Search results for: bacterial recovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2778

Search results for: bacterial recovery

2478 Extracellular Enzymes from Halophilic Bacteria with Potential in Agricultural Secondary Flow Recovery Products

Authors: Madalin Enache, Simona Neagu, Roxana Cojoc, Ioana Gomoiu, Delia Ionela Dobre, Ancuta Roxana Trifoi

Abstract:

Various types of halophilic and halotolerant microorganisms able to be cultivated in laboratory on culture media with a wide range of sodium chloride content are isolated from several salted environments. The extracellular enzymes of these microorganisms showed the enzymatic activity in these spectrums of salinity thus being attractive for several biotechnological processes developed at high ionic strength. In present work, a number of amylase, protease, esterase, lipase, cellulase, pectinase, xilanases and innulinase were identified for more than 50th bacterial strains isolated from water samples and sapropelic mud from four saline and hypersaline lakes located in Romanian plain. On the other hand, the cellulase and pectinase activity were also detected in some halotolerant microorganisms isolated from secondary agricultural flow of grapes processing. The preliminary data revealed that from totally tested strains seven harbor proteases activity, eight amylase activity, four for esterase and another four for lipase, three for pectinase and for one strain were identified either cellulase or pectinase activity. There were no identified enzymes able to hydrolase innulin added to culture media. Several strains isolated from sapropelic mud showed multiple extracellular enzymatic activities, namely three strains harbor three activities and another seven harbor two activities. The data revealed that amylase and protease activities were frequently detected if compare with other tested enzymes. In the case of pectinase were investigated, their ability to be used for increasing resveratrol recovery from material resulted after grapes processing. In this way, the resulted material from grapes processing was treated with microbial supernatant for several times (two, four and 24 hours) and the content of resveratrol was detected by High Performance Liquid Chromatography method (HPLC). The preliminary data revealed some positive results of this treatment.

Keywords: halophilic microorganisms, enzymes, pectinase, salinity

Procedia PDF Downloads 164
2477 Effects of a Bacteria-Based Probiotic on Subpopulations of Peripheral Leukocytes and Their Interleukin mRNA Expression in Calves

Authors: Abdul Qadir Qadis, Satoru Goya, Minoru Yatsu, Yu-uki Yoshida, Toshihiro Ichijo, Shigeru Sato

Abstract:

Bacterial probiotics are known to modulate the gut-associated lymphoid and epithelial tissue response to enhance the activities of intestinal and systemic immune system in human and animals. In cattle, the immune-stimulatory effects of probiotics have been evaluated during intestinal disorders. To investigate the effects of probiotic on the function of peripheral blood mononuclear cells, eight healthy Holstein calves (10 ± 3 weeks) were assigned to a 4 × 2 experimental design. The probiotic, consisting of Lactobacillus plantarum, Enterococcus faecium and Clostridium butyricum, was administered orally at 3.0 g/100 kg body weight to calves once daily for 5 consecutive days. Calves given no probiotic served as the control. In the treatment group, increases in numbers of CD282+ monocytes, CD3+ T-cells and CD4+, CD8+ and WC1+ γδ T- cell subsets were noted on day 7 post-placement compared to pre-dose day and the control group. Expression of interleukin-6, interferon-gamma and tumor necrosis factor-alpha was elevated in peripheral leukocytes on days 7 and 14. These results suggest that peripheral blood leukocytes in healthy calves may be stimulated via the gastrointestinal microbiota, which was increased by the oral probiotic treatment. The 5-day repeated administration of a bacterial probiotic may enhance cellular immune function in weaned calves.

Keywords: bacterial-probiotic, calf, interleukin, leukocyte

Procedia PDF Downloads 635
2476 Understanding the Notion between Resiliency and Recovery through a Spatial-Temporal Analysis of Section 404 Wetland Alteration Permits before and after Hurricane Ike

Authors: Md Y. Reja, Samuel D. Brody, Wesley E. Highfield, Galen D. Newman

Abstract:

Historically, wetlands in the United States have been lost due to agriculture, anthropogenic activities, and rapid urbanization along the coast. Such losses of wetlands have resulted in high flooding risk for coastal communities over the period of time. In addition, alteration of wetlands via the Section 404 Clean Water Act permits can increase the flooding risk to future hurricane events, as the cumulative impact of this program is poorly understood and under-accounted. Further, recovery after hurricane events is acting as an encouragement for new development and reconstruction activities by converting wetlands under the wetland alteration permitting program. This study investigates the degree to which hurricane recovery activities in coastal communities are undermining the ability of these places to absorb the impacts of future storm events. Specifically, this work explores how and to what extent wetlands are being affected by the federal permitting program post-Hurricane Ike in 2008. Wetland alteration patterns are examined across three counties (Harris, Galveston, and Chambers County) along the Texas Gulf Coast over a 10-year time period, from 2004-2013 (five years before and after Hurricane Ike) by conducting descriptive spatial analyses. Results indicate that after Hurricane Ike, the number of permits substantially increased in Harris and Chambers County. The vast majority of individual and nationwide type permits were issued within the 100-year floodplain, storm surge zones, and areas damaged by Ike flooding, suggesting that recovery after the hurricane is compromising the ecological resiliency on which coastal communities depend. The authors expect that the findings of this study can increase awareness to policy makers and hazard mitigation planners regarding how to manage wetlands during a long-term recovery process to maintain their natural functions for future flood mitigation.

Keywords: ecological resiliency, Hurricane Ike, recovery, Section 404 Permitting, wetland alteration

Procedia PDF Downloads 228
2475 Bioremediation of Disposed X-Ray Film for Nanoparticles Production

Authors: Essam A. Makky, Siti H. Mohd Rasdi, J. B. Al-Dabbagh, G. F. Najmuldeen

Abstract:

The synthesis of silver nano particles (SNPs) extensively studied by using chemical and physical methods. Here, the biological methods were used and give benefits in research field in the aspect of very low cost (from waste to wealth) and safe time as well. The study aims to isolate and exploit the microbial power in the production of industrially important by-products in nano-size with high economic value, to extract highly valuable materials from hazardous waste, to quantify nano particle size, and characterization of SNPs by X-Ray Diffraction (XRD) analysis. Disposal X-ray films were used as substrate because it consumes about 1000 tons of total silver chemically produced worldwide annually. This silver is being wasted when these films are used and disposed. Different bacterial isolates were obtained from various sources. Silver was extracted as nano particles by microbial power degradation from disposal X-ray film as the sole carbon source for ten days incubation period in darkness. The protein content was done and all the samples were analyzed using XRD, to characterize of silver (Ag) nano particles size in the form of silver nitrite. Bacterial isolates CL4C showed the average size of SNPs about 19.53 nm, GL7 showed average size about 52.35 nm and JF Outer 2A (PDA) showed 13.52 nm. All bacterial isolates partially identified using Gram’s reaction and the results obtained exhibited that belonging to Bacillus sp.

