Search results for: magnetic aqueous substrate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3438

Search results for: magnetic aqueous substrate

318 Antimicrobial Properties of SEBS Compounds with Copper Microparticles

Authors: Vanda Ferreira Ribeiro, Daiane Tomacheski, Douglas Naue Simões, Michele Pitto, Ruth Marlene Campomanes Santana

Abstract:

Indoor environments, such as car cabins and public transportation vehicles are places where users are subject to air quality. Microorganisms (bacteria, fungi, yeasts) enter these environments through windows, ventilation systems and may use the organic particles present as a growth substrate. In addition, atmospheric pollutants can act as potential carbon and nitrogen sources for some microorganisms. Compounds base SEBS copolymers, poly(styrene-b-(ethylene-co-butylene)-b-styrene, are a class of thermoplastic elastomers (TPEs), fully recyclable and largely used in automotive parts. Metals, such as cooper and silver, have biocidal activities and the production of the SEBS compounds by melting blending with these agents can be a good option for producing compounds for use in plastic parts of ventilation systems and automotive air-conditioning, in order to minimize the problems caused by growth of pathogenic microorganisms. In this sense, the aim of this work was to evaluate the effect of copper microparticles as antimicrobial agent in compositions based on SEBS/PP/oil/calcite. Copper microparticles were used in weight proportion of 0%, 1%, 2% and 4%. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The processing parameters were 300 rpm of screw rotation rate, with a temperature profile between 150 to 190°C. SEBS based TPE compounds were injection molded. The compounds emission were characterized by gravimetric fogging test. Compounds were characterized by physical (density and staining by contact), mechanical (hardness and tension properties) and rheological properties (melt volume rate – MVR). Antibacterial properties were evaluated against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) strains. To avaluate the abilities toward the fungi have been chosen Aspergillus niger (A. niger), Candida albicans (C. albicans), Cladosporium cladosporioides (C. cladosporioides) and Penicillium chrysogenum (P. chrysogenum). The results of biological tests showed a reduction on bacteria in up to 88% in E.coli and up to 93% in S. aureus. The tests with fungi showed no conclusive results because the sample without copper also demonstrated inhibition of the development of these microorganisms. The copper addition did not cause significant variations in mechanical properties, in the MVR and the emission behavior of the compounds. The density increases with the increment of copper in compounds.

Keywords: air conditioner, antimicrobial, cooper, SEBS

Procedia PDF Downloads 263
317 Optical Characterization of Transition Metal Ion Doped ZnO Microspheres Synthesized via Laser Ablation in Air

Authors: Parvathy Anitha, Nilesh J. Vasa, M. S. Ramachandra Rao

Abstract:

ZnO is a semiconducting material with a direct wide band gap of 3.37 eV and a large exciton binding energy of 60 meV at room temperature. Microspheres with high sphericity and symmetry exhibit unique functionalities which makes them excellent omnidirectional optical resonators. Hence there is an advent interest in fabrication of single crystalline semiconductor microspheres especially magnetic ZnO microspheres, as ZnO is a promising material for semiconductor device applications. Also, ZnO is non-toxic and biocompatible, implying it is a potential material for biomedical applications. Room temperature Photoluminescence (PL) spectra of the fabricated ZnO microspheres were measured, at an excitation wavelength of 325 nm. The ultraviolet (UV) luminescence observed is attributed to the room-temperature free exciton related near-band-edge (NBE) emission in ZnO. Besides the NBE luminescence, weak and broad visible luminescence (~560nm) was also observed. This broad emission band in the visible range is associated with oxygen vacancies related to structural defects. In transition metal (TM) ion-doped ZnO, 3d levels emissions of TM ions will modify the inherent characteristic emissions of ZnO. A micron-sized ZnO crystal has generally a wurtzite structure with a natural hexagonal cross section, which will serve as a WGM (whispering gallery mode) lasing micro cavity due to its high refractive index (~2.2). But hexagonal cavities suffers more optical loss at their corners in comparison to spherical structures; hence spheres may be a better candidate to achieve effective light confinement. In our study, highly smooth spherical shaped micro particles with different diameters ranging from ~4 to 6 μm were grown on different substrates. SEM (Scanning Electron Microscopy) and AFM (Atomic Force Microscopy) images show the presence of uniform smooth surfaced spheres. Raman scattering measurements from the fabricated samples at 488 nm light excitation provide convincing supports for the wurtzite structure of the prepared ZnO microspheres. WGM lasing studies from TM-doped ZnO microparticles are in progress.

Keywords: laser ablation, microcavity, photoluminescence, ZnO microsphere

Procedia PDF Downloads 201
316 Kinetic, Equilibrium and Thermodynamic Studies of the Adsorption of Crystal Violet Dye Using Groundnut Hulls

Authors: Olumuyiwa Ayoola Kokapi, Olugbenga Solomon Bello

Abstract:

Dyes are organic compounds with complex aromatic molecular structure that resulted in fast colour on a substance. Dye effluent found in wastewater generated from the dyeing industries is one of the greatest contributors to water pollution. Groundnut hull (GH) is an agricultural material that constitutes waste in the environment. Environmental contamination by hazardous organic chemicals is an urgent problem, which is partially solved through adsorption technologies. The choice of groundnut hull was promised on the understanding that some materials of agricultural origin have shown potentials to act as Adsorbate for hazardous organic chemicals. The aim of this research is to evaluate the potential of groundnut hull to adsorb Crystal violet dye through kinetic, isotherm and thermodynamic studies. The prepared groundnut hulls was characterized using Brunauer, Emmett and Teller (BET), Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). Operational parameters such as contact time, initial dye concentration, pH, and effect of temperature were studied. Equilibrium time for the adsorption process was attained in 80 minutes. Adsorption isotherms used to test the adsorption data were Langmuir and Freundlich isotherms model. Thermodynamic parameters such as ∆G°, ∆H°, and ∆S° of the adsorption processes were determined. The results showed that the uptake of dye by groundnut hulls occurred at a faster rate, corresponding to an increase in adsorption capacity at equilibrium time of 80 min from 0.78 to 4.45 mg/g and 0.77 to 4.45mg/g with an increase in the initial dye concentration from 10 to 50 mg/L for pH 3.0 and 8.0 respectively. High regression values obtained for pseudo-second-order kinetic model, sum of square error (SSE%) values along with strong agreement between experimental and calculated values of qe proved that pseudo second-order kinetic model fitted more than pseudo first-order kinetic model. The result of Langmuir and Freundlich model showed that the adsorption data fit the Langmuir model more than the Freundlich model. Thermodynamic study demonstrated the feasibility, spontaneous and endothermic nature of the adsorption process due to negative values of free energy change (∆G) at all temperatures and positive value of enthalpy change (∆H) respectively. The positive values of ∆S showed that there was increased disorderliness and randomness at the solid/solution interface of crystal violet dye and groundnut hulls. The present investigation showed that, groundnut hulls (GH) is a good low-cost alternative adsorbent for the removal of Crystal Violet (CV) dye from aqueous solution.

Keywords: adsorption, crystal violet dye, groundnut halls, kinetics

Procedia PDF Downloads 356
315 Alteration Quartz-Kfeldspar-Apatite-Molybdenite at B Anomaly Prospection with Artificial Neural Network to Determining Molydenite Economic Deposits in Malala District, Western Sulawesi

Authors: Ahmad Lutfi, Nikolas Dhega

Abstract:

The Malala deposit in northwest Sulawesi is the only known porphyry molybdenum and the only source for rhenium, occurrence in Indonesia. The neural network method produces results that correspond very closely to those of the knowledge-based fuzzy logic method and weights of evidence method. This method required data of solid geology, regional faults, airborne magnetic, gamma-ray survey data and GIS data. This interpretation of the network output fits with the intuitive notion that a prospective area has characteristics that closely resemble areas known to contain mineral deposits. Contrasts with the weights of evidence and fuzzy logic methods, where, for a given grid location, each input-parameter value automatically results in an increase in the prospective estimated. Malala District indicated molybdenum anomalies in stream sediments from in excess of 15 km2 were obtained, including the Takudan Fault as most prominent structure with striking 40̊ to 60̊ over a distance of about 30 km and in most places weakly at anomaly B, developed over an area of 4 km2, with a ‘shell’ up to 50 m thick at the intrusive contact with minor mineralization occurring in the Tinombo Formation. Series of NW trending, steeply dipping fracture zones, named the East Zone has an estimated resource of 100 Mt at 0.14% MoS2 and minimum target of 150 Mt 0.25%. The Malala porphyries occur as stocks and dykes with predominantly granitic, with fluorine-poor class of molybdenum deposits and belongs to the plutonic sub-type. Unidirectional solidification textures consisting of subparallel, crenulated layers of quartz that area separated by layers of intrusive material textures. The deuteric nature of the molybdenum mineralization and the dominance of carbonate alteration.The nature of the Stage I with alteration barren quartz K‐feldspar; and Stage II with alteration quartz‐K‐feldspar‐apatite-molybdenite veins combined with the presence of disseminated molybdenite with primary biotite in the host intrusive.

