Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 228

Search results for: drag

228 Numerical Study of Base Drag Reduction Using Locked Vortex Flow Management Technique for Lower Subsonic Regime

Authors: Kailas S. Jagtap, Karthik Sundarraj, Nirmal Kumar, S. Rajnarasimha, Prakash S. Kulkarni


The issue of turbulence base streams and the drag related to it have been of important attention for rockets, missiles, and aircraft. Different techniques are used for base drag reduction. This paper presents the numerical study of numerous drag reduction technique. The base drag or afterbody drag of bluff bodies can be reduced easily using locked vortex drag reduction technique. For bluff bodies having a cylindrical shape, the base drag is much larger compared to streamlined bodies. For such bodies using splitter plates, the vortex can be trapped between the base and the plate, which results in smooth flow. Splitter plate with round and curved corner shapes has influence in drag reduction. In this paper, the comparison is done between single splitter plate as different positions and with the bluff body. Base drag for the speed of 30m/s can be reduced about 20% to 30% by using single splitter plate as compared to the bluff body.

Keywords: base drag, bluff body, splitter plate, vortex flow, ANSYS, fluent

Procedia PDF Downloads 73
227 Online Estimation of Clutch Drag Torque in Wet Dual Clutch Transmission Based on Recursive Least Squares

Authors: Hongkui Li, Tongli Lu , Jianwu Zhang


This paper focuses on developing an estimation method of clutch drag torque in wet DCT. The modelling of clutch drag torque is investigated. As the main factor affecting the clutch drag torque, dynamic viscosity of oil is discussed. The paper proposes an estimation method of clutch drag torque based on recursive least squares by utilizing the dynamic equations of gear shifting synchronization process. The results demonstrate that the estimation method has good accuracy and efficiency.

Keywords: clutch drag torque, wet DCT, dynamic viscosity, recursive least squares

Procedia PDF Downloads 194
226 Drag Reduction of Base Bleed at Various Flight Conditions

Authors: Man Chul Jeong, Hyoung Jin Lee, Sang Yoon Lee, Ji Hyun Park, Min Wook Chang, In-Seuck Jeung


This study focus on the drag reduction effect of the base bleed at supersonic flow. Base bleed is the method which bleeds the gas on the tail of the flight vehicle and reduces the base drag, which occupies over 50% of the total drag in any flight speed. Thus base bleed can reduce the total drag significantly, and enhance the total flight range. Drag reduction ratio of the base bleed is strongly related to the mass flow rate of the bleeding gas. Thus selecting appropriate mass flow rate is important. However, since the flight vehicle has various flight speed, same mass flow rate of the base bleed can have different drag reduction effect during the flight. Thus, this study investigates the effect of the drag reduction depending on the flight speed by numerical analysis using STAR-CCM+. The analysis model is 155mm diameter projectile with boat-tailed shape base. Angle of the boat-tail is chosen previously for minimum drag coefficient. Numerical analysis is conducted for Mach 2 and Mach 3, with various mass flow rate, or the injection parameter I, of the bleeding gas and the temperature of the bleeding gas, is fixed to 300K. The results showed that I=0.025 has the minimum drag at Mach 2, and I=0.014 has the minimum drag at Mach 3. Thus as the Mach number is higher, the lower mass flow rate of the base bleed has more effect on drag reduction.

Keywords: base bleed, supersonic, drag reduction, recirculation

Procedia PDF Downloads 271
225 Impact of Wheel-Housing on Aerodynamic Drag and Effect on Energy Consumption on an Bus

Authors: Amitabh Das, Yash Jain, Mohammad Rafiq B. Agrewale, K. C. Vora


Role of wheel and underbody aerodynamics of vehicle in the formation of drag forces is detrimental to the fuel (energy) consumption during the course of operation at high velocities. This paper deals with the CFD simulation of the flow around the wheels of a bus with different wheel housing geometry and pattern. Based on benchmarking a model of a bus is selected and analysis is performed. The aerodynamic drag coefficient is obtained and turbulence around wheels is observed using ANSYS Fluent CFD simulation for different combinations of wheel-housing at the front wheels, at the rear wheels and both in the front and rear wheels. The drag force is recorded and corresponding influence on energy consumption on an electric bus is evaluated mathematically. A comparison is drawn between energy consumption of bus body without wheel housing and bus body with wheel housing. The result shows a significant reduction in drag coefficient and fuel consumption.

Keywords: wheel-housing, CFD simulation, drag coefficient, energy consumption

Procedia PDF Downloads 65
224 Numerical Study of Flow around Flat Tube between Parallel Walls

Authors: Hamidreza Bayat, Arash Mirabdolah Lavasani, Meysam Bolhasani, Sajad Moosavi


Flow around a flat tube is studied numerically. Reynolds number is defined base on equivalent circular tube and it is varied in range of 100 to 300. Equations are solved by using finite volume method and results are presented in form of drag and lift coefficient. Results show that drag coefficient of flat tube is up to 66% lower than circular tube with equivalent diameter. In addition, by increasing l/D from 1 to 2, the drag coefficient of flat tube is decreased about 14-27%.

