Search results for: protein stability prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7697

Search results for: protein stability prediction

4337 The Effect of Calcium Phosphate Composite Scaffolds on the Osteogenic Differentiation of Rabbit Dental Pulp Stem Cells

Authors: Ling-Ling E, Lin Feng, Hong-Chen Liu, Dong-Sheng Wang, Zhanping Shi, Juncheng Wang, Wei Luo, Yan Lv

Abstract:

The objective of this study was to compare the effects of the two calcium phosphate composite scaffolds on the attachment, proliferation and osteogenic differentiation of rabbit dental pulp stem cells (DPSCs). One nano-hydroxyapatite/collagen/poly (L-lactide) (nHAC/PLA), imitating the composition and the micro-structure characteristics of the natural bone, was made by Beijing Allgens Medical Science & Technology Co., Ltd. (China). The other beta-tricalcium phosphate (β-TCP), being fully interoperability globular pore structure, was provided by Shanghai Bio-lu Biomaterials Co, Ltd. (China). We compared the absorption water rate and the protein adsorption rate of two scaffolds and the characterization of DPSCs cultured on the culture plate and both scaffolds under osteogenic differentiation media (ODM) treatment. The constructs were then implanted subcutaneously into the back of severe combined immunodeficient (SCID) mice for 8 and 12 weeks to compare their bone formation capacity. The results showed that the ODM-treated DPSCs expressed osteocalcin (OCN), bone sialoprotein (BSP), type I collagen (COLI) and osteopontin (OPN) by immunofluorescence staining. Positive alkaline phosphatase (ALP) staining, calcium deposition and calcium nodules were also observed on the ODM-treated DPSCs. The nHAC/PLA had significantly higher absorption water rate and protein adsorption rate than ß-TCP. The initial attachment of DPSCs seeded onto nHAC/PLA was significantly higher than that onto ß-TCP; and the proliferation rate of the cells was significantly higher than that of ß-TCP on 1, 3 and 7 days of cell culture. DPSCs+ß-TCP had significantly higher ALP activity, calcium/phosphorus content and mineral formation than DPSCs+nHAC/PLA. When implanted into the back of SCID mice, nHAC/PLA alone had no new bone formation, newly formed mature bone and osteoid were only observed in β-TCP alone, DPSCs+nHAC/PLA and DPSCs+β-TCP, and this three groups displayed increased bone formation over the 12-week period. The percentage of total bone formation area had no difference between DPSCs+β-TCP and DPSCs+nHAC/PLA at each time point,but the percentage of mature bone formation area of DPSCs+β-TCP was significantly higher than that of DPSCs+nHAC/PLA. Our results demonstrated that the DPSCs on nHAC/PLA had a better proliferation and that the DPSCs on β-TCP had a more mineralization in vitro, much more newly formed mature bones in vivo were presented in DPSCs+β-TCP group. These findings have provided a further knowledge that scaffold architecture has a different influence on the attachment, proliferation and differentiation of cells. This study may provide insight into the clinical periodontal bone tissue repair with DPSCs+β-TCP construct.

Keywords: dental pulp stem cells, nano-hydroxyapatite/collagen/poly(L-lactide), beta-tricalcium phosphate, periodontal tissue engineering, bone regeneration

Procedia PDF Downloads 333
4336 Heat Transfer Enhancement by Turbulent Impinging Jet with Jet's Velocity Field Excitations Using OpenFOAM

Authors: Naseem Uddin

Abstract:

Impinging jets are used in variety of engineering and industrial applications. This paper is based on numerical simulations of heat transfer by turbulent impinging jet with velocity field excitations using different Reynolds Averaged Navier-Stokes Equations models. Also Detached Eddy Simulations are conducted to investigate the differences in the prediction capabilities of these two simulation approaches. In this paper the excited jet is simulated in non-commercial CFD code OpenFOAM with the goal to understand the influence of dynamics of impinging jet on heat transfer. The jet’s frequencies are altered keeping in view the preferred mode of the jet. The Reynolds number based on mean velocity and diameter is 23,000 and jet’s outlet-to-target wall distance is 2. It is found that heat transfer at the target wall can be influenced by judicious selection of amplitude and frequencies.

Keywords: excitation, impinging jet, natural frequency, turbulence models

Procedia PDF Downloads 273
4335 Convergence Analysis of Reactive Power Based Schemes Used in Sensorless Control of Induction Motors

Authors: N. Ben Si Ali, N. Benalia, N. Zerzouri

Abstract:

Many electronic drivers for the induction motor control are based on sensorless technologies. Speed and torque control is usually attained by application of a speed or position sensor which requires the additional mounting space, reduce the reliability and increase the cost. This paper seeks to analyze dynamical performances and sensitivity to motor parameter changes of reactive power based technique used in sensorless control of induction motors. Validity of theoretical results is verified by simulation.