Keywords: molybdenite, Malala, porphyries, anomaly B

Procedia PDF Downloads 138
314 Development of a Framework for Assessment of Market Penetration of Oil Sands Energy Technologies in Mining Sector

Authors: Saeidreza Radpour, Md. Ahiduzzaman, Amit Kumar

Abstract:

Alberta’s mining sector consumed 871.3 PJ in 2012, which is 67.1% of the energy consumed in the industry sector and about 40% of all the energy consumed in the province of Alberta. Natural gas, petroleum products, and electricity supplied 55.9%, 20.8%, and 7.7%, respectively, of the total energy use in this sector. Oil sands mining and upgrading to crude oil make up most of the mining energy sector activities in Alberta. Crude oil is produced from the oil sands either by in situ methods or by the mining and extraction of bitumen from oil sands ore. In this research, the factors affecting oil sands production have been assessed and a framework has been developed for market penetration of new efficient technologies in this sector. Oil sands production amount is a complex function of many different factors, broadly categorized into technical, economic, political, and global clusters. The results of developed and implemented statistical analysis in this research show that the importance of key factors affecting on oil sands production in Alberta is ranked as: Global energy consumption (94% consistency), Global crude oil price (86% consistency), and Crude oil export (80% consistency). A framework for modeling oil sands energy technologies’ market penetration (OSETMP) has been developed to cover related technical, economic and environmental factors in this sector. It has been assumed that the impact of political and social constraints is reflected in the model by changes of global oil price or crude oil price in Canada. The market share of novel in situ mining technologies with low energy and water use are assessed and calculated in the market penetration framework include: 1) Partial upgrading, 2) Liquid addition to steam to enhance recovery (LASER), 3) Solvent-assisted process (SAP), also called solvent-cyclic steam-assisted gravity drainage (SC-SAGD), 4) Cyclic solvent, 5) Heated solvent, 6) Wedge well, 7) Enhanced modified steam and Gas push (emsagp), 8) Electro-thermal dynamic stripping process (ET-DSP), 9) Harris electro-magnetic heating applications (EMHA), 10) Paraffin froth separation. The results of the study will show the penetration profile of these technologies over a long term planning horizon.

Keywords: appliances efficiency improvement, diffusion models, market penetration, residential sector

Procedia PDF Downloads 317
313 Ionic Liquids-Polymer Nanoparticle Systems as Breakthrough Tools to Improve the Leprosy Treatment

Authors: A. Julio, R. Caparica, S. Costa Lima, S. Reis, J. G. Costa, P. Fonte, T. Santos De Almeida

Abstract:

The Mycobacterium leprae causes a chronic and infectious disease called leprosy, which the most common symptoms are peripheral neuropathy and deformation of several parts of the body. The pharmacological treatment of leprosy is a combined therapy with three different drugs, rifampicin, clofazimine, and dapsone. However, clofazimine and dapsone have poor solubility in water and also low bioavailability. Thus, it is crucial to develop strategies to overcome such drawbacks. The use of ionic liquids (ILs) may be a strategy to overcome the low solubility since they have been used as solubility promoters. ILs are salts, liquid below 100 ºC or even at room temperature, that may be placed in water, oils or hydroalcoholic solutions. Another approach may be the encapsulation of drugs into polymeric nanoparticles, which improves their bioavailability. In this study, two different classes of ILs were used, the imidazole- and the choline-based ionic liquids, as solubility enhancers of the poorly soluble antileprotic drugs. Thus, after the solubility studies, it was developed IL-PLGA nanoparticles hybrid systems to deliver such drugs. First of all, the solubility studies of clofazimine and dapsone were performed in water and in water: IL mixtures, at ILs concentrations where cell viability is maintained, at room temperature for 72 hours. For both drugs, it was observed an improvement on the drug solubility and [Cho][Phe] showed to be the best solubility enhancer, especially for clofazimine, where it was observed a 10-fold improvement. Later, it was produced nanoparticles, with a polymeric matrix of poly(lactic-co-glycolic acid) (PLGA) 75:25, by a modified solvent-evaporation W/O/W double emulsion technique in the presence of [Cho][Phe]. Thus, the inner phase was an aqueous solution of 0.2 % (v/v) of the above IL with each drug to its maximum solubility determined on the previous study. After the production, the nanosystem hybrid was physicochemically characterized. The produced nanoparticles had a diameter of around 580 nm and 640 nm, for clofazimine and dapsone, respectively. Regarding the polydispersity index, it was in agreement of the recommended value of this parameter for drug delivery systems (around 0.3). The association efficiency (AE) of the developed hybrid nanosystems demonstrated promising AE values for both drugs, given their low solubility (64.0 ± 4.0 % for clofazimine and 58.6 ± 10.0 % for dapsone), that prospects the capacity of these delivery systems to enhance the bioavailability and loading of clofazimine and dapsone. Overall, the study achievement may signify an upgrading of the patient’s quality of life, since it may mean a change in the therapeutic scheme, not requiring doses of drug so high to obtain a therapeutic effect. The authors would like to thank Fundação para a Ciência e a Tecnologia, Portugal (FCT/MCTES (PIDDAC), UID/DTP/04567/2016-CBIOS/PRUID/BI2/2018).

Keywords: ionic liquids, ionic liquids-PLGA nanoparticles hybrid systems, leprosy treatment, solubility

Procedia PDF Downloads 129
312 Polyvinyl Alcohol Incorporated with Hibiscus Extract Microcapsules as Combined Active and Intelligent Composite Film for Meat Preservation: Antimicrobial, Antioxidant, and Physicochemical Investigations

Authors: Ahmed F. Ghanem, Marwa I. Wahba, Asmaa N. El-Dein, Mohamed A. EL-Raey, Ghada E. A. Awad

Abstract:

Numerous attempts are being performed in order to formulate suitable packaging materials for the meat products. However, to the best of our knowledge, the incorporation of the free hibiscus extract or its microcapsules in the pure polyvinyl alcohol (PVA) matrix as packaging materials for the meats is seldom reported. Therefore, this study aims at the protection of the aqueous crude extract of the hibiscus flowers utilizing the spry drying encapsulation technique. Results of the Fourier transform infrared (FTIR), the scanning electron microscope (SEM), and the particle size analyzer confirmed the successful formation of the assembled capsules via strong interactions, the spherical rough microparticles, and the particle size of ~ 235 nm, respectively. Also, the obtained microcapsules enjoy higher thermal stability than the free extract. Then, the obtained spray-dried particles were incorporated into the casting solution of the pure PVA film with a concentration of 10 wt. %. The segregated free-standing composite films were investigated, compared to the neat matrix, with several characterization techniques such as FTIR, SEM, thermal gravimetric analysis (TGA), mechanical tester, contact angle, water vapor permeability, and oxygen transmission. The results demonstrated variations in the physicochemical properties of the PVA film after the inclusion of the free and the extract microcapsules. Moreover, biological studies emphasized the biocidal potential of the hybrid films against the microorganisms contaminating the meat. Specifically, the microcapsules imparted not only antimicrobial but also antioxidant activities to the PVA matrix. Application of the prepared films on the real meat samples displayed a low bacterial growth with a slight increase in the pH over the storage time which continued up to 10 days at 4 oC, as further evidence to the meat safety. Moreover, the colors of the films did not significantly changed except after 21 days indicating the spoilage of the meat samples. No doubt, the dual-functional of the prepared composite films pave the way towards combined active and smart food packaging applications. This would play a vital role in the food hygiene, including also the quality control and the assurance.

Keywords: PVA, hibiscus, extraction, encapsulation, active packaging, smart and intelligent packaging, meat spoilage

Procedia PDF Downloads 74
311 Acoustic Radiation Pressure Detaches Myoblast from Culture Substrate by Assistance of Serum-Free Medium

Authors: Yuta Kurashina, Chikahiro Imashiro, Kiyoshi Ohnuma, Kenjiro Takemura

Abstract:

Research objectives and goals: To realize clinical applications of regenerative medicine, a mass cell culture is highly required. In a conventional cell culture, trypsinization was employed for cell detachment. However, trypsinization causes proliferation decrease due to injury of cell membrane. In order to detach cells using an enzyme-free method, therefore, this study proposes a novel cell detachment method capable of detaching adherent cells using acoustic radiation pressure exposed to the dish by the assistance of serum-free medium with ITS liquid medium supplement. Methods used In order to generate acoustic radiation pressure, a piezoelectric ceramic plate was glued on a glass plate to configure an ultrasonic transducer. The glass plate and a chamber wall compose a chamber in which a culture dish is placed in glycerol. Glycerol transmits acoustic radiation pressure to adhered cells on the culture dish. To excite a resonance vibration of transducer, AC signal with 29-31 kHz (swept) and 150, 300, and 450 V was input to the transducer for 5 min. As a pretreatment to reduce cell adhesivity, serum-free medium with ITS liquid medium supplement was spread to the culture dish before exposed to acoustic radiation pressure. To evaluate the proposed cell detachment method, C2C12 myoblast cells (8.0 × 104 cells) were cultured on a ø35 culture dish for 48 hr, and then the medium was replaced with the serum-free medium with ITS liquid medium supplement for 24 hr. We replaced the medium with phosphate buffered saline and incubated cells for 10 min. After that, cells were exposed to the acoustic radiation pressure for 5 min. We also collected cells by using trypsinization as control. Cells collected by the proposed method and trypsinization were respectively reseeded in ø60 culture dishes and cultured for 24 hr. Then, the number of proliferated cells was counted. Results achieved: By a phase contrast microscope imaging, shrink of lamellipodia was observed before exposed to acoustic radiation pressure, and no cells remained on the culture dish after the exposed of acoustic radiation pressure. This result suggests that serum-free medium with ITS liquid inhibits adhesivity of cells and acoustic radiation pressure detaches cells from the dish. Moreover, the number of proliferated cells 24 hr after collected by the proposed method with 150 and 300 V is the same or more than that by trypsinization, i.e., cells were proliferated 15% higher with the proposed method using acoustic radiation pressure than with the traditional cell collecting method of trypsinization. These results proved that cells were able to be collected by using the appropriate exposure of acoustic radiation pressure. Conclusions: This study proposed a cell detachment method using acoustic radiation pressure by the assistance of serum-free medium. The proposed method provides an enzyme-free cell detachment method so that it may be used in future clinical applications instead of trypsinization.

Keywords: acoustic radiation pressure, cell detachment, enzyme free, ultrasonic transducer

Procedia PDF Downloads 242
310 Taraxacum Officinale (Dandelion) and Its Phytochemical Approach to Malignant Diseases

Authors: Angel Champion

Abstract:

Chemotherapy and radiation use an acidified approach to induce apoptosis, which only kills mature cancer cells while resulting in gene and cell damage with significant levels of toxicity in tumor-affected tissues and organs. The acid approach, where the cells exterminated are not differentiated, induces the disappearance of white blood cells from the blood. This increases susceptibility to infection in severe forms of cancer spread. However, chemotherapy and radiation cannot kill cancer stem cells that metastasize, being the leading cause of 98% of cancer fatalities. With over 12 million new cancer cases symptomatic each year, including common malignancies such as Hepatocellular Carcinoma (HCC), this study aims to assess the bioactive constituents and phytochemical composition of Taraxacum Officinale (Dandelion). This analysis enables pharmaceutical quality and potency to be applied to studies on cancer cell proliferation and apoptosis. A phytochemical screening is carried out to identify the antioxidant components of Dandelion root, stem, and flower extract. The constituents tested for are phlorotannins, carbohydrates, glycosides, saponins, flavonoids, alkaloids, sterols, triterpenes, and anthraquinone glycosides. To conserve the existing phenolic compounds, a portion of the constituent tests will be examined with an acid, alcohol, or aqueous solvent. As a result, the qualitative and quantitative variations within the Dandelion extract that measure uniform effective potency are vital to the conformity for producing medicinal products. These medicines will be constructed with a consistent, uniform composition that physicians can use to control and effectively eradicate malignant diseases safely. Taraxacum Officinale's phytochemical composition comprises a highly-graded potency due to present bioactive contents that will essentially drive out malignant disease within the human body. Its high potency rate is powerful enough to eliminate both mature cancer cells and cancer stem cells without the cell and gene damage induced by chemotherapy and radiation. Correspondingly, the high margins of cancer mortality on a global scale are mitigated. This remarkable contribution to modern therapeutics will essentially optimize the margins of natural products and their derivatives, which account for 50% of pharmaceuticals in modern therapeutics, while preventing the adverse effects of radiation and chemotherapy drugs.

Keywords: antioxidant, apoptosis, metastasize, phytochemical, proliferation, potency

Procedia PDF Downloads 56
309 Green Synthesis of Nanosilver-Loaded Hydrogel Nanocomposites for Antibacterial Application

Authors: D. Berdous, H. Ferfera-Harrar

Abstract:

Superabsorbent polymers (SAPs) or hydrogels with three-dimensional hydrophilic network structure are high-performance water absorbent and retention materials. The in situ synthesis of metal nanoparticles within polymeric network as antibacterial agents for bio-applications is an approach that takes advantage of the existing free-space into networks, which not only acts as a template for nucleation of nanoparticles, but also provides long term stability and reduces their toxicity by delaying their oxidation and release. In this work, SAP/nanosilver nanocomposites were successfully developed by a unique green process at room temperature, which involves in situ formation of silver nanoparticles (AgNPs) within hydrogels as a template. The aim of this study is to investigate whether these AgNPs-loaded hydrogels are potential candidates for antimicrobial applications. Firstly, the superabsorbents were prepared through radical copolymerization via grafting and crosslinking of acrylamide (AAm) onto chitosan backbone (Cs) using potassium persulfate as initiator and N,N’-methylenebisacrylamide as the crosslinker. Then, they were hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. Lastly, the AgNPs were biosynthesized and entrapped into hydrogels through a simple, eco-friendly and cost-effective method using aqueous silver nitrate as a silver precursor and curcuma longa tuber-powder extracts as both reducing and stabilizing agent. The formed superabsorbents nanocomposites (Cs-g-PAAm)/AgNPs were characterized by X-ray Diffraction (XRD), UV-visible Spectroscopy, Attenuated Total reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Inductively Coupled Plasma (ICP), and Thermogravimetric Analysis (TGA). Microscopic surface structure analyzed by Transmission Electron Microscopy (TEM) has showed spherical shapes of AgNPs with size in the range of 3-15 nm. The extent of nanosilver loading was decreased by increasing Cs content into network. The silver-loaded hydrogel was thermally more stable than the unloaded dry hydrogel counterpart. The swelling equilibrium degree (Q) and centrifuge retention capacity (CRC) in deionized water were affected by both contents of Cs and the entrapped AgNPs. The nanosilver-embedded hydrogels exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria. These comprehensive results suggest that the elaborated AgNPs-loaded nanomaterials could be used to produce valuable wound dressing.

Keywords: antibacterial activity, nanocomposites, silver nanoparticles, superabsorbent Hydrogel

Procedia PDF Downloads 224
308 Study of Mechanical Properties of Large Scale Flexible Silicon Solar Modules on the Various Substrates

Authors: M. Maleczek, Leszek Bogdan, Kazimierz Drabczyk, Agnieszka Iwan

Abstract:

Crystalline silicon (Si) solar cells are the main product in the market among the various photovoltaic technologies concerning such advantages as: material richness, high carrier mobilities, broad spectral absorption range and established technology. However, photovoltaic technology on the stiff substrates are heavier, more fragile and less cost-effective than devices on the flexible substrates to be applied in special applications. The main goal of our work was to incorporate silicon solar cells into various fabric, without any change of the electrical and mechanical parameters of devices. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management. In our work, the polyamide or polyester fabrics were used as a flexible substrate in the created devices. Applied fabrics differ in tensile and tear strength. All investigated polyamide fabrics are resistant to weathering and UV, while polyester ones is resistant to ozone, water and ageing. The examined fabrics are tight at 100 cm water per 2 hours. In our work, commercial silicon solar cells with the size 156 × 156 mm were cut into nine parts (called single solar cells) by diamond saw and laser. Gap and edge after cutting of solar cells were checked by transmission electron microscope (TEM) to study morphology and quality of the prepared single solar cells. Modules with the size of 160 × 70 cm (containing about 80 single solar cells) were created and investigated by electrical and mechanical methods. Weight of constructed module is about 1.9 kg. Three types of solar cell architectures such as: -fabric/EVA/Si solar cell/EVA/film for lamination, -backsheet PET/EVA/Si solar cell/EVA/film for lamination, -fabric/EVA/Si solar cell/EVA/tempered glass, were investigated taking into consideration type of fabric and lamination process together with the size of solar cells. In investigated devices EVA, it is ethylene-vinyl acetate, while PET - polyethylene terephthalate. Depend on the lamination process and compatibility of textile with solar cell an efficiency of investigated flexible silicon solar cells was in the range of 9.44-16.64 %. Multi folding and unfolding of flexible module has no impact on its efficiency as was detected by Instron equipment. Power (P) of constructed solar module is 30 W, while voltage about 36 V. Finally, solar panel contains five modules with the polyamide fabric and tempered glass will be produced commercially for different applications (dual use).