Keywords: laminar flow, flat-tube, drag coefficient, cross-flow, heat exchanger

Procedia PDF Downloads 334
223 Effect of Drag Coefficient Models concerning Global Air-Sea Momentum Flux in Broad Wind Range including Extreme Wind Speeds

Authors: Takeshi Takemoto, Naoya Suzuki, Naohisa Takagaki, Satoru Komori, Masako Terui, George Truscott


Drag coefficient is an important parameter in order to correctly estimate the air-sea momentum flux. However, The parameterization of the drag coefficient hasn’t been established due to the variation in the field data. Instead, a number of drag coefficient model formulae have been proposed, even though almost all these models haven’t discussed the extreme wind speed range. With regards to such models, it is unclear how the drag coefficient changes in the extreme wind speed range as the wind speed increased. In this study, we investigated the effect of the drag coefficient models concerning the air-sea momentum flux in the extreme wind range on a global scale, comparing two different drag coefficient models. Interestingly, one model didn’t discuss the extreme wind speed range while the other model considered it. We found that the difference of the models in the annual global air-sea momentum flux was small because the occurrence frequency of strong wind was approximately 1% with a wind speed of 20m/s or more. However, we also discovered that the difference of the models was shown in the middle latitude where the annual mean air-sea momentum flux was large and the occurrence frequency of strong wind was high. In addition, the estimated data showed that the difference of the models in the drag coefficient was large in the extreme wind speed range and that the largest difference became 23% with a wind speed of 35m/s or more. These results clearly show that the difference of the two models concerning the drag coefficient has a significant impact on the estimation of a regional air-sea momentum flux in an extreme wind speed range such as that seen in a tropical cyclone environment. Furthermore, we estimated each air-sea momentum flux using several kinds of drag coefficient models. We will also provide data from an observation tower and result from CFD (Computational Fluid Dynamics) concerning the influence of wind flow at and around the place.

Keywords: air-sea interaction, drag coefficient, air-sea momentum flux, CFD (Computational Fluid Dynamics)

Procedia PDF Downloads 179
222 Computation of Drag and Lift Coefficients on Submerged Vanes in Open Channels

Authors: Anshul Jain, P. Deepak Kumar, P. K. S. Dikshit


To stabilize the riverbanks in the curved reaches of alluvial channels due to erosion and to stop sediment transportation, many models and theories have been put forth. One among such methods is to install flat vanes on the channel bed in predetermined manner. In practical, a relatively small no of vanes can produce bend flows which are practically uniform across the channel. The objective of the present study is to measure the drag and lift on such submerged vanes in open channels. Experiments were performed and the data collected have been presented and analyzed. Using the data collected herein, predictors for the coefficients of drag and lift have been developed. Such predictors yield the value of these coefficients for the known fluid properties and flow characteristic of the channel.

Keywords: drag, lift, vanes, open channel

Procedia PDF Downloads 220
221 Numerical Simulation of the Flow around Wing-In-Ground Effect (WIG) Craft

Authors: A. Elbatran, Y. Ahmed, A. Radwan, M. Ishak


The use of WIG craft is representing an ambitious technology that will support in reducing time, effort, and money of the conventional marine transportation in the future. This paper investigates the aerodynamic characteristic of compound wing-in-ground effect (WIG) craft model. Drag coefficient, lift coefficient and Lift and drag ratio were studied numerically with respect to the ground clearance and the wing angle of attack. The modifications of the wing has been done in order to investigate the most suitable wing configuration that can increase the wing lift-to-drag ratio at low ground clearance. A numerical investigation was carried out in this research work using finite volume Reynolds-Averaged Navier-Stokes Equations (RANSE) code ANSYS CFX, Validation was carried out by using experiments. The experimental and the numerical results concluded that the lift to drag ratio decreased with the increasing of the ground clearance.