Keywords: nanotechnology, bioremediation, disposal X-ray film, nanoparticle, waste, XRD

Procedia PDF Downloads 465
2474 Antibacterial Activity of Endophytic Bacteria against Multidrug-Resistant Bacteria: Isolation, Characterization, and Antibacterial Activity

Authors: Maryam Beiranvand, Sajad Yaghoubi

Abstract:

Background: Some microbes can colonize plants’ inner tissues without causing obvious damage and can even produce useful bioactive substances. In the present study, the diversity of the endophytic bacteria associated with medicinal plants from Iran was investigated by culturing techniques, molecular gene identification, as well as measuring them for antibacterial activity. Results: In the spring season from 2013 to 2014, 35 herb pharmacology samples were collected, sterilized, meshed, and then cultured on selective media culture. A total of 199 endophytic bacteria were successfully isolated from 35 tissue cultures of medical plants, and sixty-seven out of 199 bacterial isolates were subjected to identification by the 16S rRNA gene sequence analysis method. Based on the sequence similarity gene and phylogenetic analyses, these isolates were grouped into five classes, fourteen orders, seventeen families, twenty-one genera, and forty strains. The most abundant group of endophytic bacteria was actinobacterial, consisting of thirty-two (47%) out of 67 bacterial isolates. Ten (22.3%) out of 67 bacterial isolates remained unidentified and classified at the genus level. The signature of the 16S rRNA gene formed a distinct line in a phylogenetic tree showing that they might be new species of bacteria. One (5.2%) out of 67 bacterial isolates was still not well categorized. Forty-two out of 67 strains were candidates for antimicrobial activity tests. Nineteen (45%) out of 42 strains showed antimicrobial activity multidrug resistance (MDR); thirteen (68%) out of 19 strains were allocated to classes actinobacteria. Four (21%) out of 19 strains belonged to the Bacillaceae family, one (5.2%) out of 19 strains was the Paenibacillaceae family, and one (5.2%) out of 19 strains belonged to the Pseudomonadaceae family. The other twenty-three strains did not show inhibitory activities. Conclusions: Our research showed a high-level phylogenetic diversity and the intoxicating antibiotic activity of endophytic bacteria in the herb pharmacology of Iran.

Keywords: Antibacterial activity, endophytic bacteria, multidrug-resistant bacteria, whole genom sequencing

Procedia PDF Downloads 61
2473 Performance of CO₂/N₂ Foam in Enhanced Oil Recovery

Authors: Mohamed Hassan, Rahul Gajbhiye

Abstract:

The high mobility and gravity override of CO₂ gas can be minimized by generating the CO₂ foam with the aid of surfactant. However, CO₂ is unable to generate the foam/stable foam above its supercritical point (1100 psi, 31°C). These difficulties with CO₂ foam is overcome by adding N₂ in small fraction to enhance the foam generation of CO₂ at supercritical conditions. This study shows how the addition of small quantity of N₂ helps in generating the CO₂ foam and performance of the CO₂/N₂ mixture foam in enhanced oil recovery. To investigate the performance of CO₂/N₂ foam, core-flooding experiments were conducted at elevated pressure and temperature condition (higher than supercritical CO₂ - 50°C and 1500 psi) in sandstone cores. Fluorosurfactant (FS-51) was used as a foaming agent, and n-decane was used as model oil in all the experiments. The selection of foam quality and N₂ fraction was optimized based on foam generation and stability tests. Every gas or foam flooding was preceded by seawater injection to simulate the behavior in the reservoir. The results from the core-flood experiments showed that the CO₂ and CO₂/N₂ foam flooding recovered an additional 34-40% of Original Initial Oil in Place (OIIP) indicating that foam flooding succeeded in producing more oil than pure CO₂ gas injection processes. Additionally, the performance CO₂/N₂ foam injection was better than CO₂ foam injection.

Keywords: CO₂/N₂ foam, enhanced oil recovery (EOR), supercritical CO₂, sweep efficiency

Procedia PDF Downloads 256
2472 Isolation, Characterization, and Antibacterial Activity of Endophytic Bacteria from Iranian Medicinal Plants

Authors: Maryam Beiranvand, Sajad Yaghoubi

Abstract:

Background: Some microbes can colonize plants’ inner tissues without causing obvious damage and can even produce useful bioactive substances. In the present study, the diversity of the endophytic bacteria associated with medicinal plants from Iran was investigated by culturing techniques, molecular gene identification, as well as measuring them for antibacterial activity. Results: In the spring season from 2013 to 2014, 35 herb pharmacology samples were collected, sterilized, meshed, and then cultured on selective media culture. A total of 199 endophytic bacteria were successfully isolated from 35 tissue cultures of medical plants, and sixty-seven out of 199 bacterial isolates were subjected to identification by the 16S rRNA gene sequence analysis method. Based on the sequence similarity gene and phylogenetic analyses, these isolates were grouped into five classes, fourteen orders, seventeen families, twenty-one genera, and forty strains. The most abundant group of endophytic bacteria was actinobacterial, consisting of thirty-two (47%) out of 67 bacterial isolates. Ten (22.3%) out of 67 bacterial isolates remained unidentified and classified at the genus level. The signature of the 16S rRNA gene formed a distinct line in a phylogenetic tree showing that they might be new species of bacteria. One (5.2%) out of 67 bacterial isolates was still not well categorized. Forty-two out of 67 strains were candidates for antimicrobial activity tests. Nineteen (45%) out of 42 strains showed antimicrobial activity multidrug-resistance (MDR); thirteen (68%) out of 19 strains were allocated to classes actinobacteria. Four (21%) out of 19 strains belonged to the Bacillaceae family, one (5.2%) out of 19 strains was the Paenibacillaceae family, and one (5.2%) out of 19 strains belonged to the Pseudomonadaceae family. The other twenty-three strains did not show inhibitory activities. Conclusions: Our research showed a high-level phylogenetic diversity and the intoxicating antibiotic activity of endophytic bacteria in the herb pharmacology of Iran.