Keywords: flexible devices, mechanical properties, silicon solar cells, textiles

Procedia PDF Downloads 161
307 Polypeptide Modified Carbon Nanotubes – Mediated GFP Gene Transfection for H1299 Cells and Toxicity Assessment

Authors: Pei-Ying Lo, Jing-Hao Ciou, Kai-Cheng Yang, Jia-Huei Zheng, Shih-Hsiang Huang, Kuen-Chan Lee, Er-Chieh Cho

Abstract:

As-produced CNTs are insoluble in all organic solvents and aqueous solutions have imposed limitations to the use of CNTs. Therefore, how to debundle carbon nanotubes and to modify them for further uses is an important issue. There are several methods for the dispersion of CNTs in water using covalent attachment of hydrophilic groups to the surface of tubes. These methods, however, alter the electronic structure of the nanotubes by disrupting the network of sp2 hybridized carbons. In order to keep the nanotubes’ intrinsic mechanical and electrical properties intact, non-covalent interactions are increasingly being explored as an alternative route for dispersion. Apart from conventional surfactants such as sodium dodecylsulfate (SDS) or sodium dodecylbenzenesulfonate (SDBS) which are highly effective in dispersing CNTs, biopolymers have received much attention as dispersing agents due to the anticipated biocompatibility of the dispersed CNTs. Also, The pyrenyl group is known to interact strongly with the basal plane of graphene via π-stacking. In this study, a highly re-dispersible biopolymer is reported for the synthesis of pyrene-modified poly-L-lysine (PBPL) and poly(D-Glu, D-Lys) (PGLP). To provide the evidence of the safety of the PBPL/CNT & PGLP/CNT materials we use in this study, H1299 and HCT116 cells were incubated with PBPL/CNT & PGLP/CNT materials for toxicity analysis, MTS assays. The results from MTS assays indicated that no significant cellular toxicity was shown in H1299 and HCT116 cells. Furthermore, the fluorescence marker fluorescein isothiocyanate (FITC) was added to PBPL & PGLP dispersions. From the fluorescent measurements showed that the chemical functionalisation of the PBPL/CNT & PGLP/CNT conjugates with the fluorescence marker were successful. The fluorescent PBPL/CNT & PGLP/CNT conjugates could find application in medical imaging. In the next step, the GFP gene is immobilized onto PBPL/CNT conjugates by introducing electrostatic interaction. GFP-transfected cells that emitted fluorescence were imaged and counted under a fluorescence microscope. Due to the unique biocompatibility of PBPL modified CNTs, the GFP gene could be transported into H1299 cells without using antibodies. The applicability of such soluble and chemically functionalised polypeptide/CNT conjugates in biomedicine is currently investigated. We expect that this polypeptide/CNT system will be a safe and multi-functional nanomedical delivery platform and contribute to future medical therapy.

Keywords: carbon nanotube, nanotoxicology, GFP transfection, polypeptide/CNT hybrids

Procedia PDF Downloads 325
306 Water Quality in Buyuk Menderes Graben, Turkey

Authors: Tugbanur Ozen Balaban, Gultekin Tarcan, Unsal Gemici, Mumtaz Colak, I. Hakki Karamanderesi

Abstract:

Buyuk Menderes Graben is located in the Western Anatolia (Turkey). The graben has become the largest industrial and agricultural area with a total population exceeding 3.000.000. There are two big cities within the study areas from west to east as Aydın and Denizli. The study area is very rich with regard to cold ground waters and thermal waters. Electrical production using geothermal potential has become very popular in the last decades in this area. Buyuk Menderes Graben is a tectonically active extensional region and is undergoing a north–south extensional tectonic regime which commenced at the latest during Early Middle Miocene period. The basement of the study area consists of Menderes massif rocks that are made up of high-to low-grade metamorphics and they are aquifer for both cold ground waters and thermal waters depending on the location. Neogene terrestrial sediments, which are mainly composed by alluvium fan deposits unconformably cover the basement rocks in different facies have very low permeability and locally may act as cap rocks for the geothermal systems. The youngest unit is Quaternary alluvium which is the shallow regional aquifer consists of Holocene alluvial deposits in the study area. All the waters are of meteoric origin and reflect shallow or deep circulation according to the 8O, 2H and 3H contents. Meteoric waters move to deep zones by fractured system and rise to the surface along the faults. Water samples (drilling well, spring and surface waters) and local seawater were collected between 2010 and 2012 years. Geochemical modeling was calculated distribution of the aqueous species and exchange processes by using PHREEQCi speciation code. Geochemical analyses show that cold ground water types are evolving from Ca–Mg–HCO3 to Na–Cl–SO4 and geothermal aquifer waters reflect the water types of Na-Cl-HCO3 in Aydın. Water types of Denizli are Ca-Mg-HCO3 and Ca-Mg-HCO3-SO4. Thermal water types reflect generally Na-HCO3-SO4. The B versus Cl rates increase from east to west with the proportion of seawater introduced into the fresh water aquifers and geothermal reservoirs. Concentrations of some elements (As, B, Fe and Ni) are higher than the tolerance limit of the drinking water standard of Turkey (TS 266) and international drinking water standards (WHO, FAO etc).

Keywords: Buyuk Menderes, isotope chemistry, geochemical modelling, water quality

Procedia PDF Downloads 520
305 Rapid Detection of Cocaine Using Aggregation-Induced Emission and Aptamer Combined Fluorescent Probe

Authors: Jianuo Sun, Jinghan Wang, Sirui Zhang, Chenhan Xu, Hongxia Hao, Hong Zhou

Abstract:

In recent years, the diversification and industrialization of drug-related crimes have posed significant threats to public health and safety globally. The widespread and increasingly younger demographics of drug users and the persistence of drug-impaired driving incidents underscore the urgency of this issue. Drug detection, a specialized forensic activity, is pivotal in identifying and analyzing substances involved in drug crimes. It relies on pharmacological and chemical knowledge and employs analytical chemistry and modern detection techniques. However, current drug detection methods are limited by their inability to perform semi-quantitative, real-time field analyses. They require extensive, complex laboratory-based preprocessing, expensive equipment, and specialized personnel and are hindered by long processing times. This study introduces an alternative approach using nucleic acid aptamers and Aggregation-Induced Emission (AIE) technology. Nucleic acid aptamers, selected artificially for their specific binding to target molecules and stable spatial structures, represent a new generation of biosensors following antibodies. Rapid advancements in AIE technology, particularly in tetraphenyl ethene-based luminous, offer simplicity in synthesis and versatility in modifications, making them ideal for fluorescence analysis. This work successfully synthesized, isolated, and purified an AIE molecule and constructed a probe comprising the AIE molecule, nucleic acid aptamers, and exonuclease for cocaine detection. The probe demonstrated significant relative fluorescence intensity changes and selectivity towards cocaine over other drugs. Using 4-Butoxytriethylammonium Bromide Tetraphenylethene (TPE-TTA) as the fluorescent probe, the aptamer as the recognition unit, and Exo I as an auxiliary, the system achieved rapid detection of cocaine within 5 mins in aqueous and urine, with detection limits of 1.0 and 5.0 µmol/L respectively. The probe-maintained stability and interference resistance in urine, enabling quantitative cocaine detection within a certain concentration range. This fluorescent sensor significantly reduces sample preprocessing time, offers a basis for rapid onsite cocaine detection, and promises potential for miniaturized testing setups.

Keywords: drug detection, aggregation-induced emission (AIE), nucleic acid aptamer, exonuclease, cocaine

Procedia PDF Downloads 46
304 Static Charge Control Plan for High-Density Electronics Centers

Authors: Clara Oliver, Oibar Martinez, Jose Miguel Miranda

Abstract:

Ensuring a safe environment for sensitive electronics boards in places with high limitations in size poses two major difficulties: the control of charge accumulation in floating floors and the prevention of excess charge generation due to air cooling flows. In this paper, we discuss these mechanisms and possible solutions to prevent them. An experiment was made in the control room of a Cherenkov Telescope, where six racks of 2x1x1 m size and independent cooling units are located. The room is 10x4x2.5 m, and the electronics include high-speed digitizers, trigger circuits, etc. The floor used in this room was antistatic, but it was a raised floor mounted in floating design to facilitate the handling of the cables and maintenance. The tests were made by measuring the contact voltage acquired by a person who was walking along the room with different footwear qualities. In addition, we took some measurements of the voltage accumulated in a person in other situations like running or sitting up and down on an office chair. The voltages were taken in real time with an electrostatic voltage meter and dedicated control software. It is shown that peak voltages as high as 5 kV were measured with ambient humidity of more than 30%, which are within the range of a class 3A according to the HBM standard. In order to complete the results, we have made the same experiment in different spaces with alternative types of the floor like synthetic floor and earthenware floor obtaining peak voltages much lower than the ones measured with the floating synthetic floor. The grounding quality one achieves with this kind of floors can hardly beat the one typically encountered in standard floors glued directly on a solid substrate. On the other hand, the air ventilation used to prevent the overheating of the boards probably contributed in a significant way to the charge accumulated in the room. During the assessment of the quality of the static charge control, it is necessary to guarantee that the tests are made under repeatable conditions. One of the major difficulties which one encounters during these assessments is the fact the electrostatic voltmeters might provide different values depending on the humidity conditions and ground resistance quality. In addition, the use of certified antistatic footwear might mask deficiencies in the charge control. In this paper, we show how we defined protocols to guarantee that electrostatic readings are reliable. We believe that this can be helpful not only to qualify the static charge control in a laboratory but also to asses any procedure oriented to minimize the risk of electrostatic discharge events.