Keywords: drag Coefficient, ground clearance, navier-stokes, WIG

Procedia PDF Downloads 285
220 Aerodynamic Interaction between Two Speed Skaters Measured in a Closed Wind Tunnel

Authors: Ola Elfmark, Lars M. Bardal, Luca Oggiano, H˚avard Myklebust


Team pursuit is a relatively new event in international long track speed skating. For a single speed skater the aerodynamic drag will account for up to 80% of the braking force, thus reducing the drag can greatly improve the performance. In a team pursuit the interactions between athletes in near proximity will also be essential, but is not well studied. In this study, systematic measurements of the aerodynamic drag, body posture and relative positioning of speed skaters have been performed in the low speed wind tunnel at the Norwegian University of Science and Technology, in order to investigate the aerodynamic interaction between two speed skaters. Drag measurements of static speed skaters drafting, leading, side-by-side, and dynamic drag measurements in a synchronized and unsynchronized movement at different distances, were performed. The projected frontal area was measured for all postures and movements and a blockage correction was performed, as the blockage ratio ranged from 5-15% in the different setups. The static drag measurements where performed on two test subjects in two different postures, a low posture and a high posture, and two different distances between the test subjects 1.5T and 3T where T being the length of the torso (T=0.63m). A drag reduction was observed for all distances and configurations, from 39% to 11.4%, for the drafting test subject. The drag of the leading test subject was only influenced at -1.5T, with the biggest drag reduction of 5.6%. An increase in drag was seen for all side-by-side measurements, the biggest increase was observed to be 25.7%, at the closest distance between the test subjects, and the lowest at 2.7% with ∼ 0.7 m between the test subjects. A clear aerodynamic interaction between the test subjects and their postures was observed for most measurements during static measurements, with results corresponding well to recent studies. For the dynamic measurements, the leading test subject had a drag reduction of 3% even at -3T. The drafting showed a drag reduction of 15% when being in a synchronized (sync) motion with the leading test subject at 4.5T. The maximal drag reduction for both the leading and the drafting test subject were observed when being as close as possible in sync, with a drag reduction of 8.5% and 25.7% respectively. This study emphasize the importance of keeping a synchronized movement by showing that the maximal gain for the leading and drafting dropped to 3.2% and 3.3% respectively when the skaters are in opposite phase. Individual differences in technique also appear to influence the drag of the other test subject.

Keywords: aerodynamic interaction, drag force, frontal area, speed skating

Procedia PDF Downloads 43
219 Investigating the Influence of Roof Fairing on Aerodynamic Drag of a Bluff Body

Authors: Kushal Kumar Chode


Increase in demand for fuel saving and demand for faster vehicles with decent fuel economy, researchers around the world started investigating in various passive flow control devices to improve the fuel efficiency of vehicles. In this paper, A roof fairing was investigated for reducing the aerodynamic drag of a bluff body. The bluff body considered for this work is Ahmed model with a rake angle of 25deg was and subjected to flow with a velocity of 40m/s having Reynolds number of 2.68million was analysed using a commercial Computational Fluid Dynamic (CFD) code Star CCM+. It was evident that pressure drag is the main source of drag on an Ahmed body from the initial study. Adding a roof fairing has delayed the flow separation and resulted in delaying wake formation, thus improving the pressure in near weak and reducing the wake region. Adding a roof fairing of height and length equal to 1/7H and 1/3L respectively has shown a drag reduction by 9%. However, an optimised fairing, which was obtained by changing height, length and width by 5% increase, recorded a drag reduction close 12%.

Keywords: Ahmed model, aerodynamic drag, passive flow control, roof fairing, wake formation

Procedia PDF Downloads 234
218 Theoretical Calculation of Wingtip Devices for Agricultural Aircraft

Authors: Hashim Bashir


The Vortex generated at the edges of the wing of an Aircraft are called the Wing Tip Vortex. The Wing Tip Vortices are associated with induced drag. The induced drag is responsible for nearly 50% of aircraft total drag and can be reduced through modifications to the wing tip. Some models displace wingtips vortices outwards diminishing the induced drag. Concerning agricultural aircrafts, wing tip vortex position is really important, while spreading products over a plantation. In this work, theoretical calculations were made in order to study the influence in aerodynamic characteristics and vortex position, over Sudanese agricultural aircraft, by the following types of wing tips: delta tip, winglet and down curved. The down curved tip was better for total drag reduction, but not good referring to vortex position. The delta tip gave moderate improvement on aerodynamic characteristic and on vortex position. The winglet had a better vortex position and lift increment, but caused an undesirable result referring to the wing root bending moment. However, winglet showed better development potential for agricultural aircraft.

Keywords: wing tip device, wing tip vortice, agricultural aircaft, winglet

Procedia PDF Downloads 215
217 Numerical Study for the Estimation of Hydrodynamic Current Drag Coefficients for the Colombian Navy Frigates Using Computational Fluid Dynamics

Authors: Mauricio Gracia, Luis Leal, Bharat Verma


Computational fluid dynamics (CFD) has become nowadays an important tool in the process of hydrodynamic design of modern ships. CFD is used to model any phenomena related to fluid flow in a control volume like a ship or any offshore structure in the sea. In the present study, the current force drag coefficients for a Colombian Navy Frigate in deep and shallow water are estimated through the application of CFD. The study shows the process of simulating the ship current drag coefficients using the CFD simulations method, which is conducted using STAR-CCM+ software package. The Almirante Padilla class Frigate ship scale model is investigated. The results show the ship current drag coefficient calculated considering a current speed of 1 knot with a 90° drift angle for the full-scale ship. Predicted results were compared against the current drag coefficients published in the Lloyds register OCIMF report. It is shown that the simulation results agree fairly well with the published results and that STAR-CCM+ code can predict current drag coefficients.

