the depletion of soil organic carbon and nitrogen transported by runoff water in shallow soils after natural rainfall events during two years with different rainfall patterns (1st year with low rainfall and 2nd year with high rainfall) by i) monitoring the most significant soil erosion parameters at recorded rainfall events, ii) studying the most relevant soil physical and chemical characteristics on seasonal basis and iii) analysing the seasonal trends of depleted carbon and nitrogen and their interaction with soil surface compaction parameters. Significant seasonal variability was observed in the relevant soil physical and chemical parameters and soil erosion parameters in all soils to establish their evolution under land use and abandonment during two years of different rainfall patterns (214 and 487 mm per year), giving important indications on soil response to rainfall impacts. Erosion rates decreased significantly with the increasing of soil C and N under low and high rainfall. In cultivated soils, C and N depletion increased by 144% and 115%, respectively by 13% increase in erosion rates during the 1st year with respect to the 2nd year. Depleted C and N were proportionally higher in soils under vines and olive with vulnerable soil structure and low soil resilience leading to degradation, altering nutrients cycles and causing adverse impact on environmental quality. Statistical analysis underlined that, during the 1st year, soil surface was less effective in preserving stocks of organic resources leading to higher susceptibility to erosion with consequent C and N depletion. During the 2nd year, higher organic reserve and water storage occurred despite the increasing of C and N loss with an effective contribution from soil surface compaction parameters. The overall estimation during the two years indicated clear differences among soils under vines, olive, cork and pines, suggesting on the one hand, that current cultivation practices are inappropriate and that reforestation with pines may delay the achievement of better soil conditions. On the other hand, the natural succession of vegetation under Cistus, pasture and Erica suggests the recovery of good soil conditions.Keywords: land abandonment, land use, nutrient's depletion, soil erosion
Procedia PDF Downloads 3462379 Climate Policy Actions for Sustaining International Agricultural Development Projects: The Role of Non-State, Sub-National Stakeholder Engagements, and Monitoring and Evaluation
Authors: EMMANUEL DWAMENA SASU
Abstract:
International climate policy actions require countries under Paris Agreement to design instruments, provide support (financial and technical), and strengthen institutional capacity with tendency to transcending policy formulation to implementation and sustainability. Changes associated with moisture depletion has been a growing phenomenon; especially in developing countries with projected global GDP drop from 7% to 2% between 2005 and 2050. These developments have potential to adversely affect food production in feeding the growing world population, with corresponding rise in global hunger. Incongruously, there is global absence of a harmonized policy direction; capable of providing the required indicators on climate policies for monitoring sustainability of international agricultural development projects. We conduct extensive review and synthesis on existing limitations on global climate policy governance, agricultural food security and sustainability of international agricultural development projects, and conjecture the role of non-state and sub-national climate stakeholder engagements, and monitoring and evaluation strategies for improved climate policy action for sustaining international agricultural development projects.Keywords: climate policy, agriculture, development projects, sustainability
Procedia PDF Downloads 1252378 Food Security from a Spatial Perspective; The Situation in Advanced and Less Advanced Economies
Authors: Kristina Thorell
Abstract:
Food security has been one of the most important policy issues on the global arena after the Second World War. The overall aim of this presentation is to describe preconditions for a sustainable food supply from a spatial perspective. Special attention is paid to the differences between advanced and less advanced economies around the world. The theoretical framework is based upon models which are explaining complex systems of factors that affect the preconditions for agricultural productions. In additions to this, theories about how population and environmental pollution change through different stages of societal development are explained. The results are based upon data of agricultural practices, population growth, hunger and nutrition levels from different countries around the world. The analysis shows that factors which affect preconditions for agricultural production are dynamic. Factors which support the food security in the near future are a decreasing population growth, technological development and innovation but the environmental crisis is associated to high risks. It is, therefore, important to develop environmental policies and improved methods for organic farming. A final conclusion is that the spatial pattern is clear; the food supply is sufficient within advanced economies but rather complicated in development countries.Keywords: food security, agricultural geography, demography, advanced economies, population growth, agricultural practices