Keywords: electrostatics, ESD protocols, HBM, static charge control

Procedia PDF Downloads 112
303 Investigating the Effect of Plant Root Exudates and of Saponin on Polycyclic Aromatic Hydrocarbons Solubilization in Brownfield Contaminated Soils

Authors: Marie Davin, Marie-Laure Fauconnier, Gilles Colinet

Abstract:

In Wallonia, there are 6,000 estimated brownfields (rising to over 3.5 million in Europe) that require remediation. Polycyclic Aromatic Hydrocarbons (PAHs) are a class of recalcitrant carcinogenic/mutagenic organic compounds of major concern as they accumulate in the environment and represent 17% of all encountered pollutants. As an alternative to environmentally aggressive, expensive and often disruptive soil remediation strategies, a lot of research has been directed to developing techniques targeting organic pollutants. The following experiment, based on the observation that PAHs soil content decreases in the presence of plants, aimed at improving our understanding of the underlying mechanisms involved in phytoremediation. It focusses on plant root exudates and whether they improve PAHs solubilization, which would make them more available for bioremediation by soil microorganisms. The effect of saponin, a natural surfactant found in some plant roots such as members of the Fabaceae family, on PAHs solubilization was also investigated as part of the implementation of the experimental protocol. The experiments were conducted on soil collected from a brownfield in Saint-Ghislain (Belgium) and presenting weathered PAHs contamination. Samples of soil were extracted with different solutions containing either plant root exudates or commercial saponin. Extracted PAHs were determined in the different aqueous solutions using High-Performance Liquid Chromatography and Fluorimetric Detection (HPLC-FLD). Both root exudates of alfalfa (Medicago sativa L.) or red clover (Trifolium pratense L.) and commercial saponin were tested in different concentrations. Distilled water was used as a control. First of all, results show that PAHs are more extracted using saponin solutions than distilled water and that the amounts generally rise with the saponin concentration. However, the amount of each extracted compound diminishes as its molecular weight rises. Also, it appears that passed a certain surfactant concentration, PAHs are less extracted. This suggests that saponin might be investigated as a washing agent in polluted soil remediation techniques, either for ex-situ or in-situ treatments, as an alternative to synthetic surfactants. On the other hand, preliminary results on experiments using plant root exudates also show differences in PAHs solubilization compared to the control solution. Further results will allow discussion as to whether or not there are differences according to the exudates provenance and concentrations.

Keywords: brownfield, Medicago sativa, phytoremediation, polycyclic aromatic hydrocarbons, root exudates, saponin, solubilization, Trifolium pratense

Procedia PDF Downloads 234
302 Environmental Photodegradation of Tralkoxydim Herbicide and Its Formulation in Natural Waters

Authors: María José Patiño-Ropero, Manuel Alcamí, Al Mokhtar Lamsabhi, José Luis Alonso-Prados, Pilar Sandín-España

Abstract:

Tralkoxydim, commercialized under different trade names, among them Splendor® (25% active ingredient), is a cyclohexanedione herbicide used in wheat and barley fields for the post-emergence control of annual winter grass weeds. Due to their physicochemical properties, herbicides belonging to this family are known to be susceptible to reaching natural waters, where different degradation pathways can take place. Photolysis represents one of the main routes of abiotic degradation of these herbicides in water. This transformation pathway can lead to the formation of unknown by-products, which could be more toxic and/or persistent than the active substances themselves. Therefore, there is a growing need to understand the science behind such dissipation routes, which is key to estimating the persistence of these compounds and ensuring the accurate assessment of environmental behavior. However, to our best knowledge, any information regarding the photochemical behavior of tralkoxydim under natural conditions in an aqueous environment has not been available till now in the literature. This work has focused on investigating the photochemical behavior of tralkoxydim herbicide and its commercial formulation (Splendor®) in the ultrapure, river and spring water using simulated solar radiation. Besides, the evolution of detected degradation products formed in the samples has been studied. A reversed-phase HPLC-DAD (high-performance liquid chromatography with diode array detector) method was developed to evaluate the kinetic evolution and to obtain the half-lives. In both cases, the degradation rates of active ingredient tralkoxydim in natural waters were lower than in ultrapure water following the order; river water < spring water < ultrapure water, and with first-order half-life values of 5.1 h, 2.7 h and 1.1 h, respectively. These findings indicate that the photolytical behavior of active ingredients is largely affected by the water composition, and these components can exert an internal filter effect. In addition, tralkoxydim herbicide and its formulation showed the same half-lives for each one of the types of water studied, showing that the presence of adjuvants in the commercial formulation has not any effect on the degradation rates of the active ingredient. HPLC-MS (high-performance liquid chromatography with mass spectrometry) experiments were performed to study the by-products deriving from the photodegradation of tralkoxydim in water. Accordingly, three compounds were tentatively identified. These results provide a better understanding of the tralkoxydim herbicide behavior in natural waters and its fate in the environment.

Keywords: by-products, natural waters, photodegradation, tralkoxydim herbicide

Procedia PDF Downloads 72
301 Role of Yeast-Based Bioadditive on Controlling Lignin Inhibition in Anaerobic Digestion Process

Authors: Ogemdi Chinwendu Anika, Anna Strzelecka, Yadira Bajón-Fernández, Raffaella Villa

Abstract:

Anaerobic digestion (AD) has been used since time in memorial to take care of organic wastes in the environment, especially for sewage and wastewater treatments. Recently, the rising demand/need to increase renewable energy from organic matter has caused the AD substrates spectrum to expand and include a wider variety of organic materials such as agricultural residues and farm manure which is annually generated at around 140 billion metric tons globally. The problem, however, is that agricultural wastes are composed of materials that are heterogeneous and too difficult to degrade -particularly lignin, that make up about 0–40% of the total lignocellulose content. This study aimed to evaluate the impact of varying concentrations of lignin on biogas yields and their subsequent response to a commercial yeast-based bioadditive in batch anaerobic digesters. The experiments were carried out in batches for a retention time of 56 days with different lignin concentrations (200 mg, 300 mg, 400 mg, 500 mg, and 600 mg) treated to different conditions to first determine the concentration of the bioadditive that was most optimal for overall process improvement and yields increase. The batch experiments were set up using 130 mL bottles with a working volume of 60mL, maintained at 38°C in an incubator shaker (150rpm). Digestate obtained from a local plant operating at mesophilic conditions was used as the starting inoculum, and commercial kraft lignin was used as feedstock. Biogas measurements were carried out using the displacement method and were corrected to standard temperature and pressure using standard gas equations. Furthermore, the modified Gompertz equation model was used to non-linearly regress the resulting data to estimate gas production potential, production rates, and the duration of lag phases as indicatives of degrees of lignin inhibition. The results showed that lignin had a strong inhibitory effect on the AD process, and the higher the lignin concentration, the more the inhibition. Also, the modelling showed that the rates of gas production were influenced by the concentrations of the lignin substrate added to the system – the higher the lignin concentrations in mg (0, 200, 300, 400, 500, and 600) the lower the respective rate of gas production in ml/gVS.day (3.3, 2.2, 2.3, 1.6, 1.3, and 1.1), although the 300 mg increased by 0.1 ml/gVS.day over that of the 200 mg. The impact of the yeast-based bioaddition on the rate of production was most significant in the 400 mg and 500 mg as the rate was improved by 0.1 ml/gVS.day and 0.2 ml/gVS.day respectively. This indicates that agricultural residues with higher lignin content may be more responsive to inhibition alleviation by yeast-based bioadditive; therefore, further study on its application to the AD of agricultural residues of high lignin content will be the next step in this research.

Keywords: anaerobic digestion, renewable energy, lignin valorisation, biogas

Procedia PDF Downloads 71
300 Synthesis of MIPs towards Precursors and Intermediates of Illicit Drugs and Their following Application in Sensing Unit

Authors: K. Graniczkowska, N. Beloglazova, S. De Saeger

Abstract:

The threat of synthetic drugs is one of the most significant current drug problems worldwide. The use of drugs of abuse has increased dramatically during the past three decades. Among others, Amphetamine-Type Stimulants (ATS) are globally the second most widely used drugs after cannabis, exceeding the use of cocaine and heroin. ATS are potent central nervous system (CNS) stimulants, capable of inducing euphoric static similar to cocaine. Recreational use of ATS is widespread, even though warnings of irreversible damage of the CNS were reported. ATS pose a big problem and their production contributes to the pollution of the environment by discharging big volumes of liquid waste to sewage system. Therefore, there is a demand to develop robust and sensitive sensors that can detect ATS and their intermediates in environmental water samples. A rapid and simple test is required. Analysis of environmental water samples (which sometimes can be a harsh environment) using antibody-based tests cannot be applied. Therefore, molecular imprinted polymers (MIPs), which are known as synthetic antibodies, have been chosen for that approach. MIPs are characterized with a high mechanical and thermal stability, show chemical resistance in a broad pH range and various organic or aqueous solvents. These properties make them the preferred type of receptors for application in the harsh conditions imposed by environmental samples. To the best of our knowledge, there are no existing MIPs-based sensors toward amphetamine and its intermediates. Also not many commercial MIPs for this application are available. Therefore, the aim of this study was to compare different techniques to obtain MIPs with high specificity towards ATS and characterize them for following use in a sensing unit. MIPs against amphetamine and its intermediates were synthesized using a few different techniques, such as electro-, thermo- and UV-initiated polymerization. Different monomers, cross linkers and initiators, in various ratios, were tested to obtain the best sensitivity and polymers properties. Subsequently, specificity and selectivity were compared with commercially available MIPs against amphetamine. Different linkers, such as lipoic acid, 3-mercaptopioponic acid and tyramine were examined, in combination with several immobilization techniques, to select the best procedure for attaching particles on sensor surface. Performed experiments allowed choosing an optimal method for the intended sensor application. Stability of MIPs in extreme conditions, such as highly acidic or basic was determined. Obtained results led to the conclusion about MIPs based sensor applicability in sewage system testing.