Keywords: CFD, current draft coefficient, STAR-CCM+, OCIMF, Bollard pull

Procedia PDF Downloads 37
216 Numerical Analysis of Flow in the Gap between a Simplified Tractor-Trailer Model and Cross Vortex Trap Device

Authors: Terrance Charles, Zhiyin Yang, Yiling Lu


Heavy trucks are aerodynamically inefficient due to their un-streamlined body shapes, leading to more than of 60% engine power being required to overcome the aerodynamics drag at 60 m/hr. There are many aerodynamics drag reduction devices developed and this paper presents a study on a drag reduction device called Cross Vortex Trap Device (CVTD) deployed in the gap between the tractor and the trailer of a simplified tractor-trailer model. Numerical simulations have been carried out at Reynolds number 0.51×106 based on inlet flow velocity and height of the trailer using the Reynolds-Averaged Navier-Stokes (RANS) approach. Three different configurations of CVTD have been studied, ranging from single to three slabs, equally spaced on the front face of the trailer. Flow field around three different configurations of trap device have been analysed and presented. The results show that a maximum of 12.25% drag reduction can be achieved when a triple vortex trap device is used. Detailed flow field analysis along with pressure contours are presented to elucidate the drag reduction mechanisms of CVTD and why the triple vortex trap configuration produces the maximum drag reduction among the three configurations tested.

Keywords: aerodynamic drag, cross vortex trap device, truck, Reynolds-Averaged Navier-Stokes, RANS

Procedia PDF Downloads 35
215 An Experimental Investigation on the Amount of Drag Force of Sand on a Cone Moving at Low Uniform Speed

Authors: M. Jahanandish, Gh. Sadeghian, M. H. Daneshvar, M. H. Jahanandish


The amount of resistance of a particular medium like soil to the moving objects is the interest of many areas in science. These include soil mechanics, geotechnical engineering, powder mechanics etc. Knowledge of drag force is also used for estimating the amount of momentum of fired objects like bullets. This paper focuses on measurement of drag force of sand on a cone when it moves at a low constant speed. A 30-degree apex angle cone has been used for this purpose. The study consisted of both loose and dense conditions of the soil. The applied speed has been in the range of 0.1 to 10 mm/min. The results indicate that the required force is basically independent of the cone speed; but, it is very dependent on the material densification and confining stress.

Keywords: drag force, sand, moving speed, friction angle, densification, confining stress

Procedia PDF Downloads 242
214 Reduction of Aerodynamic Drag Using Vortex Generators

Authors: Siddharth Ojha, Varun Dua


Classified as one of the most important reasons of aerodynamic drag in the sedan automobiles is the fluid flow separation near the vehicle’s rear end. To retard the separation of flow, bump-shaped vortex generators are being tested for its implementation to the roof end of a sedan vehicle. Frequently used in the aircrafts to prevent the separation of fluid flow, vortex generators themselves produce drag, but they also substantially reduce drag by preventing flow separation at the downstream. The net effects of vortex generators can be calculated by summing the positive and negative impacts and effects. Since this effect depends on dimensions and geometry of vortex generators, those present on the vehicle roof are optimized for maximum efficiency and performance. The model was tested through ANSYS CFD analysis and modeling. The model was tested in the wind tunnel for observing it’s properties such as aerodynamic drag and flow separation and a major time lag was gained by employing vortex generators in the scaled model. Major conclusions which were recorded during the analysis were a substantial 24% reduction in the aerodynamic drag and 14% increase in the efficiency of the sedan automobile as the flow separation from the surface is delayed. This paper presents the results of optimization, the effect of vortex generators in the flow field and the mechanism by which these effects occur and are regulated.

Keywords: aerodynamics, aerodynamic devices, body, computational fluid dynamics (CFD), flow visualization

Procedia PDF Downloads 127
213 Numerical Simulation of Turbulent Flow around Two Cam Shaped Cylinders in Tandem Arrangement

Authors: Arash Mir Abdolah Lavasani, M. Ebrahimisabet


In this paper, the 2-D unsteady viscous flow around two cam shaped cylinders in tandem arrangement is numerically simulated in order to study the characteristics of the flow in turbulent regimes. The investigation covers the effects of high subcritical and supercritical Reynolds numbers and L/D ratio on total drag coefficient. The equivalent diameter of cylinders is 27.6 mm The space between center to center of two cam shaped cylinders is define as longitudinal pitch ratio and it varies in range of 1.5 < L/D < 6. Reynolds number base on equivalent circular cylinder varies in range of 27×103 < Re < 166×103 Results show that drag coefficient of both cylinders depends on pitch ratio. However drag coefficient of downstream cylinder is more dependent on the pitch ratio.