Keywords: medical plant, endophytic bacteria, antimicrobial activity, whole genome sequencing analysis

Procedia PDF Downloads 89
2471 Use of a New Multiplex Quantitative Polymerase Chain Reaction Based Assay for Simultaneous Detection of Neisseria Meningitidis, Escherichia Coli K1, Streptococcus agalactiae, and Streptococcus pneumoniae

Authors: Nastaran Hemmati, Farhad Nikkhahi, Amir Javadi, Sahar Eskandarion, Seyed Mahmuod Amin Marashi

Abstract:

Neisseria meningitidis, Escherichia coli K, Streptococcus agalactiae, and Streptococcus pneumoniae cause 90% of bacterial meningitis. Almost all infected people die or have irreversible neurological complications. Therefore, it is essential to have a diagnostic kit with the ability to quickly detect these fatal infections. The project involved 212 patients from whom cerebrospinal fluid samples were obtained. After total genome extraction and performing multiplex quantitative polymerase chain reaction (qPCR), the presence or absence of each infectious factor was determined by comparing with standard strains. The specificity, sensitivity, positive predictive value, and negative predictive value calculated were 100%, 92.9%, 50%, and 100%, respectively. So, due to the high specificity and sensitivity of the designed primers, they can be used instead of bacterial culture that takes at least 24 to 48 hours. The remarkable benefit of this method is associated with the speed (up to 3 hours) at which the procedure could be completed. It is also worth noting that this method can reduce the personnel unintentional errors which may occur in the laboratory. On the other hand, as this method simultaneously identifies four common factors that cause bacterial meningitis, it could be used as an auxiliary method diagnostic technique in laboratories particularly in cases of emergency medicine.

Keywords: cerebrospinal fluid, meningitis, quantitative polymerase chain reaction, simultaneous detection, diagnosis testing

Procedia PDF Downloads 85
2470 The Role of Asset Recovery in Combatting Organized Crime

Authors: Tamas Bezsenyi, Noemi Katona

Abstract:

Fighting Human Trafficking is a highly important issue worldwide that states need to deal with in international politics. In the EU combatting human trafficking is emphasized in international policy making and also in the work of international law enforcement, thus in the work of the EUROPOL. While the EU Directive against Human Trafficking prescribes how states should fight this transnational crime and also how victims should be assisted, the EUROPOL focuses on the effective cooperation between national law enforcement agencies. However, despite the aims of the common fight, human trafficking is regulated differently in the punitive law of various nation states. This deeply defines the work and possibilities of national law enforcement organizations. Among the manifold differences in this paper, we focus on the role of regulating asset recovery. We highlight that money, and the regulation and practice how the law enforcement deals with income gained from criminal activities, play essential role in combatting human trafficking. While doing research on the investigation of transnational human trafficking by the Hungarian Law Enforcement Agencies, we have found that the unfortunate regulation of asset recovery determines the lower effectiveness of eliminating criminal organizations. While i.e. in the Netherlands confiscation of property takes place in an early stage of the criminal procedure, in Hungary it can be conducted only if money laundering is also assumed. Our presentation builds on the comparison of criminal procedures which we analyse based on criminal files and interviews with coworkers of the National Bureau of Investigation.

Keywords: human trafficking, law enforcement, asset recovery, organized crime

Procedia PDF Downloads 258
2469 The Positive Effects of Social Distancing on Individual Work Outcomes in the Context of COVID-19

Authors: Fan Wei, Tang Yipeng

Abstract:

The outbreak of COVID-19 in early 2020 has been raging around the world, which has severely affected people's work and life. In today's post-pandemic era, although the pandemic has been effectively controlled, people still need to maintain social distancing at all times to prevent the further spread of the virus. Based on this, social distancing in the context of the pandemic has aroused widespread attention from scholars. At present, most studies exploring the influencing factors of social distancing are studying the negative impact of social distancing on the physical and mental state of special groups from the inter-individual level, and their more focus on the forced complete social distancing during the severe period of the pandemic. Few studies have focused on the impact of social distancing on working groups in the post-pandemic era from the within-individual level. In order to explore this problem, this paper constructs a cross-level moderating model based on resource conservation theory from the perspective of psychological resources. A total of 81 subjects were recruited to fill in the three-stage questionnaires each day for 10 working days, and 661valid questionnaires were finally obtained. Through the empirical tests, the following conclusions were finally obtained: (1) At the within-individual level, daily social distancing is positively correlated with the second day’s recovery, and the individual’s low sociability regulates the relationship between social distancing and recovery. The indirect effect of daily social distancing through recovery has positive relationship employees’ work engagement and work-goal progress only when the individual has low sociability. For individuals with high sociability, none of these paths are significant. (2) At the within-individual level, there is a significant relationship between individual's recovery and work engagement and work-goal progress, indicating that the recovery of resources can produce positive work outcomes. According to the results, this study believes that in the post-pandemic era, social distancing can not only effectively prevent and control the pandemic but also have positive impacts. Employees can use the time and energy originally saved for social activities through social distancing to invest in things that can provide resources and help them recover.