Keywords: adaptive observers, model reference adaptive system, RP-based estimator, sensorless control, stability analysis

Procedia PDF Downloads 547
4334 Aerodynamic Designing of Supersonic Centrifugal Compressor Stages

Authors: Y. Galerkin, A. Rekstin, K. Soldatova

Abstract:

Universal modeling method well proven for industrial compressors was applied for design of the high flow rate supersonic stage. Results were checked by ANSYS CFX and NUMECA Fine Turbo calculations. The impeller appeared to be very effective at transonic flow velocities. Stator elements efficiency is acceptable at design Mach numbers too. Their loss coefficient versus inlet flow angle performances correlates well with Universal modeling prediction. The impeller demonstrated ability of satisfactory operation at design flow rate. Supersonic flow behavior in the impeller inducer at the shroud blade to blade surface Φdes deserves additional study.

Keywords: centrifugal compressor stage, supersonic impeller, inlet flow angle, loss coefficient, return channel, shock wave, vane diffuser

Procedia PDF Downloads 467
4333 'Bemo' (Beras Moringa) as Commodity Innovation Cost of Food Ingredients: In Dealing with Afta Competition

Authors: Isma Alfia Novita

Abstract:

Indonesia is one country with the largest agricultural producer in the world but still can not meet the needs of the national rice. In addition, Indonesia was ranked the second-largest rice importer after the Philippines. Indonesia's rice consumption reached 102 kg per capita, or almost twice the average global rice consumption is only 60 kg per capita per year. One of the government's efforts in developing national food consumption is to invite people to improve diversification and food security. This is done considering the diet of Indonesia is still high consumption of rice. Therefore, this program made innovations Rice Moringa namely imitation rice with the addition of Moringa (Moringa oleifera). Moringa is a plant that is widely grown and easily found. In addition, Moringa has many benefits because it contains vitamin A, vitamin B, vitamin C, calcium, protein, and potassium. Based on the analysis of the nutrient content, it is known that the Moringa leaves have good potential to maintain the balance of nutrients in the body

Keywords: imitation rice, Moringa oliefera, Moringa, AFTA

Procedia PDF Downloads 129
4332 Potential of ᵞ-Polyglutamic Acid for Cadmium Toxicity Alleviation in Rice

Authors: N. Kotabin, Y. Tahara, K. Issakul, O. Chunhachart

Abstract:

Cadmium (II) (Cd) is one of the major toxic elemental pollutants which is hazardous for humans, animals and plants. γ-Polyglutamic acid (γ-PGA) is an extracellular biopolymer produced by several species of Bacillus which has been reported to be an effective biosorbent for metal ions. The effect of γ-PGA on growth of rice grown under laboratory conditions was investigated. Rice seeds were germinated and then grown at 30±1°C on filter paper soaked with Cd solution and γ-PGA for 7 days. The result showed that Cd significantly inhibited the growth of roots and shoots by reducing root and shoot lengths. Fresh and dry weights also decreased compared with control; however, the addition of 500 mg•L-1 γ-PGA alleviated rice seedlings from the adverse effects of Cd. The analysis of physiological traits revealed that Cd caused a decrease in the total chlorophyll and soluble protein contents and amylase activities in all treatments. The Cd content in seedling tissues increased for the Cd 250 μM treatment (P < 0.05) but the addition of 500 mg•L-1 γ-PGA resulted in a noticeable decrease in Cd (P < 0.05).

Keywords: polyglutamic acid, cadmium, rice, bacillus subtilis

Procedia PDF Downloads 299
4331 COSMO-RS Prediction for Choline Chloride/Urea Based Deep Eutectic Solvent: Chemical Structure and Application as Agent for Natural Gas Dehydration

Authors: Tayeb Aissaoui, Inas M. AlNashef

Abstract:

In recent years, green solvents named deep eutectic solvents (DESs) have been found to possess significant properties and to be applicable in several technologies. Choline chloride (ChCl) mixed with urea at a ratio of 1:2 and 80 °C was the first discovered DES. In this article, chemical structure and combination mechanism of ChCl: urea based DES were investigated. Moreover, the implementation of this DES in water removal from natural gas was reported. Dehydration of natural gas by ChCl:urea shows significant absorption efficiency compared to triethylene glycol. All above operations were retrieved from COSMOthermX software. This article confirms the potential application of DESs in gas industry.