Keywords: cam shaped, tandem, numerical, drag coefficient, turbulent

Procedia PDF Downloads 355
212 Effect of Reynolds Number and Concentration of Biopolymer (Gum Arabic) on Drag Reduction of Turbulent Flow in Circular Pipe

Authors: Kamaljit Singh Sokhal, Gangacharyulu Dasoraju, Vijaya Kumar Bulasara


Biopolymers are popular in many areas, like petrochemicals, food industry and agriculture due to their favorable properties like environment-friendly, availability, and cost. In this study, a biopolymer gum Arabic was used to find its effect on the pressure drop at various concentrations (100 ppm – 300 ppm) with various Reynolds numbers (10000 – 45000). A rheological study was also done by using the same concentrations to find the effect of the shear rate on the shear viscosity. Experiments were performed to find the effect of injection of gum Arabic directly near the boundary layer and to investigate its effect on the maximum possible drag reduction. Experiments were performed on a test section having i.d of 19.50 mm and length of 3045 mm. The polymer solution was injected from the top of the test section by using a peristaltic pump. The concentration of the polymer solution and the Reynolds number were used as parameters to get maximum possible drag reduction. Water was circulated through a centrifugal pump having a maximum 3000 rpm and the flow rate was measured by using rotameter. Results were validated by using Virk's maximum drag reduction asymptote. A maximum drag reduction of 62.15% was observed with the maximum concentration of gum Arabic, 300 ppm. The solution was circulated in the closed loop to find the effect of degradation of polymers with a number of cycles on the drag reduction percentage. It was observed that the injection of the polymer solution in the boundary layer was showing better results than premixed solutions.

Keywords: drag reduction, shear viscosity, gum arabic, injection point

Procedia PDF Downloads 44
211 A Parametric Study on Aerodynamic Performance of Tyre Using CFD

Authors: Sowntharya L.


Aerodynamics is the most important factor when it comes to resistive forces such as lift, drag and side forces acting on the vehicle. In passenger vehicles, reducing the drag will not only unlock the door for higher achievable speed but will also reduce the fuel consumption of the vehicle. Generally, tyre contributes significantly to the overall aerodynamics of the vehicle. Hence, understanding the air-flow behaviour around the tyre is vital to optimize the aerodynamic performance in the early stage of design process. Nowadays, aerodynamic simulation employing Computational Fluid Dynamics (CFD) is gaining more importance as it reduces the number of physical wind-tunnel experiments during vehicle development process. This research develops a methodology to predict aerodynamic drag of a standalone tyre using Numerical CFD Solver and to validate the same using a wind tunnel experiment. A parametric study was carried out on different tread pattern tyres such as slick, circumferential groove & patterned tyre in stationary and rotating boundary conditions. In order to represent wheel rotation contact with the ground, moving reference frame (MRF) approach was used in this study. Aerodynamic parameters such as drag lift & air flow behaviour around the tire were simulated and compared with experimental results.

Keywords: aerodynamics, CFD, drag, MRF, wind-tunnel

Procedia PDF Downloads 71
210 Simulation Study on Vehicle Drag Reduction by Surface Dimples

Authors: S. F. Wong, S. S. Dol


Automotive designers have been trying to use dimples to reduce drag in vehicles. In this work, a car model has been applied with dimple surface with a parameter called dimple ratio DR, the ratio between the depths of the half dimple over the print diameter of the dimple, has been introduced and numerically simulated via k-ε turbulence model to study the aerodynamics performance with the increasing depth of the dimples The Ahmed body car model with 25 degree slant angle is simulated with the DR of 0.05, 0.2, 0.3 0.4 and 0.5 at Reynolds number of 176387 based on the frontal area of the car model. The geometry of dimple changes the kinematics and dynamics of flow. Complex interaction between the turbulent fluctuating flow and the mean flow escalates the turbulence quantities. The maximum level of turbulent kinetic energy occurs at DR = 0.4. It can be concluded that the dimples have generated extra turbulence energy at the surface and as a result, the application of dimples manages to reduce the drag coefficient of the car model compared to the model with smooth surface.