Keywords: amphetamine type stimulants, environment, molecular imprinted polymers, MIPs, sensor

Procedia PDF Downloads 237
299 Industrial Wastewater from Paper Mills Used for Biofuel Production and Soil Improvement

Authors: Karin M. Granstrom

Abstract:

Paper mills produce wastewater with a high content of organic substances. Treatment usually consists of sedimentation, biological treatment of activated sludge basins, and chemical precipitation. The resulting sludges are currently a waste problem, deposited in landfills or used as low-grade fuels for incineration. There is a growing awareness of the need for energy efficiency and environmentally sound management of sludge. A resource-efficient method would be to digest the wastewater sludges anaerobically to produce biogas, refine the biogas to biomethane for use in the transportation sector, and utilize the resulting digestate for soil improvement. The biomethane yield of pulp and paper wastewater sludge is comparable to that of straw or manure. As a bonus, the digestate has an improved dewaterability compared to the feedstock biosludge. Limitations of this process are predominantly a weak economic viability - necessitating both sufficiently large-scale paper production for the necessary large amounts of produced wastewater sludge, and the resolving of remaining questions on the certifiability of the digestate and thus its sales price. A way to improve the practical and economical feasibility of using paper mill wastewater for biomethane production and soil improvement is to co-digest it with other feedstocks. In this study, pulp and paper sludge were co-digested with (1) silage and manure, (2) municipal sewage sludge, (3) food waste, or (4) microalgae. Biomethane yield analysis was performed in 500 ml batch reactors, using an Automatic Methane Potential Test System at thermophilic temperature, with a 20 days test duration. The results show that (1) the harvesting season of grass silage and manure collection was an important factor for methane production, with spring feedstocks producing much more than autumn feedstock, and pulp mill sludge benefitting the most from co-digestion; (2) pulp and paper mill sludge is a suitable co-substrate to add when a high nitrogen content cause impaired biogas production due to ammonia inhibition; (3) the combination of food waste and paper sludge gave higher methane yield than either of the substrates digested separately; (4) pure microalgae gave the highest methane yield. In conclusion, although pulp and paper mills are an almost untapped resource for biomethane production, their wastewater is a suitable feedstock for such a process. Furthermore, through co-digestion, the pulp and paper mill wastewater and mill sludges can aid biogas production from more nutrient-rich waste streams from other industries. Such co-digestion also enhances the soil improvement properties of the residue digestate.

Keywords: anaerobic, biogas, biomethane, paper, sludge, soil

Procedia PDF Downloads 244
298 Hydration of Three-Piece K Peptide Fragments Studied by Means of Fourier Transform Infrared Spectroscopy

Authors: Marcin Stasiulewicz, Sebastian Filipkowski, Aneta Panuszko

Abstract:

Background: The hallmark of neurodegenerative diseases, including Alzheimer's and Parkinson's diseases, is an aggregation of the abnormal forms of peptides and proteins. Water is essential to functioning biomolecules, and it is one of the key factors influencing protein folding and misfolding. However, the hydration studies of proteins are complicated due to the complexity of protein systems. The use of model compounds can facilitate the interpretation of results involving larger systems. Objectives: The goal of the research was to characterize the properties of the hydration water surrounding the two three-residue K peptide fragments INS (Isoleucine - Asparagine - Serine) and NSR (Asparagine - Serine - Arginine). Methods: Fourier-transform infrared spectra of aqueous solutions of the tripeptides were recorded on Nicolet 8700 spectrometer (Thermo Electron Co.) Measurements were carried out at 25°C for varying molality of solute. To remove oscillation couplings from water spectra and, consequently, obtain narrow O-D semi-heavy water bands (HDO), the isotopic dilution method of HDO in H₂O was used. The difference spectra method allowed us to isolate the tripeptide-affected HDO spectrum. Results: The structural and energetic properties of water affected by the tripeptides were compared to the properties of pure water. The shift of the values of the gravity center of bands (related to the mean energy of water hydrogen bonds) towards lower values with respect to the ones corresponding to pure water suggests that the energy of hydrogen bonds between water molecules surrounding tripeptides is higher than in pure water. A comparison of the values of the mean oxygen-oxygen distances in water affected by tripeptides and pure water indicates that water-water hydrogen bonds are shorter in the presence of these tripeptides. The analysis of differences in oxygen-oxygen distance distributions between the tripeptide-affected water and pure water indicates that around the tripeptides, the contribution of water molecules with the mean energy of hydrogen bonds decreases, and simultaneously the contribution of strong hydrogen bonds increases. Conclusions: It was found that hydrogen bonds between water molecules in the hydration sphere of tripeptides are shorter and stronger than in pure water. It means that in the presence of the tested tripeptides, the structure of water is strengthened compared to pure water. Moreover, it has been shown that in the vicinity of the Asparagine - Serine - Arginine, water forms stronger and shorter hydrogen bonds. Acknowledgments: This work was funded by the National Science Centre, Poland (grant 2017/26/D/NZ1/00497).

Keywords: amyloids, K-peptide, hydration, FTIR spectroscopy

Procedia PDF Downloads 162
297 On-Chip Ku-Band Bandpass Filter with Compact Size and Wide Stopband

Authors: Jyh Sheen, Yang-Hung Cheng

Abstract:

This paper presents a design of a microstrip bandpass filter with a compact size and wide stopband by using 0.15-μm GaAs pHEMT process. The wide stop band is achieved by suppressing the first and second harmonic resonance frequencies. The slow-wave coupling stepped impedance resonator with cross coupled structure is adopted to design the bandpass filter. A two-resonator filter was fabricated with 13.5GHz center frequency and 11% bandwidth was achieved. The devices are simulated using the ADS design software. This device has shown a compact size and very low insertion loss of 2.6 dB. Microstrip planar bandpass filters have been widely adopted in various communication applications due to the attractive features of compact size and ease of fabricating. Various planar resonator structures have been suggested. In order to reach a wide stopband to reduce the interference outside the passing band, various designs of planar resonators have also been submitted to suppress the higher order harmonic frequencies of the designed center frequency. Various modifications to the traditional hairpin structure have been introduced to reduce large design area of hairpin designs. The stepped-impedance, slow-wave open-loop, and cross-coupled resonator structures have been studied to miniaturize the hairpin resonators. In this study, to suppress the spurious harmonic bands and further reduce the filter size, a modified hairpin-line bandpass filter with cross coupled structure is suggested by introducing the stepped impedance resonator design as well as the slow-wave open-loop resonator structure. In this way, very compact circuit size as well as very wide upper stopband can be achieved and realized in a Roger 4003C substrate. On the other hand, filters constructed with integrated circuit technology become more attractive for enabling the integration of the microwave system on a single chip (SOC). To examine the performance of this design structure at the integrated circuit, the filter is fabricated by the 0.15 μm pHEMT GaAs integrated circuit process. This pHEMT process can also provide a much better circuit performance for high frequency designs than those made on a PCB board. The design example was implemented in GaAs with center frequency at 13.5 GHz to examine the performance in higher frequency in detail. The occupied area is only about 1.09×0.97 mm2. The ADS software is used to design those modified filters to suppress the first and second harmonics.