Procedia PDF Downloads 3172377 Soils Properties of Alfisols in the Nicoya Peninsula, Guanacaste, Costa Rica
Authors: Elena Listo, Miguel Marchamalo
Abstract:
This research studies the soil properties located in the watershed of Jabillo River in the Guanacaste province, Costa Rica. The soils are classified as Alfisols (T. Haplustalfs), in the flatter parts with grazing as Fluventic Haplustalfs or as a consequence of bad drainage as F. Epiaqualfs. The objective of this project is to define the status of the soil, to use remote sensing as a tool for analyzing the evolution of land use and determining the water balance of the watershed in order to improve the efficiency of the water collecting systems. Soil samples were analyzed from trial pits taken from secondary forests, degraded pastures, mature teak plantation, and regrowth -Tectona grandis L. F.- species developed favorably in the area. Furthermore, to complete the study, infiltration measurements were taken with an artificial rainfall simulator, as well as studies of soil compaction with a penetrometer, in points strategically selected from the different land uses. Regarding remote sensing, nearly 40 data samples were collected per plot of land. The source of radiation is reflected sunlight from the beam and the underside of leaves, bare soil, streams, roads and logs, and soil samples. Infiltration reached high levels. The majority of data came from the secondary forest and mature planting due to a high proportion of organic matter, relatively low bulk density, and high hydraulic conductivity. Teak regrowth had a low rate of infiltration because the studies made regarding the soil compaction showed a partial compaction over 50 cm. The secondary forest presented a compaction layer from 15 cm to 30 cm deep, and the degraded pasture, as a result of grazing, in the first 15 cm. In this area, the alfisols soils have high content of iron oxides, a fact that causes a higher reflectivity close to the infrared region of the electromagnetic spectrum (around 700mm), as a result of clay texture. Specifically in the teak plantation where the reflectivity reaches values of 90 %, this is due to the high content of clay in relation to others. In conclusion, the protective function of secondary forests is reaffirmed with regards to erosion and high rate of infiltration. In humid climates and permeable soils, the decrease of runoff is less, however, the percolation increases. The remote sensing indicates that being clay soils, they retain moisture in a better way and it means a low reflectivity despite being fine texture.Keywords: alfisols, Costa Rica, infiltration, remote sensing
Procedia PDF Downloads 6942376 Rapid Soil Classification Using Computer Vision, Electrical Resistivity and Soil Strength
Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, Lionel L. J. Ang, Algernon C. S. Hong, Danette S. E. Tan, Grace H. B. Foo, K. Q. Hong, L. M. Cheng, M. L. Leong
Abstract:
This paper presents a novel rapid soil classification technique that combines computer vision with four-probe soil electrical resistivity method and cone penetration test (CPT), to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from local construction projects are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labour-intensive. Thus, a rapid classification method is needed at the SGs. Computer vision, four-probe soil electrical resistivity and CPT were combined into an innovative non-destructive and instantaneous classification method for this purpose. The computer vision technique comprises soil image acquisition using industrial grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). Complementing the computer vision technique, the apparent electrical resistivity of soil (ρ) is measured using a set of four probes arranged in Wenner’s array. It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the soil strength is measured using a modified mini cone penetrometer, and w is measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay” and an even mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay”. It is also found that these parameters can be integrated with the computer vision technique on-site to complete the rapid soil classification in less than three minutes.Keywords: Computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification
Procedia PDF Downloads 2182375 The Role of ICT in Engaging Youth in Agricultural Transformation of Africa
Authors: Adebola Adedugbe
Abstract:
Agriculture is the mainstay of most countries in Africa. It employs up to 90 percent of the rural workforce, who are mostly youth and women. Engaging youths in Information and Communications Technology (ICT) in agriculture is critical to economic and agricultural development of the African continent. The objective of this paper is to identify and mobilize the potentials of young Africans in agriculture through ICT and recognize their role as the dominant driver for sustainable agricultural development in Africa. This paper identifies the role of ICT as a tool for attracting youths to agriculture. The development of ICT is important in stimulating youths in SME’s to compete favorably and effectively as a way to fight poverty through job and wealth creation. It is one of the strategies for promoting entrepreneurship by increasing the availability and diversity of online information.Keywords: Africa, agriculture, ICT, tool, youth
Procedia PDF Downloads 4502374 Relationship between ICTs Application with Production and Protection Technology: Lesson from Rural Punjab-Pakistan
Authors: Tahir Munir Butt, Gao Qijie, Babar Shahbaz, Muhammad Zakaria Yousaf Hassan, Zhnag Chuanhong
Abstract:
The main objective of this paper is to identify the relationship between Information Communication Technology (ICTs) applications with Agricultural development in the process of communication at rural Punjab-Pakistan. The authors analyzed the relationship of ICTs applications with the most prominent factor for the Agricultural Information Services (AIS) in the Agricultural Extension Approaches (AEA). The data collection procedure was started from Jan. 2015 and completed in July 2015. It is the one of the part in PhD studies at China Agriculture, University Hadian-Beijng China. It was observed that on major constraint in the AIS disseminated was the limited number of farmers especially and unknown the farmers about new ICTs technology for Agriculture at rural areas. Majority of ICTs application e.g. Toll free number; Robo Calls; Text message was highly significances in the AIS approach. The recommendation is communication and capacity building one of the indispensable elements for sustainable and agricultural development and Agricultural extension should be provided training to farmer about new ICTs technologies to access and use of it for Sustainable Agriculture Development (SAD) and update the scenario of flow of information also with try to established ICTs hub at the village level.Keywords: ICTs, AEA, AIS, SAD, rural farmers
Procedia PDF Downloads 3002373 Effect of Clay Content on the Drained Shear Strength
Authors: Navid Khayat
Abstract:
Drained shear strength of saturated soils is fully understood. Shear strength of unsaturated soils is usually expressed in terms of soil suction. Evaluation of shear strength of compacted mixtures of sand–clay at optimum water content is main purpose of this research. To prepare the required samples, first clay and sand are mixed in 10, 30, 50, and 70 percent by dry weight and then compacted at the proper optimum water content according to the standard proctor test. The samples were sheared in direct shear machine. Stress –strain relationship of samples indicated a ductile behavior. Most of the samples showed a dilatancy behavior during the shear and the tendency for dilatancy increased with the increase in sand proportion. The results show that with the increase in percentage of sand a decrease in cohesion intercept c' for mixtures and an increase in the angle of internal friction Φ’is observed.Keywords: clay, sand, drained shear strength, cohesion intercept
Procedia PDF Downloads 4382372 Morphological Properties of Soil Profile of Vineyard of Bangalore North (GKVK Farm), Karnataka, India
Authors: Harsha B. R., K. S. Anil Kumar
Abstract:
A profile was dug at the University of Agricultural Sciences, Bangalore, where grapes were intensively cultivated for 25 years on the dimension of 1.5 × 1.5 × 1.5 m. Demarcation was done on the basis of texture, structure, colour, and the details like depth, texture, colour, consistency, rock fragments, presence of mottles, and structure were recorded and studied according to standard performa of soil profile description. Horizons noticed were Ap, Bt1, Bt2, Bt3, Bt4C, Bt5C and BC with respective depths of 0-13, 13-37, 37-60, 60-78, 78-104, 104-130 and 130-151+ cm. The reddish-brown colour was noticed in Ap, Bt1, and Bt2 horizons. The sub-angular blocky structure was observed in all the layers with slightly acid in reaction. Clear and abrupt smooth boundaries were present between two respective layers with clayey texture in all the horizons except the Ap horizon, which was clay loam in texture. Variegated soil colours and iron concretions were observed in Bt4, Bt5, and BC horizons. Clay skins were observed in Bt and BC horizons. Soils were of highly friable consistency for grapes cultivation.Keywords: soil morphology, horizons, clay skins, consistency, vineyards
Procedia PDF Downloads 1352371 Rapid Soil Classification Using Computer Vision with Electrical Resistivity and Soil Strength
Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, P. L. Goh, Grace H. B. Foo, M. L. Leong
Abstract:
This paper presents the evaluation of various soil testing methods such as the four-probe soil electrical resistivity method and cone penetration test (CPT) that can complement a newly developed novel rapid soil classification scheme using computer vision, to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from the local construction industry are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labor-intensive. Thus, a rapid classification method is needed at the SGs. Four-probe soil electrical resistivity and CPT were evaluated for their feasibility as suitable additions to the computer vision system to further develop this innovative non-destructive and instantaneous classification method. The computer vision technique comprises soil image acquisition using an industrial-grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the following three items were targeted to be added onto the computer vision scheme: the apparent electrical resistivity of soil (ρ) measured using a set of four probes arranged in Wenner’s array, the soil strength measured using a modified mini cone penetrometer, and w measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay,” and a mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay” and are feasible as complementing methods to the computer vision system.Keywords: computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification
Procedia PDF Downloads 2392370 Poultry Manure and Its Derived Biochar as a Soil Amendment for Newly Reclaimed Sandy Soils under Arid and Semi-Arid Conditions
Authors: W. S. Mohamed, A. A. Hammam
Abstract:
Sandy soils under arid and semi-arid conditions are characterized by poor physical and biochemical properties such as low water retention, rapid organic matter decomposition, low nutrients use efficiency, and limited crop productivity. Addition of organic amendments is crucial to develop soil properties and consequently enhance nutrients use efficiency and lessen organic carbon decomposition. Two years field experiments were developed to investigate the feasibility of using poultry manure and its derived biochar integrated with different levels of N fertilizer as a soil amendment for newly reclaimed sandy soils in Western Desert of El-Minia Governorate, Egypt. Results of this research revealed that poultry manure and its derived biochar addition induced pronounced effects on soil moisture content at saturation point, field capacity (FC) and consequently available water. Data showed that application of poultry manure (PM) or PM-derived biochar (PMB) in combination with inorganic N levels had caused significant changes on a range of the investigated sandy soil biochemical properties including pH, EC, mineral N, dissolved organic carbon (DOC), dissolved organic N (DON) and quotient DOC/DON. Overall, the impact of PMB on soil physical properties was detected to be superior than the impact of PM, regardless the inorganic N levels. In addition, the obtained results showed that PM and PM application had the capacity to stimulate vigorous growth, nutritional status, production levels of wheat and sorghum, and to increase soil organic matter content and N uptake and recovery compared to control. By contrast, comparing between PM and PMB at different levels of inorganic N, the obtained results showed higher relative increases in both grain and straw yields of wheat in plots treated with PM than in those treated with PMB. The interesting feature of this research is that the biochar derived from PM increased treated sandy soil organic carbon (SOC) 1.75 times more than soil treated with PM itself at the end of cropping seasons albeit double-applied amount of PM. This was attributed to the higher carbon stability of biochar treated sandy soils increasing soil persistence for carbon decomposition in comparison with PM labile carbon. It could be concluded that organic manures applied to sandy soils under arid and semi-arid conditions are subjected to high decomposition and mineralization rates through crop seasons. Biochar derived from organic wastes considers as a source of stable carbon and could be very hopeful choice for substituting easily decomposable organic manures under arid conditions. Therefore, sustainable agriculture and productivity in newly reclaimed sandy soils desire one high rate addition of biochar derived from organic manures instead of frequent addition of such organic amendments.Keywords: biochar, dissolved organic carbon, N-uptake, poultry, sandy soil
Procedia PDF Downloads 1452369 Phytoremediation of Hydrocarbon-Polluted Soils: Assess the Potentialities of Six Tropical Plant Species
Authors: Pulcherie Matsodoum Nguemte, Adrien Wanko Ngnien, Guy Valerie Djumyom Wafo, Ives Magloire Kengne Noumsi, Pierre Francois Djocgoue
Abstract:
The identification of plant species with the capacity to grow on hydrocarbon-polluted soils is an essential step for phytoremediation. In view of developing phytoremediation in Cameroon, floristic surveys have been conducted in 4 cities (Douala, Yaounde, Limbe, and Kribi). In each city, 13 hydrocarbon-polluted, as well as unpolluted sites (control), have been investigated using quadrat method. 106 species belonging to 76 genera and 30 families have been identified on hydrocarbon-polluted sites, unlike the control sites where floristic diversity was much higher (166 species contained in 125 genera and 50 families). Poaceae, Cyperaceae, Asteraceae and Amaranthaceae have higher taxonomic richness on polluted sites (16, 15,10 and 8 taxa, respectively). Shannon diversity index of the hydrocarbon-polluted sites (1.6 to 2.7 bits/ind.) were significantly lower than the control sites (2.7 to 3.2 bits/ind.). Based on a relative frequency > 10% and abundance > 7%, this study highlights more than ten plants predisposed to be effective in the cleaning-up attempts of soils contaminated by hydrocarbons. Based on the floristic indicators, 6 species (Eleusine indica (L.) Gaertn., Cynodon dactylon (L.) Pers., Alternanthera sessilis (L.) R. Br. ex DC †, Commelinpa benghalensis L., Cleome ciliata Schum. & Thonn. and Asystasia gangetica (L.) T. Anderson) were selected for a study to determine their capacity to remediate a soil contaminated with fuel oil (82.5 ml/ kg of soil). The experiments lasting 150 days takes into account three modalities - Tn: uncontaminated soils planted (6) To contaminated soils unplanted (3) and Tp: contaminated soil planted (18) – randomized arranged. 3 on 6 species (Eleusine indica, Cynodon dactylon, and Alternanthera sessilis) survived the climatic and soil conditions. E. indica presents a significantly higher growth rate for density and leaf area while C. dactylon had a significantly higher growth rate for stem size and leaf numbers. A. sessilis showed stunted growth and development throughout the experimental period. The species Eleusine indica (L.) Gaertn. and Cynodon dactylon (L.) Pers. can be qualified as polluo-tolerant plant species; polluo-tolerance being the ability of a species to survive and develop in the midst subject to extreme physical and chemical disturbances.Keywords: Cameroon, cleaning-up, floristic surveys, phytoremediation
Procedia PDF Downloads 2432368 Parameters Identification of Granular Soils around PMT Test by Inverse Analysis
Authors: Younes Abed
Abstract:
The successful application of in-situ testing of soils heavily depends on development of interpretation methods of tests. The pressuremeter test simulates the expansion of a cylindrical cavity and because it has well defined boundary conditions, it is more unable to rigorous theoretical analysis (i. e. cavity expansion theory) then most other in-situ tests. In this article, and in order to make the identification process more convenient, we propose a relatively simple procedure which involves the numerical identification of some mechanical parameters of a granular soil, especially, the elastic modulus and the friction angle from a pressuremeter curve. The procedure, applied here to identify the parameters of generalised prager model associated to the Drucker & Prager criterion from a pressuremeter curve, is based on an inverse analysis approach, which consists of minimizing the function representing the difference between the experimental curve and the curve obtained by integrating the model along the loading path in in-situ testing. The numerical process implemented here is based on the established finite element program. We present a validation of the proposed approach by a database of tests on expansion of cylindrical cavity. This database consists of four types of tests; thick cylinder tests carried out on the Hostun RF sand, pressuremeter tests carried out on the Hostun sand, in-situ pressuremeter tests carried out at the site of Fos with marine self-boring pressuremeter and in-situ pressuremeter tests realized on the site of Labenne with Menard pressuremeter.Keywords: granular soils, cavity expansion, pressuremeter test, finite element method, identification procedure
Procedia PDF Downloads 2922367 Real Interest Rates and Real Returns of Agricultural Commodities in the Context of Quantitative Easing
Authors: Wei Yao, Constantinos Alexiou
Abstract:
In the existing literature, many studies have focused on the implementation and effectiveness of quantitative easing (QE) since 2008, but only a few have evaluated QE’s effect on commodity prices. In this context, by following Frankel’s (1986) commodity price overshooting model, we study the dynamic covariation between the expected real interest rates and six agricultural commodities’ real returns over the period from 2000:1 to 2018 for the US economy. We use wavelet analysis to investigate the causal relationship and co-movement of time series data by calculating the coefficient of determination in different frequencies. We find that a) US unconventional monetary policy may cause more positive and significant covariation between the expected real interest rates and agricultural commodities’ real returns over the short horizons; b) a lead-lag relationship that runs from agricultural commodities’ real returns to the expected real short-term interest rates over the long horizons; and c) a lead-lag relationship from agricultural commodities’ real returns to the expected real long-term interest rates over short horizons. In the realm of monetary policy, we argue that QE may shift the negative relationship between most commodities’ real returns and the expected real interest rates to a positive one over a short horizon.Keywords: QE, commodity price, interest rate, wavelet coherence