Keywords: aerodynamics, boundary layer, dimple, drag, kinetic energy, turbulence

Procedia PDF Downloads 213
209 Design and Numerical Study on Aerodynamics Performance for F16 Leading Edge Extension

Authors: San-Yih Lin, Hsien-Hao Teng


In this research, we use commercial software, ANSYS CFX, to carry on the simulation the F16 aerodynamics performance flow field. The flight with a modified Leading Edge Extension (LEX) is proposed to increase the lift/drag ratio. The Shear Stress Transport turbulent model is used. The unstructured grid system is generated by the ICEM CFD. The prism grid around the wall surface is generated to simulate boundary layer viscosity flow field and Tetrahedron Mesh is used for the other computation domain. The lift, drag, and pitch moment are computed. The strong vortex structures upper the wing and vortex bursts under different sweep angle of LEX are investigated.

Keywords: LEX, lift/drag ratio, pitch moment, vortex burst

Procedia PDF Downloads 235
208 Aerodynamic Performance of a Pitching Bio-Inspired Corrugated Airfoil

Authors: Hadi Zarafshani, Shidvash Vakilipour, Shahin Teimori, Sara Barati


In the present study, the aerodynamic performance of a rigid two-dimensional pitching bio-inspired corrugate airfoil was numerically investigated at Reynolds number of 14000. The Open Field Operations And Manipulations (OpenFOAM) computational fluid dynamic tool is used to solve flow governing equations numerically. The k-ω SST turbulence model with low Reynolds correction (k-ω SST LRC) and the pimpleDyMFOAM solver are utilized to simulate the flow field around pitching bio-airfoil. The lift and drag coefficients of the airfoil are calculated at reduced frequencies k=1.24-4.96 and the angular amplitude of A=5°-20°. Results show that in a fixed reduced frequency, the absolute value of the sectional lift and drag coefficients increase with increasing pitching amplitude. In a fixed angular amplitude, the absolute value of the lift and drag coefficients increase as the pitching reduced frequency increases.

Keywords: bio-inspired pitching airfoils, OpenFOAM, low Reynolds k-ω SST model, lift and drag coefficients

Procedia PDF Downloads 79
207 A CFD Study of the Performance Characteristics of Vented Cylinders as Vortex Generators

Authors: R. Kishan, R. M. Sumant, S. Suhas, Arun Mahalingam


This paper mainly researched on influence of vortex generator on lift coefficient and drag coefficient, when vortex generator is mounted on a flat plate. Vented cylinders were used as vortex generators which intensify vortex shedding in the wake of the vented cylinder as compared to base line circular cylinder which ensures more attached flow and increases lift force of the system. Firstly vented cylinders were analyzed in commercial CFD software which is compared with baseline cylinders for different angles of attack and further variation of lift and drag forces were studied by varying Reynolds number to account for influence of turbulence and boundary layer in the flow. Later vented cylinders were mounted on a flat plate and variation of lift and drag coefficients was studied by varying angles of attack and studying the dependence of Reynolds number and dimensions of vortex generator on the coefficients. Mesh grid sensitivity is studied to check the convergence of the results obtained It was found that usage of vented cylinders as vortex generators increased lift forces with small variation in drag forces by varying angle of attack.

Keywords: CFD analysis, drag coefficient, FVM, lift coefficient, modeling, Reynolds number, simulation, vortex generators, vortex shedding

Procedia PDF Downloads 308
206 Computational Fluid Dynamics Analysis of an RC Airplane Wing Using a NACA 2412 Profile at Different Angle of Attacks

Authors: Huseyin Gokberk, Shian Gao


CFD analysis of the relationship between the coefficients of lift and drag with respect to the angle of attack on a NACA 2412 wing section of an RC plane is conducted. Both the 2D and 3D models are investigated with the turbulence model. The 2D analysis has a free stream velocity of 10m/s at different AoA of 0°, 2°, 5°, 10°, 12°, and 15°. The induced drag and drag coefficient increased throughout the changes in angles even after the critical angle had been exceeded, whereas the lift force and coefficient of lift increased but had a limit at the critical stall angle, which results in values to reduce sharply. Turbulence flow characteristics are analysed around the aerofoil with the additions caused due to a finite 3D model. 3D results highlight how wing tip vortexes develop and alter the flow around the wing with the effects of the tapered configuration.

Keywords: CFD, turbulence modelling, aerofoil, angle of attack

Procedia PDF Downloads 69
205 Aerodynamic Analysis of Dimple Effect on Aircraft Wing

Authors: E. Livya, G. Anitha, P. Valli


The main objective of aircraft aerodynamics is to enhance the aerodynamic characteristics and maneuverability of the aircraft. This enhancement includes the reduction in drag and stall phenomenon. The airfoil which contains dimples will have comparatively less drag than the plain airfoil. Introducing dimples on the aircraft wing will create turbulence by creating vortices which delays the boundary layer separation resulting in decrease of pressure drag and also increase in the angle of stall. In addition, wake reduction leads to reduction in acoustic emission. The overall objective of this paper is to improve the aircraft maneuverability by delaying the flow separation point at stall and thereby reducing the drag by applying the dimple effect over the aircraft wing. This project includes both computational and experimental analysis of dimple effect on aircraft wing, using NACA 0018 airfoil. Dimple shapes of Semi-sphere, hexagon, cylinder, square are selected for the analysis; airfoil is tested under the inlet velocity of 30m/s at different angle of attack (5˚, 10˚, 15˚, 20˚, and 25˚). This analysis favours the dimple effect by increasing L/D ratio and thereby providing the maximum aerodynamic efficiency, which provides the enhanced performance for the aircraft.