Keywords: social distancing, recovery, work engagement, work goal progress, sociability

Procedia PDF Downloads 101
2468 Bacterial Diversity in Vaginal Microbiota in Patients with Different Levels of Cervical Lesions Related to Human Papillomavirus Infection

Authors: Michelle S. Pereira, Analice C. Azevedo, Julliane D. Medeiros, Ana Claudia S. Martins, Didier S. Castellano-Filho, Claudio G. Diniz, Vania L. Silva

Abstract:

Vaginal microbiota is a complex ecosystem, composed by aerobic and anaerobic bacteria, living in a dynamic equilibrium. Lactobacillus spp. are predominant in vaginal ecosystem, and factors such as immunity and hormonal variations may lead to disruptions, resulting in proliferation of opportunistic pathogens. Bacterial vaginosis (BV) is a polymicrobial syndrome, caused by an increasing of anaerobic bacteria replacing Lactobacillus spp. Microorganisms such as Gardnerella vaginalis, Mycoplasma hominis, Mobiluncus spp., and Atopobium vaginae can be found in BV, which may also be associated to other infections such as by Human Papillomavirus (HPV). HPV is highly prevalent in sexually active women, and is considered a risk factor for development of cervical cancer. As long as few data is available on vaginal microbiota of women with HPV-associated cervical lesions, our objectives were to evaluate the diversity in vaginal ecosystem in these women. To all patients, clinical and socio-demographic data were collected after gynecological examination. This study was approved by the Ethics Committee from Federal University of Juiz de Fora, Minas Gerais, Brazil. Vaginal secretion and cervical scraping were collected. Gram-stained smears were evaluated to establish Nugent score for BV determination. Viral and bacterial DNA obtained was used as template for HPV genotyping (PCR) and bacterial fingerprint (REP-PCR). In total 31 patients were included (mean age 35 and 93.6% sexually active). The Nugent score showed that 38.7% were BV. From the medical records, Pap smear tests showed that 32.3% had low grade squamous epithelial lesion (LSIL), 29% had high grade squamous epithelial lesion (HSIL), 25.8% had atypical squamous cells of undetermined significance (ASC-US) and 12.9% with atypical squamous cells that would not exclude high-grade lesion (ASC-H). All participants were HPV+. HPV-16 was the most frequent (87.1%), followed by HPV-18 (61.3%). HPV-31, HPV-52 and HPV-58 were also detected. Coinfection HPV-16/HPV-18 was observed in 75%. In the 18-30 age group, HPV-16 was detected in 40%, and HPV-16/HPV-18 coinfection in 35%. HPV-16 was associated to 30% of ASC-H and 20% of HSIL patients. BV was observed in 50% of HPV-16+ participants and in 45% of HPV-16/HPV-18+. Fingerprints of bacterial communities showed clusters with low similarity suggesting high heterogeneity in vaginal microbiota within the sampled group. Overall, the data is worrisome once cervical-cancer highly risk-associated HPV-types were identified. The high microbial diversity observed may be related to the different levels of cellular lesions, and different physiological conditions of the participants (age, social behavior, education). Further prospective studies are needed to better address correlations and BV and microbial imbalance in vaginal ecosystems which would be related to the different cellular lesions in women with HPV infections. Supported by FAPEMIG, CNPq, CAPES, PPGCBIO/UFJF.

Keywords: human papillomavirus, bacterial vaginosis, bacterial diversity, cervical cancer

Procedia PDF Downloads 169
2467 Boosting the Agrophysiological Performance of Chickpea Crop (Cicer Arietinum L.) Under Low-P Soil Conditions with the Co-application of Bacterial Consortium (Phosphate Solubilizing Bacteria and Rhizobium) and P-Fertilizers (RP and TSP Forms)

Authors: Rym Saidi, Pape Alioune Ndiaye, Ibnyasser Ammar, Zineb Rchiad, Khalid Daoui, Issam Kadmiri Meftahi, Adnane Bargaz

Abstract:

Chickpea (Cicer arietinum L.) is an important leguminous crop grown worldwide and plays a significant role in humans’ dietary consumption. Alongside nitrogen (N), low phosphorus (P) availability within agricultural soils is one of the major factors limiting chickpea growth and productivity. The combined application of beneficial bacterial inoculants and Rock P-fertilizer could boost chickpea performance and productivity, increasing P-utilization efficiency and minimizing nutrient losses under P-deficiency conditions. A greenhouse experiment was conducted to evaluate the response of chickpeas to two P-fertilizer forms (RP and TSP) under N2-fixer and P-solubilizer consortium inoculation to improve biological N fixation and P nutrition under P-deficient conditions. Under inoculation, chickpea chlorophyll content and chlorophyll fluorescence (RP+I and TSP+I) were increased compared to uninoculated treatments. The RP+I treatment increased both shoot and root dry weights by 48,80% and 72,68%, respectively, compared to the uninoculated RP fertilized control. Indeed, the bacterial consortium contributed to enhancing root morphological traits (e.g., root volume, surface area, and diameter) of all inoculated treatments versus the uninoculated treatments. Furthermore, soil available P and root inorganic P were significantly improved in RP+I by 162,84% and 73,24%, respectively, compared to uninoculated RP control. Our research outcomes suggest that the co-inoculation of chickpeas with N2-fixing, and P-solubilizing bacteria improves biomass yield and nutrient uptake. Eventually, enhancing chickpea agrophysiological performance, especially in restricted P-availability conditions.

Keywords: chickpea, consortium, beneficial bacterial inoculants, phosphorus deficiency, rock p-fertilizer, nutrient uptake

Procedia PDF Downloads 29
2466 Spectrum of Causative Pathogens and Resistance Rates to Antibacterial Agents in Bacterial Prostatitis

Authors: kamran Bhatti

Abstract:

Objective: To evaluate spectrum and resistance rates to antibacterial agents in causative pathogens of bacterial prostatitis in patients from Southern Europe, the Middle East, and Africa. Materials: 1027 isolates from cultures of urine or expressed prostatic secretion, post-massage urine or seminal fluid, or urethral samples were considered. Results: Escherichia coli (32%) and Enterococcus spp. (21%) were the most common isolates. Other Gram-negative, Gram-positive, and atypical pathogens accounted for 22%, 20%, and 5%, respectively. Resistance was <15% for piperacillin/tazobactam and carbapenems (both Gram-negative and -positive pathogens); <5% for glycopeptides against Gram-positive; 7%, 14%, and 20% for aminoglycosides, fosfomycin, and macrolides against Gram-negative pathogens, respectively; 10% for amoxicillin/clavulanate against Gram-positive pathogens; <20% for cephalosporins and fluoroquinolones against to Gram-negative pathogens (higher against Gram-positive pathogens); none for macrolides against atypical pathogens, but 20% and 27% for fluoroquinolones and tetracyclines. In West Africa, the resistance rates were generally higher, although the highest rates for ampicillin, cephalosporins, and fluoroquinolones were observed in the Gulf area. Lower rates were observed in Southeastern Europe. Conclusions: Resistance to antibiotics is a health problem requiring local health authorities to combat this phenomenon. Knowledge of the spectrum of pathogens and antibiotic resistance rates is crucial to assess local guidelines for the treatment of prostatitis.