Keywords: microstrip resonator, bandpass filter, harmonic suppression, GaAs

Procedia PDF Downloads 312
296 Culture Medium Design Based on Whey for the Growth and Bacteriocin Production of Strains of Pediococcus pentosaceus

Authors: Carolina Gutierrez-Cortes, Hector Suarez, Gustavo Buitrago

Abstract:

Bacteriocins are antimicrobial peptides produced by bacteria as a competitive strategy for substrate and habitat. Those peptides have a potential use as food biopreservatives due to their antimicrobial activity against foodborne pathogens, avoiding the use of additives that can be harmful to consumers. The industrial production of bacteriocins is currently expensive; one of the options to be competitive is the development of economic culture media, for example, with the use of agro-industrial wastes such as whey. This study evaluated the growth and production of bacteriocins from four strains: Pediococcus pentosaceus 63, Pediococcus pentosaceus 145, Pediococcus pentosaceus 146 and Pediococcus pentosaceus 147 isolated from ‘minas cheese’ (artisanal cheese made from raw milk in the state of Minas Gerais, Brazil) in order to select a strain with growth at high rates and higher antimicrobial activity against Listeria monocytogenes 104 after incubation on the culture medium designed with whey and other components. The media used were: MRS broth, modified MRS broth (using different sources of carbon and nitrogen and different amounts of micronutrients) and a culture medium designed by a factorial design using whey and other components. The final biomass concentrations of the four strains in MRS broth after 24 hours of incubation were very similar 9.25, 9.33, 9.25 and 9.22 (log CFU/mL) for P. pentosaceus 63, P. pentosaceus 145, P. pentosaceus 146 and P. pentosaceus 147 respectively. In the same assays, antimicrobial activity of 3200 AU/mL for the first three and of 12800 AU/mL for P. pentosaceus 147 were obtained. Culture of P. pentosaceus 63 on modified MRS broth, showed the effect of some sources of carbon on the activity of bacteriocin, obtaining 12800 AU/mL with dextrose and 25600 AU/mL with maltose. Cultures of P. pentosaceus 145, 146 and 147 with these same sugars presented activity of 12800 AU/mL. It was observed that the modified MRS medium using whey increased the antimicrobial activity of the strains at 16000, 6400, 16000 and 19200 AU/mL for each strain respectively, keeping the biomass at values close to 9 log units. About nitrogen sources, it was observed that the combination of peptone (10 g /L), meat extract (10 g/L) and yeast extract (5 g/L) promoted the highest activity (12800 AU/mL), and in all cases MgSO4, MnSO4, K2HPO4 and ammonium citrate at low concentrations adversely affected bacteriocin production. Because P. pentosaceus 147 showed the highest antimicrobial activity in the presence of whey, it was used to evaluate the culture medium (peptone (10 g/L), meat extract (8 g/L), yeast extract (2 g/L), Tween® 80 (1 g/L), ammonium citrate (2 g/L), sodium acetate (5 g/L), MgSO4 (0.2 g/L), MnSO4 (0.04 g/L)). With the designed medium added with whey, 9.34 log units of biomass concentration and 19200 AU/mL were achieved for P. pentosaceus 147. The above suggest that the new medium promotes the antimicrobial activity of P. pentosaceus 147 allowing the use of an economic medium using whey.

Keywords: antimicrobial activity, bacteriocins, pediococcus, whey

Procedia PDF Downloads 211
295 Role of NaOH in the Synthesis of Waste-derived Solid Hydroxy Sodalite Catalyst for the Transesterification of Waste Animal Fat to Biodiesel

Authors: Thomas Chinedu Aniokete, Gordian Onyebuchukwu Mbah, Michael Daramola

Abstract:

A sustainable NaOH integrated hydrothermal protocol was developed for the synthesis of waste-derived hydroxy sodalite catalysts for transesterification of waste animal fat (WAF) with a high per cent free fatty acid (FFA) to biodiesel. In this work, hydroxy sodalite catalyst was synthesized from two complex waste materials namely coal fly ash (CFA) and waste industrial brine (WIB). Measured amounts of South African CFA and WIB obtained from a coal mine field were mixed with NaOH solution at different concentrations contained in secured glass vessels equipped with magnetic stirrers and formed consistent slurries after aging condition at 47 oC for 48 h. The slurries were then subjected to hydrothermal treatments at 140 oC for 48 h, washed thoroughly and separated by the action of a centrifuge on the mixture. The resulting catalysts were calcined in a muffle furnace for 2 h at 200 oC and subsequently characterized for different effects using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and Bennett Emmet Teller (BET) adsorption-desorption techniques. The produced animal fat methyl ester (AFME) was analyzed using the gas chromatography-mass spectrometry (GC-MS) method. Results of the investigation indicate profoundly an enhanced catalyst purity, textural property and desired morphology due to the action of NaOH. Similarly, the performance evaluation with respect to catalyst activity reveals a high catalytic conversion efficiency of 98 % of the high FFA WAF to biodiesel under the following reaction conditions; a methanol-to-WAF ratio of 15:1, amount of SOD catalyst of 3 wt % with a stirring speed of 300-500 rpm, a reaction temperature of 60 oC and a reaction time of 8 h. There was a recovered 96 % stable catalyst after reactions and potentially recyclable, thus contributing to the economic savings to the process that had been a major bottleneck to the production of biodiesel. This NaOH route for synthesizing waste-derived hydroxy sodalite (SOD) catalyst is a sustainable and eco-friendly technology that speaks directly to the global quest for renewable-fossil fuel controversy enforcing sustainable development goal 7.

Keywords: coal fly ash, waste industrial brine, waste-derived hydroxy sodalite catalyst, sodium hydroxide, biodiesel, transesterification, biomass conversion

Procedia PDF Downloads 19
294 Analysis of Reflection Coefficients of Reflected and Transmitted Waves at the Interface Between Viscous Fluid and Hygro-Thermo-Orthotropic Medium

Authors: Anand Kumar Yadav

Abstract:

Purpose – The purpose of this paper is to investigate the fluctuation of amplitude ratios of various transmitted and reflected waves. Design/methodology/approach – The reflection and transmission of plane waves on the interface between an orthotropic hygro-thermo-elastic half-space (OHTHS) and a viscous-fluid half-space (VFHS) were investigated in this study with reference to coupled hygro-thermo-elasticity. Findings – The interface, where y = 0, is struck by the principal (P) plane waves as they travel through the VFHS. Two waves are reflected in VFHS, and four waves are transmitted in OHTHS as a result namely longitudinal displacement, Pwave − , thermal diffusion TDwave − and moisture diffusion mDwave − and shear vertical SV wave. Expressions for the reflection and transmitted coefficient are developed for the incidence of a hygrothermal plane wave. It is noted that these ratios are graphically displayed and are observed under the influence of coupled hygro-thermo-elasticity. Research limitations/implications – There isn't much study on the model under consideration, which combines OHTHS and VFHS with coupled hygro-thermo-elasticity, according to the existing literature Practical implications – The current model can be applied in many different areas, such as soil dynamics, nuclear reactors, high particle accelerators, earthquake engineering, and other areas where linked hygrothermo-elasticity is important. In a range of technical and geophysical settings, wave propagation in a viscous fluid-thermoelastic medium with various characteristics, such as initial stress, magnetic field, porosity, temperature, etc., gives essential information regarding the presence of new and modified waves. This model may prove useful in modifying earthquake estimates for experimental seismologists, new material designers, and researchers. Social implications – Researchers may use coupled hygro-thermo-elasticity to categories the material, where the parameter is a new indication of its ability to conduct heat in interaction with diverse materials. Originality/value – The submitted text is the sole creation of the team of writers, and all authors equally contributed to its creation.

Keywords: hygro-thermo-elasticity, viscous fluid, reflection coefficient, transmission coefficient, moisture concentration

Procedia PDF Downloads 52
293 Nude Cosmetic Water-Rich Compositions for Skin Care and Consumer Emotions

Authors: Emmanuelle Merat, Arnaud Aubert, Sophie Cambos, Francis Vial, Patrick Beau

Abstract:

Basically, consumers are sensitive to many stimuli when applying a cream: brand, packaging and indeed formulation compositions. Many studies demonstrated the influence of some stimuli such as brand, packaging, formula color and odor (e.g. in make-up applications). Those parameters influence perceived quality of the product. The objective of this work is to further investigate the relationship between nude skincare basic compositions with different textures and consumer experience. A tentative final step will be to connect the consumer feelings with key ingredients in the compositions. A new approach was developed to better understand touch-related subjective experience in consumers based on a combination of methods: sensory analysis with ten experts, preference mapping on one hundred female consumers and emotional assessments on thirty consumers (verbal and non-verbal through prosody and gesture monitoring). Finally, a methodology based on ‘sensorial trip’ (after olfactory, haptic and musical stimuli) has been experimented on the most interesting textures with 10 consumers. The results showed more or less impact depending on compositions and also on key ingredients. Three types of formulation particularly attracted the consumer: an aqueous gel, an oil-in-water emulsion, and a patented gel-in-oil formulation type. Regarding these three formulas, the preferences were both revealed through sensory and emotion tests. One was recognized as the most innovative in consumer sensory test whereas the two other formulas were discriminated in emotions evaluation. The positive emotions were highlighted especially in prosody criteria. The non-verbal analysis, which corresponds to the physical parameters of the voice, showed high pitch and amplitude values; linked to positive emotions. Verbatim, verbal content of responses (i.e., ideas, concepts, mental images), confirmed the first conclusion. On the formulas selected for their positive emotions generation, the ‘sensorial trip’ provided complementary information to characterize each emotional profile. In the second step, dedicated to better understand ingredients power, two types of ingredients demonstrated an obvious input on consumer preference: rheology modifiers and emollients. As a conclusion, nude cosmetic compositions with well-chosen textures and ingredients can positively stimulate consumer emotions contributing to capture their preference. For a complete achievement of the study, a global approach (Asia, America territories...) should be developed.