Keywords: airfoil, dimple effect, turbulence, boundary layer separation

Procedia PDF Downloads 432
204 Computational Fluid Dynamics Design and Analysis of Aerodynamic Drag Reduction Devices for a Mazda T3500 Truck

Authors: Basil Nkosilathi Dube, Wilson R. Nyemba, Panashe Mandevu


In highway driving, over 50 percent of the power produced by the engine is used to overcome aerodynamic drag, which is a force that opposes a body’s motion through the air. Aerodynamic drag and thus fuel consumption increase rapidly at speeds above 90kph. It is desirable to minimize fuel consumption. Aerodynamic drag reduction in highway driving is the best approach to minimize fuel consumption and to reduce the negative impacts of greenhouse gas emissions on the natural environment. Fuel economy is the ultimate concern of automotive development. This study aims to design and analyze drag-reducing devices for a Mazda T3500 truck, namely, the cab roof and rear (trailer tail) fairings. The aerodynamic effects of adding these append devices were subsequently investigated. To accomplish this, two 3D CAD models of the Mazda truck were designed using the Design Modeler. One, with these, append devices and the other without. The models were exported to ANSYS Fluent for computational fluid dynamics analysis, no wind tunnel tests were performed. A fine mesh with more than 10 million cells was applied in the discretization of the models. The realizable k-ε turbulence model with enhanced wall treatment was used to solve the Reynold’s Averaged Navier-Stokes (RANS) equation. In order to simulate the highway driving conditions, the tests were simulated with a speed of 100 km/h. The effects of these devices were also investigated for low-speed driving. The drag coefficients for both models were obtained from the numerical calculations. By adding the cab roof and rear (trailer tail) fairings, the simulations show a significant reduction in aerodynamic drag at a higher speed. The results show that the greatest drag reduction is obtained when both devices are used. Visuals from post-processing show that the rear fairing minimized the low-pressure region at the rear of the trailer when moving at highway speed. The rear fairing achieved this by streamlining the turbulent airflow, thereby delaying airflow separation. For lower speeds, there were no significant differences in drag coefficients for both models (original and modified). The results show that these devices can be adopted for improving the aerodynamic efficiency of the Mazda T3500 truck at highway speeds.

Keywords: aerodynamic drag, computation fluid dynamics, fluent, fuel consumption

Procedia PDF Downloads 45
203 Development of Hydrodynamic Drag Calculation and Cavity Shape Generation for Supercavitating Torpedoes

Authors: Sertac Arslan, Sezer Kefeli


In this paper, firstly supercavitating phenomenon and supercavity shape design parameters are explained and then drag force calculation methods of high speed supercavitating torpedoes are investigated with numerical techniques and verified with empirical studies. In order to reach huge speeds such as 200, 300 knots for underwater vehicles, hydrodynamic hull drag force which is proportional to density of water (ρ) and square of speed should be reduced. Conventional heavy weight torpedoes could reach up to ~50 knots by classic underwater hydrodynamic techniques. However, to exceed 50 knots and reach about 200 knots speeds, hydrodynamic viscous forces must be reduced or eliminated completely. This requirement revives supercavitation phenomena that could be implemented to conventional torpedoes. Supercavitation is the use of cavitation effects to create a gas bubble, allowing the torpedo to move at huge speed through the water by being fully developed cavitation bubble. When the torpedo moves in a cavitation envelope due to cavitator in nose section and solid fuel rocket engine in rear section, this kind of torpedoes could be entitled as Supercavitating Torpedoes. There are two types of cavitation; first one is natural cavitation, and second one is ventilated cavitation. In this study, disk cavitator is modeled with natural cavitation and supercavitation phenomenon parameters are studied. Moreover, drag force calculation is performed for disk shape cavitator with numerical techniques and compared via empirical studies. Drag forces are calculated with computational fluid dynamics methods and different empirical methods. Numerical calculation method is developed by comparing with empirical results. In verification study cavitation number (σ), drag coefficient (CD) and drag force (D), cavity wall velocity (U

Keywords: cavity envelope, CFD, high speed underwater vehicles, supercavitation, supercavity flows

Procedia PDF Downloads 60
202 Development of a Self-Retractable Front Spoilers Suitable for Indian Road Conditions to Reduce Aerodynamic Drag