Keywords: COSMO-RS, deep eutectic solvents, dehydration, natural gas, structure, organic salt

Procedia PDF Downloads 292
4330 Evaluating Service Trustworthiness for Service Selection in Cloud Environment

Authors: Maryam Amiri, Leyli Mohammad-Khanli

Abstract:

Cloud computing is becoming increasingly popular and more business applications are moving to cloud. In this regard, services that provide similar functional properties are increasing. So, the ability to select a service with the best non-functional properties, corresponding to the user preference, is necessary for the user. This paper presents an Evaluation Framework of Service Trustworthiness (EFST) that evaluates the trustworthiness of equivalent services without need to additional invocations of them. EFST extracts user preference automatically. Then, it assesses trustworthiness of services in two dimensions of qualitative and quantitative metrics based on the experiences of past usage of services. Finally, EFST determines the overall trustworthiness of services using Fuzzy Inference System (FIS). The results of experiments and simulations show that EFST is able to predict the missing values of Quality of Service (QoS) better than other competing approaches. Also, it propels users to select the most appropriate services.

Keywords: user preference, cloud service, trustworthiness, QoS metrics, prediction

Procedia PDF Downloads 287
4329 Mathematical Modeling and Optimization of Burnishing Parameters for 15NiCr6 Steel

Authors: Tarek Litim, Ouahiba Taamallah

Abstract:

The present paper is an investigation of the effect of burnishing on the surface integrity of a component made of 15NiCr6 steel. This work shows a statistical study based on regression, and Taguchi's design has allowed the development of mathematical models to predict the output responses as a function of the technological parameters studied. The response surface methodology (RSM) showed a simultaneous influence of the burnishing parameters and observe the optimal processing parameters. ANOVA analysis of the results resulted in the validation of the prediction model with a determination coefficient R=90.60% and 92.41% for roughness and hardness, respectively. Furthermore, a multi-objective optimization allowed to identify a regime characterized by P=10kgf, i=3passes, and f=0.074mm/rev, which favours minimum roughness and maximum hardness. The result was validated by the desirability of D= (0.99 and 0.95) for roughness and hardness, respectively.

Keywords: 15NiCr6 steel, burnishing, surface integrity, Taguchi, RSM, ANOVA

Procedia PDF Downloads 191
4328 An Approach for Thermal Resistance Prediction of Plain Socks in Wet State

Authors: Tariq Mansoor, Lubos Hes, Vladimir Bajzik

Abstract:

Socks comfort has great significance in our daily life. This significance even increased when we have undergone a work of low or high activity. It causes the sweating of our body with different rates. In this study, plain socks with differential fibre composition were wetted to saturated level. Then after successive intervals of conditioning, these socks are characterized by thermal resistance in dry and wet states. Theoretical thermal resistance is predicted by using combined filling coefficients and thermal conductivity of wet polymers instead of dry polymer (fibre) in different models. By this modification, different mathematical models could predict thermal resistance at different moisture levels. Furthermore, predicted thermal resistance by different models has reasonable correlation range between (0.84 -0.98) with experimental results in both dry (lab conditions moisture) and wet states. "This work is supported by Technical University of Liberec under SGC-2019. Project number is 21314".

Keywords: thermal resistance, mathematical model, plain socks, moisture loss rate

Procedia PDF Downloads 198
4327 Manufacturing and Characterization of Ni-Matrix Composite Reinforced with Ti3SiC2 and Ti2AlC; and Al-Matrix with Ti2SiC

Authors: M. Hadji, N. Chiker, Y. Hadji, A. Haddad

Abstract:

In this paper, we report for the first time on the synthesis and characterization of novel MAX phases (Ti3SiC2, Ti2AlC) reinforced Ni-matrix and Ti2AlC reinforced Al-matrix. The stability of MAX phases in Al-matrix and Ni-matrix at a temperature of 985°C has been investigated. All the composites were cold pressed and sintered at a temperature of 985°C for 20min in H2 environment, except (Ni/Ti3SiC2) who was sintered at 1100°C for 1h.Microstructure analysis by scanning electron microscopy and phase analysis by X-Ray diffraction confirmed that there was minimal interfacial reaction between MAX particles and Ni, thus Al/MAX samples shown that MAX phases was totally decomposed at 985°C.The Addition of MAX enhanced the Al-matrix and Ni-matrix.

Keywords: MAX phase, microstructures, composites, hardness, SEM

Procedia PDF Downloads 347
4326 Optimization of the Aerodynamic Performances of an Unmanned Aerial Vehicle

Authors: Fares Senouci, Bachir Imine

Abstract:

This document provides numerical and experimental optimization of the aerodynamic performance of a drone equipped with three types of horizontal stabilizer. To build this optimal configuration, an experimental and numerical study was conducted on three parameters: the geometry of the stabilizer (horizontal form or reverse V form), the position of the horizontal stabilizer (up or down), and the landing gear position (closed or open). The results show that up-stabilizer position with respect to the horizontal plane of the fuselage provides better aerodynamic performance, and that the landing gear increases the lift in the zone of stability, that is to say where the flow is not separated.