Procedia PDF Downloads 892366 The Introduction of Medicine Plants in Bogor Agricultural University: A Case Study in Cikabayan and Tropical Medicinal Plant Conservation Laboratory
Authors: Eki Devung, Eka Tyastutik, Indha Annisa, Digdaya Anoraga, Jamaluddin Arsyad
Abstract:
Plant medicine is a whole species of plants are known to have medicinal properties. Bogor Agricultural University has high biodiversity, one of which flora potential as a drug. This study was conducted from 19 September to 10 October 2016 at Bogor Agricultural University using literature study and field observation. There are 85 species of medicinal plants which include a medicinal plant cultivation and wild plants. Family herbs most commonly found in Cikabayan that while the Euphorbiaceae, family which is found in the Tropical Medicinal Plant Conservation Laboratory is the family of Achantaceae. Species of medicinal plants is dominated by herbs and shrubs. Part herbs most widely used are the leaves. The diversity of diseases that can be treated with medicine plants include digestive system diseases and metabolic disorder.Keywords: benefits, biodiversity, Bogor Agricultural University, medicinal plants
Procedia PDF Downloads 3582365 Evaluating of Chemical Extractants for Assessment of Bioavailable Heavy Metals in Polluted Soils
Authors: Violina Angelova, Krasimir Ivanov, Stefan Krustev, Dimitar Dimitrov
Abstract:
Availability of a metal is characterised by its quantity transgressing from soil into different extractants or by its content in plants. In literature, the terms 'available forms of compounds' and 'mobile' are often considered as equivalents of the term 'accessible' to plants. Rapid and a sufficiently reliable method for defining the accessible for plants forms turns out to be their extraction through different extractants, imitating the functioning of the root system. As a criterion for the pertinence of the extractant to this purpose usually serves the significant statistic correlation between the extracted quantities of the element from soil and its content in plants. The aim of this work was to evaluate the effectiveness of various extractions (DTPA-TEA, AB-DTPA, Mehlich 3, 0.01 M CaCl₂, 1M NH₄NO₃) for the determination of bioavailability of heavy metals in industrially polluted soils from the metallurgical activity near Plovdiv and Kardjali, Bulgaria. Quantity measurements for contents of heavy metals were performed with ICP-OES. The results showed that extraction capacity was as follows: Mehlich 3>ABDTPA>DTPA-TEA>CaCl₂>NaNO₃. The content of the mobile form of heavy metals depends on the nature of metal ion, the nature of extractant and pH. The obtained results show that CaCl₂ extracts a greater quantity of mobile forms of heavy metals than NH₄NO₃. DTPA-TEA and AB-DTPA are capable of extracting from the soil not only the heavy metals participating in the exchange processes but also the heavy metals bound in carbonates and organic complexes, as well as bound and occluded in oxide and secondary clay minerals. AB-DTPA extracts a bit more heavy metals than DTPA-TEA. The darker color of the solutions obtained with AB-DTPA indicates that considerable quantities organic matter are being destructed. A comparison of the mobile forms of heavy metals extracted from clean and highly polluted soils has revealed that in the polluted soils the greater portion of heavy metals exists in a mobile form. High correlation coefficients are obtained between the metals extracted with different extractants and their total content in soil (r=0.9). A positive correlation between the pH, soil organic matter and the extracted quantities of heavy metals has been found. The results of correlation analysis revealed that the heavy metals extracted by DTPA-TEA, AB-DTPA, Mehlich 3, CaCl₂ and NaNO₃ correlated significantly with plant uptake. Significant correlation was found between DTPA-TEA, AB-DTPA, and CaCl₂ with heavy metals concentration in plants. Application of extracting methods contains chelating agents would be recommended in the future research onthe availabilityof heavy metals in polluted soils.Keywords: availability, chemical extractants, heavy metals, mobile forms
Procedia PDF Downloads 3552364 Challenges of Climate Change on Agricultural Productivity in Sub-Saharan Africa
Authors: Mohammed Sale Abubakar, Kabir Omar, Mohammed Umar Abba
Abstract:
The effects of climate change continue to ravage globe upsetting or even overturning the entire communities in its wake. It is therefore on the front burner of most global issues affecting the world today. Hardly any field of endeavor has escaped the manifestation of its effects. The effects of climate change on agricultural productivity calls for intense study because of the nexus between agriculture, global food security and provision of employment for the teaming population in sub-saharan Africa. This paper examines current challenges of climate change on agricultural productivity in this region. This challenge indicated that both long and short-term change in climate bring unpleasant repercussion on agricultural productivity as they manifest in the vulnerability of industrial work force. The paper also focused on the impact of agriculture and bio-environmental engineering as a separate entity that will help to fight these major challenges facing humanity currently associated with negative effects of climate change such as scarcity of water, declining agricultural yields, desert encroachment, and damage of coastal structures. Finally, a suggestion was put forward as an effort that should be directed towards mitigating the negative effects of climate change on our environment.Keywords: climate change mitigation, desert encroachment, environment, global food security, greenhouse gases (GHGs)