Authors: G. Sivaraj, K. M. Parammasivam, R. Veeramanikandan, S. Nithish


Reduction of ground clearance or (ride height) is a vital factor in minimizing aerodynamic drag force and improving vehicle performance. But in India, minimization of ground clearance is limited because of the road conditions. Due to this problem, reduction of aerodynamic drag and performance are not fully improved. In this view, this paper deals with the development of self-retractable front spoilers which are most suitable for Indian road conditions. These retractable spoilers are fitted in the front portion of the car and in speed below 60 km/hr these spoilers are in retracted positions. But, when the car crosses a speed above 60 km/hr, using electronic circuit the spoilers are activated. Thus, using this technique aerodynamic performance can be improved at a speed above 60 km/hr. Also, when the car speed is reduced below the 60 km/hr mark, the front spoiler are retracted which makes it as a normal car. This is because, in Indian roads, speed breakers are installed to cut off speed at particular places. Thus, in these circumstances there are chances of damaging front spoilers. Since, when the driver sees the speed breaker, he will automatically apply break to prevent damage, at this time using electronic circuit the front spoiler is retracted. However, accidentally when the driver fails to apply brakes there are chances for the front spoilers to get a hit. But as the front spoilers are made of Kevlar composite, it can withstand high impact loads and using a spring mechanism the spoilers are retracted immediately. By using CFD analysis and low-speed wind tunnel testing drag coefficient of the 1:10 scaled car model with and without self-retractable spoilers are calculated and validated. Also, using wind tunnel, proper working of self-retractable at car speed below and above 60 km/hr are validated.

Keywords: aerodynamic drag, CFD analysis, kevlar composite, self-retractable spoilers, wind tunnel

Procedia PDF Downloads 257
201 The Photon-Drag Effect in Cylindrical Quantum Wire with a Parabolic Potential

Authors: Hoang Van Ngoc, Nguyen Thu Huong, Nguyen Quang Bau


Using the quantum kinetic equation for electrons interacting with acoustic phonon, the density of the constant current associated with the drag of charge carriers in cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field and a laser radiation field is calculated. The density of the constant current is studied as a function of the frequency of electromagnetic wave, as well as the frequency of laser field and the basic elements of quantum wire with a parabolic potential. The analytic expression of the constant current density is numerically evaluated and plotted for a specific quantum wires GaAs/AlGaAs to show the dependence of the constant current density on above parameters. All these results of quantum wire compared with bulk semiconductors and superlattices to show the difference.

Keywords: The photon-drag effect, the constant current density, quantum wire, parabolic potential

Procedia PDF Downloads 292
200 Aerodynamic Analysis and Design of Banners for Remote-Controlled Aircraft

Authors: Peyman Honarmandi, Mazen Alhirsh


Banner towing is a major form of advertisement. It consists of a banner showing a logo or a selection of words or letters being towed by an aircraft. Traditionally bush planes have been used to tow banners given their high thrust capabilities; however, with the development of remote-controlled (RC) aircraft, they could be a good replacement as RC planes mitigate the risk of human life and can be easier to operate. This paper studies the best banner design to be towed by an RC aircraft. This is done by conducting wind tunnel testing on an array of banners with different materials and designs. A pull gauge is used to record the drag force during testing, which is then used to calculate the coefficient of drag, Cd. The testing results show that the best banner design would be a hybrid design with a solid and mesh material. The design with the lowest Cd of 0.082 was a half ripstop nylon half polyester mesh design. On the other hand, the design with the highest Cd of 0.305 involved incorporating a tail chute to decrease fluttering.

Keywords: aerodynamics of banner, banner design, banner towing, drag coefficients of banner, RC aircraft banner

Procedia PDF Downloads 60
199 Yaw Angle Effect on the Aerodynamic Performance of Rear-Roof Spoiler of Hatchback Vehicle

Authors: See-Yuan Cheng, Kwang-Yhee Chin, Shuhaimi Mansor


Rear-roof spoiler is commonly used for improving the aerodynamic performance of road vehicles. This study aims to investigate the effect of yaw angle on the effectiveness of strip-type rear-roof spoiler in providing lower drag and lift coefficients of a hatchback model. A computational fluid dynamics (CFD) method was used. The numerically obtained results were compared to the experimental data for validation of the CFD method. At increasing yaw angle, both the drag and lift coefficients of the model were to increase. In addition, the effectiveness of spoiler was deteriorated. These unfavorable effects were due to the formation of longitudinal vortices around the side edges of the model that had caused the surface pressure of the model to drop. Furthermore, there were significant crossflow structures developed behind the model at larger yaw angle, which were associated with the drop in the surface pressure of the rear section of the model and cause the drag coefficient to rise.

Keywords: Ahmed model, aerodynamics, spoiler, yaw angle

Procedia PDF Downloads 270