Keywords: aerodynamics, drag, lift, turbulence model, wind tunnel

Procedia PDF Downloads 252
4325 Aeroelastic Stability Analysis in Turbomachinery Using Reduced Order Aeroelastic Model Tool

Authors: Chandra Shekhar Prasad, Ludek Pesek Prasad

Abstract:

In the present day fan blade of aero engine, turboprop propellers, gas turbine or steam turbine low-pressure blades are getting bigger, lighter and thus, become more flexible. Therefore, flutter, forced blade response and vibration related failure of the high aspect ratio blade are of main concern for the designers, thus need to be address properly in order to achieve successful component design. At the preliminary design stage large number of design iteration is need to achieve the utter free safe design. Most of the numerical method used for aeroelastic analysis is based on field-based methods such as finite difference method, finite element method, finite volume method or coupled. These numerical schemes are used to solve the coupled fluid Flow-Structural equation based on full Naiver-Stokes (NS) along with structural mechanics’ equations. These type of schemes provides very accurate results if modeled properly, however, they are computationally very expensive and need large computing recourse along with good personal expertise. Therefore, it is not the first choice for aeroelastic analysis during preliminary design phase. A reduced order aeroelastic model (ROAM) with acceptable accuracy and fast execution is more demanded at this stage. Similar ROAM are being used by other researchers for aeroelastic and force response analysis of turbomachinery. In the present paper new medium fidelity ROAM is successfully developed and implemented in numerical tool to simulated the aeroelastic stability phenomena in turbomachinery and well as flexible wings. In the present, a hybrid flow solver based on 3D viscous-inviscid coupled 3D panel method (PM) and 3d discrete vortex particle method (DVM) is developed, viscous parameters are estimated using boundary layer(BL) approach. This method can simulate flow separation and is a good compromise between accuracy and speed compared to CFD. In the second phase of the research work, the flow solver (PM) will be coupled with ROM non-linear beam element method (BEM) based FEM structural solver (with multibody capabilities) to perform the complete aeroelastic simulation of a steam turbine bladed disk, propellers, fan blades, aircraft wing etc. The partitioned based coupling approach is used for fluid-structure interaction (FSI). The numerical results are compared with experimental data for different test cases and for the blade cascade test case, experimental data is obtained from in-house lab experiments at IT CAS. Furthermore, the results from the new aeroelastic model will be compared with classical CFD-CSD based aeroelastic models. The proposed methodology for the aeroelastic stability analysis of gas turbine or steam turbine blades, or propellers or fan blades will provide researchers and engineers a fast, cost-effective and efficient tool for aeroelastic (classical flutter) analysis for different design at preliminary design stage where large numbers of design iteration are required in short time frame.

Keywords: aeroelasticity, beam element method (BEM), discrete vortex particle method (DVM), classical flutter, fluid-structure interaction (FSI), panel method, reduce order aeroelastic model (ROAM), turbomachinery, viscous-inviscid coupling

Procedia PDF Downloads 266
4324 Comparative Study on the Precipitation Behavior in Two Al-Mg Alloys (Al-12 wt. % Mg and Al-8 wt. % Mg)

Authors: C. Amrane, D. Haman

Abstract:

Aluminum-magnesium alloys are widely used in industry thanks to their mechanical properties and corrosion resistivity. These properties are related to the magnesium content and to the applied heat treatments. Although they are already well studied, questions concerning the microstructural stability and the effect of different heat treatments are still being asked. In this work we have presented a comparative study on the behavior of the precipitation reactions during different heat treatment in two different Al-Mg alloys (Al–8 wt. % Mg and Al–12 wt. % Mg). For this purpose, we have used various experimental techniques as dilatometry, calorimetry, optical microscopy, and microhardness measurements. The obtained results shown that, the precipitation kinetics and the mechanical responses to the applied heat treatments, of the two studied alloys, are different.

Keywords: Al-Mg alloys, precipitation, hardness, heat treatments

Procedia PDF Downloads 387
4323 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 127
4322 Human Trafficking and Terrorism: A Study on the Security Challenges Imposed upon Countries in Conflict

Authors: Christopher Holroyd

Abstract:

With the various terrorist organizations and drug cartels that are currently active, there is a myriad of security concerns facing countries around the world. Organizations that focus their attacks on others through terror, such as what is seen with the Islamic State of Iraq and the Levant (ISIS), have no boundaries when it comes to doing what is needed to fulfill their desired intent. For countries such as Iraq, who have been trying to rebuild their country since the fall of the Saddam Hussein Regime, organizations such as Al-Qaeda and ISIS have been impeding the country’s efforts toward peace and stability. One method utilized by terrorist organizations around the world is human trafficking. This method is one that is seen around the world; modern slavery is still exploited by those who have no concern for human decency and morality, their only concern is to achieve their goals by any means. It is understandable that some people may not have even heard of 'modern slavery', or they just might not believe that it is even an issue in today’s world. Organizations such as ISIS are not the only ones in the world that seek to benefit from the immoral trading of humans. Various drug cartels in the world, such as those seen in Mexico and Central America, have recently begun to take part in the trade – moving humans from state to state, or country to country, to better fuel their overall operations. This now makes the possibility of human trafficking more real for those in the United States because of the proximity of the cartels to the southern border of the country. An issue that, at one time, might have only seen as a distant threat, is now close to home for those in the United States. Looking at these two examples is how we begin to understand why human trafficking is utilized by various organizations around the world. This trade of human beings and the violation of basic human rights is a plague that effects the entire world and not just those that are in a country other than your own. One of the security issues that stem from the trade includes the movement and recruitment of members of the organizations. With individuals being smuggled from one location to another in secrecy, this only puts those trying to combat this trade at a disadvantage. This creates concern over the accurate number of potential recruits, combatants, and other individuals who are working against the host nation, and for the mission of the cartel or terrorist organization they are a part of. An uphill battle is created, and the goals of peace and stability are now harder to reach. Aside from security aspects, it cannot be forgotten that those being traded and forced into slavery, are being done so against their will. Families are separated, children trained to be fighters or worse. This makes the goal of eradicating human trafficking even more dire and important.

Keywords: human trafficking, reconstruction, security, terrorism

Procedia PDF Downloads 132
4321 The Combined Use of L-Arginine and Progesterone During the Post-breeding Period in Female Rabbits Increases the Weight of Their Fetuses

Authors: Diego F. Carrillo-González, Milena Osorio, Natalia M. Cerro, Yasser Y. Lenis

Abstract:

Introduction: mortality during the implantation and early embryonic development periods reach around 30% in different mammalian species. It has been described that progesterone (P4) and Arginine (Arg) play a beneficial role in establishing and maintaining early pregnancy in mammals. The combined effect between Arg and P4 on reproductive parameters in the rabbit species is not yet elucidated, to our best knowledge. Objective: to assess the effect of L-arginine and progesterone during the post-breeding period in female rabbits on the composition of the amniotic fluid, the placental structure, and the bone growth in their fetuses. Methods: crossbred female rabbits (n=16) were randomly distributed into four experimental groups (Ctrl, Arg, P4, and Arg+P4). In the control group, 0.9% saline solution was administered as a placebo, the Arg group was administered arginine (50 mg/kg BW) from day 4.5 to day 19 post-breeding, the P4 group was administered progesterone (Gestavec®, 1.5 mg/kg BW) from 24 hours to day 4 post-breeding and for the Arg+P4 group, an administration was performed under the same time and dose guidelines as the Arg and P4 treatments. Four females were sacrificed, and the amniotic fluid was collected and analyzed with rapid urine test strips, while the placenta and fetuses were processed in the laboratory to obtain histological plates. The percentage of deciduous, labyrinthine, and junctional zones was determined, and the length of the femur for each fetus was measured as an indicator of growth. Descriptive statistics were applied to identify the success rates for each of the tests. Afterwards, A one-way analysis of variance (ANOVA) was performed, and a comparison of means was conducted by Tukey's test. Results: a higher density (p<0.05) was observed in the amniotic fluid for fetuses in the control group (1022±2.5g/mL) compared to the P4 (1015±5.3g/mL) and Arg+P4 (1016±4,9g/mL) groups. Additionally, the density of amniotic fluid in the Arg group (1021±2.5g/mL) was higher (p<0.05) than in the P4 group. The concentration of protein, glucose, and ascorbic acid had no statistical difference between treatments (p>0.05). The histological analysis of the uteroplacental regions, a statistical difference (p<0,05) in the proportion of deciduous zone was found between the P4 group (9.6±2.6%) when compared with the Ctrl (28.15±12.3%), and Arg+P4 (26.3±4.9) groups. In the analysis of the fetuses, the weight was higher for the Arg group (2.69±0.18), compared to the other groups (p<0.05), while a shorter length was observed (p<0.05) in the fetuses for the Arg+P4 group (25.97±1.17). However, no difference (p>0.05) was found when comparing the length of the developing femurs between the experimental groups. Conclusion: the combination of L-arginine and progesterone allows a reduction in the density of amniotic fluid, without affecting the protein, energy, and antioxidant components. However, the use of L-arginine stimulates weight gain in fetuses, without affecting size, which could be used to improve production parameters in rabbit production systems. In addition, the modification in the deciduous zone could show a placental adaptation based on the fetal growth process, however more specific studies on the placentation process are required.