Keywords: enterobacteriacae; escherichia coli, gram-positive pathogens, antibiotic, bacterial prostatitis, resistance

Procedia PDF Downloads 39
2465 Iron Recovery from Red Mud as Zero-Valent Iron Metal Powder Using Direct Electrochemical Reduction Method

Authors: Franky Michael Hamonangan Siagian, Affan Maulana, Himawan Tri Bayu Murti Petrus, Widi Astuti

Abstract:

In this study, the feasibility of the direct electrowinning method was used to produce zero-valent iron from red mud. The bauxite residue sample came from the Tayan mine, Indonesia, which contains high hematite (Fe₂O₃). Before electrolysis, the samples were characterized by various analytical techniques (ICP-AES, SEM, XRD) to determine their chemical composition and mineralogy. The direct electrowinning method of red mud suspended in NaOH was introduced at low temperatures ranging from 30 - 110 °C. Variations of current density, red mud: NaOH ratio and temperature were carried out to determine the optimum operation of the direct electrowinning process. Cathode deposits and residues in electrochemical cells were analyzed using XRD, XRF, and SEM to determine the chemical composition and current recovery. The low-temperature electrolysis current efficiency on Redmud can reach 20% recovery at a current density of 920,945 A/m². The moderate performance of the process was investigated with red mud, which was attributed to the troublesome adsorption of red mud particles on the cathode, making the reduction far less efficient than that with hematite.

Keywords: red mud, electrochemical reduction, Iron production, hematite

Procedia PDF Downloads 49
2464 Hydrometallurgical Recovery of Cobalt, Nickel, Lithium, and Manganese from Spent Lithium-Ion Batteries

Authors: E. K. Hardwick, L. B. Siwela, J. G. Falconer, M. E. Mathibela, W. Rolfe

Abstract:

Lithium-ion battery (LiB) demand has increased with the advancement in technologies. The applications include electric vehicles, cell phones, laptops, and many more devices. Typical components of the cathodes include lithium, cobalt, nickel, and manganese. Recycling the spent LiBs is necessary to reduce the ecological footprint of their production and use and to have a secondary source of valuable metals. A hydrometallurgical method was investigated for the recovery of cobalt and nickel from LiB cathodes. The cathodes were leached using a chloride solution. Ion exchange was then used to recover the chloro-complexes of the metals. The aim of the research was to determine the efficiency of a chloride leach, as well as ion exchange operating capacities that can be achieved for LiB recycling, and to establish the optimal operating conditions (ideal pH, temperature, leachate and eluant, flowrate, and reagent concentrations) for the recovery of the cathode metals. It was found that the leaching of the cathodes could be hindered by the formation of refractory metal oxides of cathode components. A reducing agent was necessary to improve the leaching rate and efficiency. Leaching was achieved using various chloride-containing solutions. The chloro-complexes were absorbed by the ion exchange resin and eluted to produce concentrated cobalt, nickel, lithium, and manganese streams. Chromatographic separation of these elements was achieved. Further work is currently underway to determine the optimal operating conditions for the recovery by ion exchange.

Keywords: cobalt, ion exchange, leachate formation, lithium-ion batteries, manganese, nickel

Procedia PDF Downloads 74
2463 Evaluation of Biosurfactant Production by a New Strain Isolated from the Lagoon of Mar Chica Degrading Gasoline

Authors: Ikram Kamal, Mohamed Blaghen

Abstract:

Pollution caused by petroleum hydrocarbons in terrestrial and aquatic environment is a common phenomenon that causes significant ecological and social problems. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. Currently, the main application is for enhancement of oil recovery and hydrocarbon bioremediation due to their biodegradability and low critical micelle concentration (CMC). In this study we have investigated the potential of bacterial strains collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition a GC/MS was used to separate and identify different biosurfactants purified.

Keywords: petroleum hydrocarbons, biosurfactant, biodegradability, critical micelle concentration, lagoon Marchika

Procedia PDF Downloads 327
2462 Resilience-Vulnerability Interaction in the Context of Disasters and Complexity: Study Case in the Coastal Plain of Gulf of Mexico

Authors: Cesar Vazquez-Gonzalez, Sophie Avila-Foucat, Leonardo Ortiz-Lozano, Patricia Moreno-Casasola, Alejandro Granados-Barba

Abstract:

In the last twenty years, academic and scientific literature has been focused on understanding the processes and factors of coastal social-ecological systems vulnerability and resilience. Some scholars argue that resilience and vulnerability are isolated concepts due to their epistemological origin, while others note the existence of a strong resilience-vulnerability relationship. Here we present an ordinal logistic regression model based on the analytical framework about dynamic resilience-vulnerability interaction along adaptive cycle of complex systems and disasters process phases (during, recovery and learning). In this way, we demonstrate that 1) during the disturbance, absorptive capacity (resilience as a core of attributes) and external response capacity explain the probability of households capitals to diminish the damage, and exposure sets the thresholds about the amount of disturbance that households can absorb, 2) at recovery, absorptive capacity and external response capacity explain the probability of households capitals to recovery faster (resilience as an outcome) from damage, and 3) at learning, adaptive capacity (resilience as a core of attributes) explains the probability of households adaptation measures based on the enhancement of physical capital. As a result, during the disturbance phase, exposure has the greatest weight in the probability of capital’s damage, and households with absorptive and external response capacity elements absorbed the impact of floods in comparison with households without these elements. At the recovery phase, households with absorptive and external response capacity showed a faster recovery on their capital; however, the damage sets the thresholds of recovery time. More importantly, diversity in financial capital increases the probability of recovering other capital, but it becomes a liability so that the probability of recovering the household finances in a longer time increases. At learning-reorganizing phase, adaptation (modifications to the house) increases the probability of having less damage on physical capital; however, it is not very relevant. As conclusion, resilience is an outcome but also core of attributes that interacts with vulnerability along the adaptive cycle and disaster process phases. Absorptive capacity can diminish the damage experienced by floods; however, when exposure overcomes thresholds, both absorptive and external response capacity are not enough. In the same way, absorptive and external response capacity diminish the recovery time of capital, but the damage sets the thresholds in where households are not capable of recovering their capital.