Procedia PDF Downloads 3552363 Characterization of Erodibility Using Soil Strength and Stress-Strain Indices for Soils in Some Selected Sites in Enugu State
Authors: C. C. Egwuonwu, N. A. A. Okereke, K. O. Chilakpu, S. O. Ohanyere
Abstract:
In this study, initial soil strength indices (qu) and stress-strain characteristics, namely failure strain (ϵf), area under the stress-strain curve up to failure (Is) and stress-strain modulus between no load and failure (Es) were investigated as potential indicators for characterizing the erosion resistance of two compacted soils, namely sandy clay loam (SCL) and clay loam (CL) in some selected sites in Enugu State, Nigeria. The unconfined compressive strength (used in obtaining strength indices) and stress-strain measurements were obtained as a function of moisture content in percentage (mc %) and dry density (γd). Test were conducted over a range of 8% to 30% moisture content and 1.0 g/cm3 to 2.0 g/cm3 dry density at applied loads of 20, 40, 80, 160 and 320 kPa. Based on the results, it was found out that initial soil strength alone was not a good indicator of erosion resistance. For instance, in the comparison of exponents of mc% and γd for jet index or erosion resistance index (Ji) and the strength measurements, qu and Es agree in signs for mc%, but are opposite in signs for γd. Therefore, there is an inconsistency in exponents making it difficult to develop a relationship between the strength parameters and Ji for this data set. In contrast, the exponents of mc% and γd for Ji and ϵf and Is are opposite in signs, there is potential for an inverse relationship. The measured stress-strain characteristics, however, appeared to have potential in providing useful information on erosion resistance. The models developed for the prediction of the extent or the susceptibility of soils to erosion and subjected to sensitivity test on some selected sites achieved over 90% efficiency in their functions.Keywords: characterization of erodibility, selected sites in Enugu state, soil strength, stress-strain indices
Procedia PDF Downloads 4142362 The Potential of Fly Ash Wastes to Improve Nutrient Levels in Agricultural Soils: A Material Flow Analysis Case Study from Riau District, Indonesia
Authors: Hasan Basri Jumin
Abstract:
Fly ash sewage of pulp and paper industries when processed with suitable process and true management may possibly be used fertilizer agriculture purposes. The objective of works is to evaluate re-cycling possibility of fly ash waste to be applied as a fertilizer for agriculture use. Fly ash sewage was applied to maize with 28 g/plant could be increased significantly the average of dry weigh from dry weigh of seed increase from 6.7 g/plant into 10.3 g/plant, and net assimilation rates could be increased from 14.5 mg.m-2.day-1 into 35.4 mg.m-2 day-1. Therefore, production per hectare was reached 3.2 ton/ha. The chemical analyses of fly ash waste indicated that, there are no exceed threshold content of dangerous metals and biology effects. Mercury, arsenic, cadmium, chromium, cobalt, lead, and molybdenum contents as heavy metal are lower than the threshold of human healthy tolerance. Therefore, it has no syndrome effect to human health. This experiment indicated that fly ash sewage in lower doses until 28 g/plant could be applied as substitution fertilizer for agriculture use and it could be eliminate the environment pollution.Keywords: fly-ash, fertilizer, maize, sludge-sewage pollutant, waste
Procedia PDF Downloads 5822361 Evaluation of Drained Shear Strength of Bentonite-Sand Mixtures
Authors: Navid Khayat
Abstract:
Drained shear strength of saturated soils is fully understood. Shear strength of unsaturated soils is usually expressed in terms of soil suction. Evaluation of shear strength of compacted mixtures of sand-bentonite at optimum water content is main purpose of this research. To prepare the required samples, first, bentonite and sand are mixed in 10, 30, 50 and 70 percent by dry weight and then compacted at the proper optimum water content according to the standard proctor test. The samples were sheared in direct shear machine. Stress-strain relationship of samples indicated a ductile behavior. Most of the samples showed a dilatancy behavior during the shear and the tendency for dilatancy increased with the increase in sand proportion. The results show that with the increase in percentage of sand a decrease in cohesion intercept c' for mixtures and an increase in the angle of internal friction Φ’is observed.Keywords: bentonite, sand, drained shear strength, cohesion intercept
Procedia PDF Downloads 319