Keywords: arginine, progesterone, rabbits, reproduction

Procedia PDF Downloads 89
4320 The Implementation of a Numerical Technique to Thermal Design of Fluidized Bed Cooler

Authors: Damiaa Saad Khudor

Abstract:

The paper describes an investigation for the thermal design of a fluidized bed cooler and prediction of heat transfer rate among the media categories. It is devoted to the thermal design of such equipment and their application in the industrial fields. It outlines the strategy for the fluidization heat transfer mode and its implementation in industry. The thermal design for fluidized bed cooler is used to furnish a complete design for a fluidized bed cooler of Sodium Bicarbonate. The total thermal load distribution between the air-solid and water-solid along the cooler is calculated according to the thermal equilibrium. The step by step technique was used to accomplish the thermal design of the fluidized bed cooler. It predicts the load, air, solid and water temperature along the trough. The thermal design for fluidized bed cooler revealed to the installation of a heat exchanger consists of (65) horizontal tubes with (33.4) mm diameter and (4) m length inside the bed trough.

Keywords: fluidization, powder technology, thermal design, heat exchangers

Procedia PDF Downloads 513
4319 Inverse Polynomial Numerical Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations

Authors: Ogunrinde Roseline Bosede

Abstract:

This paper presents the development, analysis and implementation of an inverse polynomial numerical method which is well suitable for solving initial value problems in first order ordinary differential equations with applications to sample problems. We also present some basic concepts and fundamental theories which are vital to the analysis of the scheme. We analyzed the consistency, convergence, and stability properties of the scheme. Numerical experiments were carried out and the results compared with the theoretical or exact solution and the algorithm was later coded using MATLAB programming language.

Keywords: differential equations, numerical, polynomial, initial value problem, differential equation

Procedia PDF Downloads 447
4318 Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression

Authors: Zhi-Jun Lu, Qi Lu, Meng Wu, Qian Xiang, Jun Gu

Abstract:

The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising.

Keywords: artificial neural network (ANN), finite element method (FEM), perforated sections, thin-walled Steel, ultimate load

Procedia PDF Downloads 352
4317 Development of Gold Nanoparticles-Antibody System for the Selective Photothermal Destruction of Multidrug Resistant Bacteria

Authors: Teodora Mocan, Lucian Mocan, Cornel Iancu, Flaviu A. Tabaran, Bartos Dana, Matea Cristian

Abstract:

Antimicrobial resistance, which threatens the efficacy of the existing antibiotics represents a worldwide public health issue. At the current time, vancomycin is the only responsive treatment although has significant cytotoxicity, is partially effective and it is poorly retained by infected tissues. From a clinical point of view, attractive alternative approaches for treating such Meticillin-Resistant Staphylococcus Aureus (MRSA) strains would be using agents that cause physical damage to the bacteria. Modular nanopharmaceuticals systems are being designed to address all of these multifunctional capabilities for the ideal bacterial treatment, with the ability to mix and match appropriate functions. Here we present a novel method of selective laser photothermal ablation of MRSA bacteria mediated by gold nanoparticles bound to PBP antibody against PBP protein located on the MRSA surface.

Keywords: MRSA, laser, nanoparticle, antibody

Procedia PDF Downloads 281
4316 Research on Pollutant Characterization and Timing Decomposition in Beijing During the 2018-2022

Authors: Gao Fangting

Abstract:

With the accelerated pace of industrialization and urbanization, the economic level has been significantly improved, and at the same time, the air quality situation has also become a focus of attention, which not only affects people's health but also has certain impacts on the economy and ecology. As the capital city of China, the air quality situation in Beijing has attracted much attention. In this paper, based on the day-by-day PM2.5, PM10, CO, NO₂, SO₂ and O₃ conditions in Beijing from 2018 to 2022, the characterization of pollutants is launched, and the seasonal decomposition and prediction of the main pollutants, PM2.5, PM10 and O3, are performed in STL. The results of the study show that (1) the overall air quality of Beijing has significantly improved from 2018 to 2022, and the main pollutants are PM2.5, PM10, and O₃; (2) the seasonal intensities of the main pollutants are higher, and they are influenced by seasonal factors; and (3) it is predicted that the O₃ concentration will have a trend of slowly increasing from 2023 to 2026, and the PM10 and PM2.5 pollution situation slowly improves.