Keywords: absorptive capacity, adaptive capacity, capital, floods, recovery-learning, social-ecological systems

Procedia PDF Downloads 109
2461 Nucleotide Diversity and Bacterial Endosymbionts of the Black Cherry Aphid Myzus cerasi (Fabricus, 1775) (Hemiptera: Aphididae) from Turkey

Authors: Burcu Inal, Irfan Kandemir

Abstract:

Sequences of mitochondrial cytochrome oxidase I (COI) gene of twenty-five Turkish and one Greek Myzus cerasi (Fabricus) (Hemiptera: Aphididae) in populations were collected from Prunus avium and Prunus cerasus. The partial coding region of COI studied is 605 bp for all the populations, from which 565 nucleotides were conserved, 40 were variable, 37 were singleton, and 3 sites were parsimony-informative. Four haplotypes were identified based on nucleotide substitutions, and the mean of intraspecific divergence was calculated to be 0.3%. Phylogenetic trees were constructed using Maximum Likelihood, Minimum Evolution, Neighbor-joining, and Unweighed Pair Group Method of Arithmetic Averages (UPGMA) and Myzus persicae (Sulzer) and Myzus borealis Ossiannilson were included as outgroups. The population of M. cerasi from Isparta diverged from the rest of the groups and formed a clade (Haplotype B) with Myzus borealis. The rest of the haplotype diversity includes Haplotype A and Haplotype C with individuals characterized as Myzus cerasi pruniavium and Haplotype D with Myzus cerasi cerasi. M. cerasi diverge into two subspecies and it must be reevaluated whether this pest is monophagous or oligophagous in terms of plant type dependence. The obligated endosymbiont Buchnera aphidicola was also found during this research, but no facultative symbionts could be found. It is expected further studies will be required for a complete barcoding and diversity of bacterial endosymbionts present.

Keywords: bacterial endosymbionts, barcoding, black cherry aphid, nucleotide diversity

Procedia PDF Downloads 146
2460 Rotational Energy Recovery System

Authors: Vijayendra Anil Menon, Ashwath Narayan Murali

Abstract:

The present day vehicles do not reuse the energy expelled in running the vehicle. The energy used to run the vehicle is expelled immediately.This has remained a constant for many decades. With all the vehicles running on non-renewable resources like fossil fuels, there is an urgent need to improve efficiency of the vehicles until a reliable replacement for fossil fuels is found.Our design is based on the concept of Kinetic energy recovery systems. Though our design lies in principle with the KERS, our design can be used in day-to-day driving. With our design, efficiency of vehicles increases and fuel conservation is possible thereby reducing the carbon footprint.

Keywords: KERS, Battery, Wheels, Efficiency.

Procedia PDF Downloads 355
2459 Potential of Enhancing Oil Recovery in Omani Oil Fields via Biopolymer Injection

Authors: Yahya Al-Wahaibi, Saif Al-Bahry, Abdulkadir Elshafie, Ali Al-Bemani, Sanket Joshi

Abstract:

Microbial enhanced oil recovery is one of the most economical and efficient methods for extending the life of production wells in a declining reservoir. There are a variety of metabolites produced by microorganisms that can be useful for oil recovery, like biopolymers-polysaccharides secreted by microbes, biodegradable thus environmentally friendly. Some fungi like Schizophyllum commune (a type of mushroom), and Aureobasidium pullulans are reported to produce biopolymers-schizophyllan and pullulan. Hence, we have procured a microbial strain (Schizophyllum commune) from American Type Culture Collection, which is reported for producing a biopolymer and also isolated several Omani strains of Aureobasidium pullulans from different samples. Studies were carried out for maintenance of the strains and primary screening of production media and environmental conditions for growth of S. commune and Omani A. pullulans isolates, for 30 days. The observed optimum growth and production temperature was ≤35 °C for S. commune and Omani A. pullulans isolates. Better growth was observed for both types of fungi under shaking conditions. The initial yield of lyophilized schizophyllan was ≥3.0 g/L, and the yield of pullulan was ≥0.5g/L. Both schizophyllan and pullulan were extracted in crude form and were partially identified by Fourier transform infrared spectroscopy (FTIR), which showed partial similarity in chemical structure with published biopolymers. The produced pullulan and schizophyllan increased the viscosity from 9-20 cp of the control media (without biopolymer) to 20 - 121.4 cp of the cell free broth at 0.1 s-1 shear rate at range of temperatures from 25–45 °C. Enhanced biopolymer production and its physicochemical and rheological properties under different environmental conditions (different temperatures, salt concentrations and wide range of pH), complete characterization and effects on oil recovery enhancement were also investigated in this study.

Keywords: Aureobasidium pullulans, biopolymer, oil recovery enhancement, Schizophyllum commune

Procedia PDF Downloads 362
2458 Bioactivity of Local Isolated Probiotic to Inhibiting Important Bacterial Pathogens in Aquaculture

Authors: Abhichet Nobhiwong, Jiraporn Rojtinnakorn, Udomluk Sompong

Abstract:

Six probiotic strains isolated from Chiang Mai and Chiang Rai province, Thailand; CR1-2, CM3-4, CM5-2, CR7-8, CM10-5 and CM10-8 were used to study their morphology and inhibition activity on three pathogenic bacteria; Aeromonas sp., Streptococcus sp. and Flavobacterium sp. that isolated from infected Nile tilapia. The agar well diffusion technique was applied for 24 and 48 hours incubation. Interestingly, some probiotics showed good inhibition activity both 24 and 48 hours on each 3 bacterial pathogens. The capable inhibiting Aeromonas sp. were CR1-2 and CR5-2 with inhibition diameters of 13.0 mm and 11.2 mm, respectively. For Streptococcus sp., effective probiotics were CR10-2 with inhibition diameters of 10.7 mm. Whereas for Flavobacterium sp., effective probiotics were CR5-2 with inhibition diameter of 9.7 mm. It can be concluded that these probiotics have potentiality to develop as the pathogens biocontrol products. These will be support for safety and organic aquaculture that which the most worthy for people health.

