Performance of CO₂/N₂ Foam in Enhanced Oil Recovery

Authors : Mohamed Hassan, Rahul Gajbhiye

Abstract : The high mobility and gravity override of CO_2 gas can be minimized by generating the CO_2 foam with the aid of surfactant. However, CO_2 is unable to generate the foam/stable foam above its supercritical point (1100 psi, 31°C). These difficulties with CO_2 foam is overcome by adding N_2 in small fraction to enhance the foam generation of CO_2 at supercritical conditions. This study shows how the addition of small quantity of N_2 helps in generating the CO_2 foam and performance of the CO_2/N_2 mixture foam in enhanced oil recovery. To investigate the performance of CO_2/N_2 foam, core-flooding experiments were conducted at elevated pressure and temperature condition (higher than supercritical $CO_2 - 50°C$ and 1500 psi) in sandstone cores. Fluorosurfactant (FS-51) was used as a foaming agent, and n-decane was used as model oil in all the experiments. The selection of foam quality and N_2 fraction to simulate the behavior in the reservoir. The results from the core-flood experiments showed that the CO_2 and CO_2/N_2 foam flooding recovered an additional 34-40% of Original Initial Oil in Place (OIIP) indicating that foam flooding succeeded in producing more oil than pure CO_2 gas injection processes. Additionally, the performance CO_2/N_2 foam injection was better than CO_2 foam injection.

Keywords : CO₂/N₂ foam, enhanced oil recovery (EOR), supercritical CO₂, sweep efficiency

Conference Title : ICSRD 2020 : International Conference on Scientific Research and Development

Conference Location : Chicago, United States

Conference Dates : December 12-13, 2020