Keywords: air pollutants, Beijing, characteristic analysis, STL

Procedia PDF Downloads 21
4315 Multi-Label Approach to Facilitate Test Automation Based on Historical Data

Authors: Warda Khan, Remo Lachmann, Adarsh S. Garakahally

Abstract:

The increasing complexity of software and its applicability in a wide range of industries, e.g., automotive, call for enhanced quality assurance techniques. Test automation is one option to tackle the prevailing challenges by supporting test engineers with fast, parallel, and repetitive test executions. A high degree of test automation allows for a shift from mundane (manual) testing tasks to a more analytical assessment of the software under test. However, a high initial investment of test resources is required to establish test automation, which is, in most cases, a limitation to the time constraints provided for quality assurance of complex software systems. Hence, a computer-aided creation of automated test cases is crucial to increase the benefit of test automation. This paper proposes the application of machine learning for the generation of automated test cases. It is based on supervised learning to analyze test specifications and existing test implementations. The analysis facilitates the identification of patterns between test steps and their implementation with test automation components. For the test case generation, this approach exploits historical data of test automation projects. The identified patterns are the foundation to predict the implementation of unknown test case specifications. Based on this support, a test engineer solely has to review and parameterize the test automation components instead of writing them manually, resulting in a significant time reduction for establishing test automation. Compared to other generation approaches, this ML-based solution can handle different writing styles, authors, application domains, and even languages. Furthermore, test automation tools require expert knowledge by means of programming skills, whereas this approach only requires historical data to generate test cases. The proposed solution is evaluated using various multi-label evaluation criteria (EC) and two small-sized real-world systems. The most prominent EC is ‘Subset Accuracy’. The promising results show an accuracy of at least 86% for test cases, where a 1:1 relationship (Multi-Class) between test step specification and test automation component exists. For complex multi-label problems, i.e., one test step can be implemented by several components, the prediction accuracy is still at 60%. It is better than the current state-of-the-art results. It is expected the prediction quality to increase for larger systems with respective historical data. Consequently, this technique facilitates the time reduction for establishing test automation and is thereby independent of the application domain and project. As a work in progress, the next steps are to investigate incremental and active learning as additions to increase the usability of this approach, e.g., in case labelled historical data is scarce.

Keywords: machine learning, multi-class, multi-label, supervised learning, test automation

Procedia PDF Downloads 132
4314 Legal Issues of Food Security in Republic of Kazakhstan

Authors: G. T. Aigarinova

Abstract:

This article considers the legal issues of food security as a major component of national security of the republic. The problem of food security is the top priority of the economic policy strategy of any state, the effectiveness of this solution influences social, political, and ethnic stability in society. Food security and nutrition is everyone’s business. Food security exists when all people, at all times, have physical, social and economic access to sufficient safe and nutritious food that meets their dietary needs and food preferences for an active and healthy life. By analyzing the existing legislation in the area of food security, the author identifies weaknesses and gaps, suggesting ways to improve it.

Keywords: food security, national security, agriculture, public resources, economic security

Procedia PDF Downloads 425
4313 A Meso Macro Model Prediction of Laminated Composite Damage Elastic Behaviour

Authors: A. Hocine, A. Ghouaoula, S. M. Medjdoub, M. Cherifi

Abstract:

The present paper proposed a meso–macro model describing the mechanical behaviour composite laminates of staking sequence [+θ/-θ]s under tensil loading. The behaviour of a layer is ex-pressed through elasticity coupled to damage. The elastic strain is due to the elasticity of the layer and can be modeled by using the classical laminate theory, and the laminate is considered as an orthotropic material. This means that no coupling effect between strain and curvature is considered. In the present work, the damage is associated to cracking of the matrix and parallel to the fibers and it being taken into account by the changes in the stiffness of the layers. The anisotropic damage is completely described by a single scalar variable and its evolution law is specified from the principle of maximum dissipation. The stress/strain relationship is investigated in plane stress loading.

Keywords: damage, behavior modeling, meso-macro model, composite laminate, membrane loading

Procedia PDF Downloads 476
4312 Advancing Entrepreneurial Knowledge Through Re-Engineering Social Studies Education

Authors: Chukwuka Justus Iwegbu, Monye Christopher Prayer

Abstract:

Propeller aircraft engines, and more generally engines with a large rotating part (turboprops, high bypass ratio turbojets, etc.) are widely used in the industry and are subject to numerous developments in order to reduce their fuel consumption. In this context, unconventional architectures such as open rotors or distributed propulsion appear, and it is necessary to consider the influence of these systems on the aircraft's stability in flight. Indeed, the tendency to lengthen the blades and wings on which these propulsion devices are fixed increases their flexibility and accentuates the risk of whirl flutter. This phenomenon of aeroelastic instability is due to the precession movement of the axis of rotation of the propeller, which changes the angle of attack of the flow on the blades and creates unsteady aerodynamic forces and moments that can amplify the motion and make it unstable. The whirl flutter instability can ultimately lead to the destruction of the engine. We note the existence of a critical speed of the incident flow. If the flow velocity is lower than this value, the motion is damped and the system is stable, whereas beyond this value, the flow provides energy to the system (negative damping) and the motion becomes unstable. A simple model of whirl flutter is based on the work of Houbolt & Reed who proposed an analytical expression of the aerodynamic load on a rigid blade propeller whose axis orientation suffers small perturbations. Their work considered a propeller subjected to pitch and yaw movements, a flow undisturbed by the blades and a propeller not generating any thrust in the absence of precession. The unsteady aerodynamic forces were then obtained using the thin airfoil theory and the strip theory. In the present study, the unsteady aerodynamic loads are expressed for a general movement of the propeller (not only pitch and yaw). The acceleration and rotation of the flow by the propeller are modeled using a Blade Element Momentum Theory (BEMT) approach, which also enable to take into account the thrust generated by the blades. It appears that the thrust has a stabilizing effect. The aerodynamic model is further developed using Theodorsen theory. A reduced order model of the aerodynamic load is finally constructed in order to perform linear stability analysis.

Keywords: advancing, entrepreneurial, knowledge, industralization

Procedia PDF Downloads 96
4311 Covalent Functionalization of Graphene Oxide with Aliphatic Polyisocyanate

Authors: E. Changizi, E. Ghasemi, B. Ramezanzadeh, M. Mahdavian

Abstract:

In this study, the graphene oxide was functionalized with polyisocyanate (piGO). The functionalization was carried out at 45⁰C for 24 hrs under nitrogen atmosphere. The X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) and thermal gravimetric analysis (TGA) were utilized in order to evaluate the GO functionalization. The GO and piGO stability were then investigated in polar and nonpolar solvents. Results obtained showed that polyisocyanate was successfully grafted on the surface of graphen oxide sheets through covalent bonds formation. The surface nature of the graphen oxide was changed into the hydrophobic after functionalization. Moreover, the graphen oxide sheets interlayer distance increased after modification.

Keywords: graphen oxide, functionalization, polyisocyanate, XRD, TGA, FTIR

Procedia PDF Downloads 443
4310 The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks

Authors: Adrien Marque, Daniel Delahaye, Pierre Maréchal, Isabelle Berry

Abstract:

Wind direction and uncertainty are crucial in aircraft or unmanned aerial vehicle trajectories. By computing wind covariance matrices on each spatial grid point, these spatial grids can be defined as images with symmetric positive definite matrix elements. A data pre-processing step, a specific convolution, a specific max-pooling, and a specific flatten layers are implemented to process such images. Then, the neural network is applied to spatial grids, whose elements are wind covariance matrices, to solve classification problems related to the feasibility of unmanned aerial vehicles based on wind direction and wind uncertainty.

Keywords: wind direction, uncertainty level, unmanned aerial vehicle, convolution neural network, SPD matrices

Procedia PDF Downloads 50
4309 Na Promoted Ni/γ-Al2O3 Catalysts Prepared by Solution Combustion Method for Syngas Methanation

Authors: Yan Zeng, Hongfang Ma, Haitao Zhang, Weiyong Ying

Abstract:

Ni-based catalysts with different amounts of Na as promoter from 2 to 6 wt % were prepared by solution combustion method. The catalytic activity was investigated in syngas methanation reaction. Carbon oxides conversion and methane selectivity are greatly influenced by sodium loading. Adding 2 wt% Na remarkably improves catalytic activity and long-term stability, attributed to its smaller mean NiO particle size, better distribution, and milder metal-support interaction. However, excess addition of Na results in deactivation distinctly due to the blockage of active sites.

Keywords: nickel catalysts, syngas methanation, sodium, solution combustion method

Procedia PDF Downloads 407
4308 A Semantic Analysis of Modal Verbs in Barak Obama’s 2012 Presidential Campaign Speech

Authors: Kais A. Kadhim

Abstract:

This paper is a semantic analysis of the English modals in Obama’s speech. The main objective of this study is to analyze selected modal auxiliaries identified in selected speeches of Obama’s campaign based on Coates’ (1983) semantic clusters. A total of fifteen speeches of Obama’s campaign were selected as the primary data and the modal auxiliaries selected for analysis include will, would, can, could, should, must, ought, shall, may and might. All the modal auxiliaries taken from the speeches of Barack Obama were analyzed based on the framework of Coates’ semantic clusters. Such analytical framework was carried out to examine how modal auxiliaries are used in the context of persuading people in Obama’s campaign speeches. The findings reveal that modals of intention, prediction, futurity and modals of possibility, ability, permission are mostly used in Obama’s campaign speeches.

Keywords: modals, meaning, persuasion, speech

Procedia PDF Downloads 405