Keywords: probiotics, Aeromanas sp., Streptococcus sp., Flavobacterium sp.

Procedia PDF Downloads 251
2457 Semi-Automated Tracking of Vibrissal Movements in Free-Moving Rodents Captured by High-Speed Videos

Authors: Hyun June Kim, Tailong Shi, Seden Akdagli, Sam Most, Yuling Yan

Abstract:

Quantitative analysis of mouse whisker movement can be used to study functional recovery and regeneration of facial nerve after an injury. However, it is challenging to accurately track mouse whisker movements, and most whisker tracking methods require manual intervention, e.g. fixing the head of the mouse during a study. Here we describe a semi-automated image processing method that is applied to high-speed video recordings of free-moving mice to track whisker movements. We first track the head movement of a mouse by delineating the lower head contour frame-by-frame to locate and determine the orientation of its head. Then, a region of interest is identified for each frame, with subsequent application of the Hough transform to track individual whisker movements on each side of the head. Our approach is used to examine the functional recovery of damaged facial nerves in mice over a course of 21 days.

Keywords: mystacial macrovibrissae, whisker tracking, head tracking, facial nerve recovery

Procedia PDF Downloads 567
2456 Characterization of Enhanced Thermostable Polyhydroxyalkanoates

Authors: Ahmad Idi

Abstract:

The biosynthesis and properties of polyhydroxyalkanoate (PHA) are determined by the bacterial strain and the culture condition. Hence this study elucidates the structure and properties of PHA produced by a newly isolated strain of photosynthetic bacterium, Rhodobacter sphaeroides ADZ101 grown under the optimized culture condition. The properties of the accumulated PHA were determined via FTIR, NMR, TGA, and GCMS analyses. The results showed that acetate and ammonia chloride had the highest PHA accumulation with a ratio of 32.5 mM at neutral pH. The structural analyses showed that the polymer comprises both short and medium-chain length monomers ranging from C5, C13, C14, and C18, as well as the presence of novel PHA monomers. The thermal analysis revealed that the maximum temperature of decomposition occurred at 395°C and 454°C, indicating two major decomposition reactions. Thus this bacterial strain, optimized culture condition, and the abundance of novel monomers enhanced the thermostability of the accumulated PHA.

Keywords: bioplastic polyhydroxyalkanoates Rhodobacter sphaeroides ADZ101 thermostable PHA

Procedia PDF Downloads 118
2455 Pinch Analysis of Triple Pressure Reheat Supercritical Combined Cycle Power Plant

Authors: Sui Yan Wong, Keat Ping Yeoh, Chi Wai Hui

Abstract:

In this study, supercritical steam is introduced to Combined Cycle Power Plant (CCPP) in an attempt to further optimize energy recovery. Subcritical steam is commonly used in the CCPP, operating at maximum pressures around 150-160 bar. Supercritical steam is an alternative to increase heat recovery during vaporization period of water. The idea of improvement using supercritical steam is further examined with the use of exergy, pinch analysis and Aspen Plus simulation.

Keywords: exergy, pinch, combined cycle power plant, supercritical steam

Procedia PDF Downloads 117
2454 Gas Flotation Unit in Kuwait Oil Company Operations

Authors: Homoud Bourisli, Haitham Safar

Abstract:

Oil is one of main resources of energy in the world. As conventional oil is drying out, oil recovery is crucial to maintain the same level of oil production. Since water injection is one of the commonly used methods to increase and maintain pressure in oil wells, oil-water separation processes of the water associated with oil production for water injection oil recovery is very essential. Therefore, Gas Flotation Units are used for oil-water separation to be able to re-inject the treated water back into the wells to increase pressure.

Keywords: Kuwait oil company, dissolved gas flotation unit, induced gas flotation unit, oil-water separation

Procedia PDF Downloads 554
2453 Work-Home Interference and Emotional Exhaustion: The Role of Psychological Detachment, Relaxation and Technology-Assisted Supplemental Work

Authors: Nidhi S. Bisht

Abstract:

The study examines the role of work-home interference, on enhancing emotional exhaustion in the branch officers of private MFIs in India. Additionally, the moderating role of recovery experiences and technology-assisted supplemental work (TASW) were studied. With the increasing expectations to perform job related tasks at home, technology-assisted supplemental work (TASW) was hypothesized to positively moderate the relationship between work-home interference and emotional exhaustion. Further, it was expected that recovery experiences-psychological detachment, relaxation will help to recover and unwind from work and negatively moderate the relationship between work-home interference and emotional exhaustion. Results of SEM-analyses largely offered support for the hypotheses. These findings increase our insight in the processes leading to increased emotional exhaustion and suggest that employees can protect themselves from emotional exhaustion by keeping a tab on technology-assisted supplemental work and facilitating recovery experiences.

Keywords: emotional exhaustion, India, microfinance institutions (MFIs), work-home interference

Procedia PDF Downloads 196
2452 Iron Recovery from Red Mud As Zero-Valent Iron Metal Powder Using Direct Electrochemical Reduction Method

Authors: Franky Michael Hamonangan Siagian, Affan Maulana, Himawan Tri Bayu Murti Petrus, Panut Mulyono, Widi Astuti

Abstract:

In this study, the feasibility of the direct electrowinning method was used to produce zero-valent iron from red mud. The bauxite residue sample came from the Tayan mine, Indonesia, which contains high hematite (Fe₂O₃). Before electrolysis, the samples were characterized by various analytical techniques (ICP-AES, SEM, XRD) to determine their chemical composition and mineralogy. The direct electrowinning method of red mud suspended in NaOH was introduced at low temperatures ranging from 30 - 110 °C. Variations of current density, red mud: NaOH ratio and temperature were carried out to determine the optimum operation of the direct electrowinning process. Cathode deposits and residues in electrochemical cells were analyzed using XRD, XRF, and SEM to determine the chemical composition and current recovery. The low-temperature electrolysis current efficiency on Redmud can reach 20% recovery at a current density of 920,945 A/m². The moderate performance of the process was investigated with red mud, which was attributed to the troublesome adsorption of red mud particles on the cathode, making the reduction far less efficient than that with hematite.

Keywords: alumina, red mud, electrochemical reduction, iron production

Procedia PDF Downloads 53
2451 Energy Recovery Potential from Food Waste and Yard Waste in New York and Montréal

Authors: T. Malmir, U. Eicker

Abstract:

Landfilling of organic waste is still the predominant waste management method in the USA and Canada. Strategic plans for waste diversion from landfills are needed to increase material recovery and energy generation from waste. In this paper, we carried out a statistical survey on waste flow in the two cities New York and Montréal and estimated the energy recovery potential for each case. Data collection and analysis of the organic waste (food waste, yard waste, etc.), paper and cardboard, metal, glass, plastic, carton, textile, electronic products and other materials were done based on the reports published by the Department of Sanitation in New York and Service de l'Environnement in Montréal. In order to calculate the gas generation potential of organic waste, Buswell equation was used in which the molar mass of the elements was calculated based on their atomic weight and the amount of organic waste in New York and Montréal. Also, the higher and lower calorific value of the organic waste (solid base) and biogas (gas base) were calculated. According to the results, only 19% (598 kt) and 45% (415 kt) of New York and Montréal waste were diverted from landfills in 2017, respectively. The biogas generation potential of the generated food waste and yard waste amounted to 631 million m3 in New York and 173 million m3 in Montréal. The higher and lower calorific value of food waste were 3482 and 2792 GWh in New York and 441 and 354 GWh in Montréal, respectively. In case of yard waste, they were 816 and 681 GWh in New York and 636 and 531 GWh in Montréal, respectively. Considering the higher calorific value, this amount would mean a contribution of around 2.5% energy in these cities.

Keywords: energy recovery, organic waste, urban energy modelling with INSEL, waste flow

Procedia PDF Downloads 107
2450 Developing Novel Bacterial Primase (DnaG) Inhibitors

Authors: Shanakr Bhattarai, V. S. Tiwari, Barak Akabayov

Abstract:

The plummeting number of infections and death is due to the development of drug-resistant bacteria. In addition, the number of approved antibiotic drugs by the Food and Drug Administration (FDA) is insufficient. Therefore, developing new drugs and finding novel targets for central metabolic pathways in bacteria is urgently needed. One of the promising targets is DNA replication machinery which consists of many essential proteins and enzymes. DnaG primase is an essential enzyme and a central part of the DNA replication machinery. DnaG primase synthesizes short RNA primers that initiate the Okazaki fragments by the lagging strand DNA polymerase. Therefore, it is reasonable to assume that inhibition of primase activity will stall DNA replication and prevent bacterial proliferation. We did the expression and purification of eight different bacterial DnaGs (Mycobacterium tuberculosis(Mtb), Bacillus anthracis (Ba), Mycobacterium smegmatis (Msmeg), Francisella tularencis (Ft), Vibrio cholerae (Vc) and Yersinia pestis (Yp), Staphylococcus aureus(Saureus), Escherichia coli(Ecoli)) followed by the radioactive activity assay. After obtaining the pure and active protein DnaG, we synthesized the inhibitors for them. The inhibitors were divided into five different groups, each containing five molecules, and the cocktail inhibition assay was performed against each DnaGs. The groups of molecules inhibiting the DnaGs were further tested with individual molecules belonging to inhibiting groups. Each molecule showing inhibition was titrated against the corresponding DnaGs to find IC50. We got a molecule(VS167) that acted as broad inhibitors, inhibiting all eight DnaGs. Molecules VS180 and VS186 inhibited seven DnaGs (except Saureus). Similarly, two molecules(VS 173, VS176) inhibited five DnaGs (Mtb, Ba, Ft, Yp, Ecoli). VS261 inhibited four DnaGs (Mtb, Ba, Ft, Vc). MS50 inhibited Ba and Vc DnaGs. And some of the inhibitors inhibited only one DnaGs. Thus we found the broad and specific inhibitors for different bacterial DnaGs, and their Structure-activity analysis(SAR) was done. Further, We tried to explain the similarities among the enzyme DnaGs from different bacteria based on their inhibition pattern.

Keywords: DNA replication, DnaG, okazaki fragments, antibiotic drugs

Procedia PDF Downloads 72
2449 Isolation of a Bacterial Community with High Removal Efficiencies of the Insecticide Bendiocarb

Authors: Eusebio A. Jiménez-Arévalo, Deifilia Ahuatzi-Chacón, Juvencio Galíndez-Mayer, Cleotilde Juárez-Ramírez, Nora Ruiz-Ordaz

Abstract:

Bendiocarb is a known toxic xenobiotic that presents acute and chronic risks for freshwater invertebrates and estuarine and marine biota; thus, the treatment of water contaminated with the insecticide is of concern. In this paper, a bacterial community with the capacity to grow in bendiocarb as its sole carbon and nitrogen source was isolated by enrichment techniques in batch culture, from samples of a composting plant located in the northeast of Mexico City. Eight cultivable bacteria were isolated from the microbial community, by PCR amplification of 16 rDNA; Pseudoxanthomonas spadix (NC_016147.2, 98%), Ochrobacterium anthropi (NC_009668.1, 97%), Staphylococcus capitis (NZ_CP007601.1, 99%), Bosea thiooxidans. (NZ_LMAR01000067.1, 99%), Pseudomonas denitrificans. (NC_020829.1, 99%), Agromyces sp. (NZ_LMKQ01000001.1, 98%), Bacillus thuringiensis. (NC_022873.1, 97%), Pseudomonas alkylphenolia (NZ_CP009048.1, 98%). NCBI accession numbers and percentage of similarity are indicated in parentheses. These bacteria were regarded as the isolated species for having the best similarity matches. The ability to degrade bendiocarb by the immobilized bacterial community in a packed bed biofilm reactor, using as support volcanic stone fragments (tezontle), was evaluated. The reactor system was operated in batch using mineral salts medium and 30 mg/L of bendiocarb as carbon and nitrogen source. With this system, an overall removal efficiency (ηbend) rounding 90%, was reached.

Keywords: bendiocarb, biodegradation, biofilm reactor, carbamate insecticide

Procedia PDF Downloads 237