Keywords: sensory, emotion, cosmetic formulations, ingredients' influence

Procedia PDF Downloads 160
292 Inverterless Grid Compatible Micro Turbine Generator

Authors: S. Ozeri, D. Shmilovitz

Abstract:

Micro‐Turbine Generators (MTG) are small size power plants that consist of a high speed, gas turbine driving an electrical generator. MTGs may be fueled by either natural gas or kerosene and may also use sustainable and recycled green fuels such as biomass, landfill or digester gas. The typical ratings of MTGs start from 20 kW up to 200 kW. The primary use of MTGs is for backup for sensitive load sites such as hospitals, and they are also considered a feasible power source for Distributed Generation (DG) providing on-site generation in proximity to remote loads. The MTGs have the compressor, the turbine, and the electrical generator mounted on a single shaft. For this reason, the electrical energy is generated at high frequency and is incompatible with the power grid. Therefore, MTGs must contain, in addition, a power conditioning unit to generate an AC voltage at the grid frequency. Presently, this power conditioning unit consists of a rectifier followed by a DC/AC inverter, both rated at the full MTG’s power. The losses of the power conditioning unit account to some 3-5%. Moreover, the full-power processing stage is a bulky and costly piece of equipment that also lowers the overall system reliability. In this study, we propose a new type of power conditioning stage in which only a small fraction of the power is processed. A low power converter is used only to program the rotor current (i.e. the excitation current which is substantially lower). Thus, the MTG's output voltage is shaped to the desired amplitude and frequency by proper programming of the excitation current. The control is realized by causing the rotor current to track the electrical frequency (which is related to the shaft frequency) with a difference that is exactly equal to the line frequency. Since the phasor of the rotation speed and the phasor of the rotor magnetic field are multiplied, the spectrum of the MTG generator voltage contains the sum and the difference components. The desired difference component is at the line frequency (50/60 Hz), whereas the unwanted sum component is at about twice the electrical frequency of the stator. The unwanted high frequency component can be filtered out by a low-pass filter leaving only the low-frequency output. This approach allows elimination of the large power conditioning unit incorporated in conventional MTGs. Instead, a much smaller and cheaper fractional power stage can be used. The proposed technology is also applicable to other high rotation generator sets such as aircraft power units.

Keywords: gas turbine, inverter, power multiplier, distributed generation

Procedia PDF Downloads 223
291 Evaluation of Electrophoretic and Electrospray Deposition Methods for Preparing Graphene and Activated Carbon Modified Nano-Fibre Electrodes for Hydrogen/Vanadium Flow Batteries and Supercapacitors

Authors: Barun Chakrabarti, Evangelos Kalamaras, Vladimir Yufit, Xinhua Liu, Billy Wu, Nigel Brandon, C. T. John Low

Abstract:

In this work, we perform electrophoretic deposition of activated carbon on a number of substrates to prepare symmetrical coin cells for supercapacitor applications. From several recipes that involve the evaluation of a few solvents such as isopropyl alcohol, N-Methyl-2-pyrrolidone (NMP), or acetone to binders such as polyvinylidene fluoride (PVDF) and charging agents such as magnesium chloride, we display a working means for achieving supercapacitors that can achieve 100 F/g in a consistent manner. We then adapt this EPD method to deposit reduced graphene oxide on SGL 10AA carbon paper to achieve cathodic materials for testing in a hydrogen/vanadium flow battery. In addition, a self-supported hierarchical carbon nano-fibre is prepared by means of electrospray deposition of an iron phthalocyanine solution onto a temporary substrate followed by carbonisation to remove heteroatoms. This process also induces a degree of nitrogen doping on the carbon nano-fibres (CNFs), which allows its catalytic performance to improve significantly as detailed in other publications. The CNFs are then used as catalysts by attaching them to graphite felt electrodes facing the membrane inside an all-vanadium flow battery (Scribner cell using serpentine flow distribution channels) and efficiencies as high as 60% is noted at high current densities of 150 mA/cm². About 20 charge and discharge cycling show that the CNF catalysts consistently perform better than pristine graphite felt electrodes. Following this, we also test the CNF as an electro-catalyst in the hydrogen/vanadium flow battery (cathodic side as mentioned briefly in the first paragraph) facing the membrane, based upon past studies from our group. Once again, we note consistently good efficiencies of 85% and above for CNF modified graphite felt electrodes in comparison to 60% for pristine felts at low current density of 50 mA/cm² (this reports 20 charge and discharge cycles of the battery). From this preliminary investigation, we conclude that the CNFs may be used as catalysts for other systems such as vanadium/manganese, manganese/manganese and manganese/hydrogen flow batteries in the future. We are generating data for such systems at present, and further publications are expected.

Keywords: electrospinning, carbon nano-fibres, all-vanadium redox flow battery, hydrogen-vanadium fuel cell, electrocatalysis

Procedia PDF Downloads 279
290 Formulation and Characterization of Active Edible Films from Cassava Starch for Snacks and Savories

Authors: P. Raajeswari, S. M. Devatha, S. Yuvajanani, U. Rashika

Abstract:

Edible food packaging are the need of the hour to save life on land and under water by eliminating waste cycle and replacing Single Use Plastics at grass root level as it can be eaten or composted as such. Cassava (Manihot esculenta) selected for making edible films are rich source of starch, and also it exhibit good sheeting propertiesdue to the high amylose: amylopectin content. Cassava starch was extracted by manual method at a laboratory scale and yielded 65 per cent. Edible films were developed by adding food grade plasticizers and water. Glycerol showed good plasticizing property as compared to sorbitol and polylactic acid in both manual (petri dish) and machine (film making machine) production. The thickness of the film is 0.25±0.03 mm. Essential oil and components from peels like pomegranate, orange, pumpkin, onion, and banana brat, and herbs like tulsi and country borage was extracted through the standardized aqueous and alkaline method. In the standardized film, the essential oil and components from selected peel and herbs were added to the casting solution separately and casted the film. It was added to improve the anti-oxidant, anti-microbial and optical properties. By inclusion of extracts, it reduced the bubble formation while casting. FTIR, Water Vapor and Oxygen Transmission Rate (WVTR and OTR), tensile strength, microbial load, shelf life, and degradability of the films were done to analyse the mechanical property of the standardized films. FTIR showed the presence of essential oil. WVTR and OTR of the film was improved after inclusion of essential oil and extracts from 1.312 to 0.811 cm₃/m₂ and 15.12 to 17.81 g/ m₂.d. Inclusion of essential oil from herbs showed better WVTR and OTR than the inclusion of peel extract and standard. Tensile strength and Elongation at break has not changed by essential oil and extracts at 0.86 ± 0.12 mpa and 14 ± 2 at 85 N force. By inclusion of extracts, an optical property of the film enhanced, and it increases the appearance of the packaging material. The films were completely degraded on 84thdays and partially soluble in water. Inclusion of essential oil does not have impact on degradability and solubility. The microbial loads of the active films were decreased from 15 cfu/gm to 7 cfu/gm. The films can be stored at frozen state for 24 days and 48 days at atmospheric temperature when packed with South Indian snacks and savories.

Keywords: active films, cassava starch, plasticizer, characterization

Procedia PDF Downloads 57
289 Investigation for Pixel-Based Accelerated Aging of Large Area Picosecond Photo-Detectors

Authors: I. Tzoka, V. A. Chirayath, A. Brandt, J. Asaadi, Melvin J. Aviles, Stephen Clarke, Stefan Cwik, Michael R. Foley, Cole J. Hamel, Alexey Lyashenko, Michael J. Minot, Mark A. Popecki, Michael E. Stochaj, S. Shin

Abstract:

Micro-channel plate photo-multiplier tubes (MCP-PMTs) have become ubiquitous and are widely considered potential candidates for next generation High Energy Physics experiments due to their picosecond timing resolution, ability to operate in strong magnetic fields, and low noise rates. A key factor that determines the applicability of MCP-PMTs in their lifetime, especially when they are used in high event rate experiments. We have developed a novel method for the investigation of the aging behavior of an MCP-PMT on an accelerated basis. The method involves exposing a localized region of the MCP-PMT to photons at a high repetition rate. This pixel-based method was inspired by earlier results showing that damage to the photocathode of the MCP-PMT occurs primarily at the site of light exposure and that the surrounding region undergoes minimal damage. One advantage of the pixel-based method is that it allows the dynamics of photo-cathode damage to be studied at multiple locations within the same MCP-PMT under different operating conditions. In this work, we use the pixel-based accelerated lifetime test to investigate the aging behavior of a 20 cm x 20 cm Large Area Picosecond Photo Detector (LAPPD) manufactured by INCOM Inc. at multiple locations within the same device under different operating conditions. We compare the aging behavior of the MCP-PMT obtained from the first lifetime test conducted under high gain conditions to the lifetime obtained at a different gain. Through this work, we aim to correlate the lifetime of the MCP-PMT and the rate of ion feedback, which is a function of the gain of each MCP, and which can also vary from point to point across a large area (400 $cm^2$) MCP. The tests were made possible by the uniqueness of the LAPPD design, which allows independent control of the gain of the chevron stacked MCPs. We will further discuss the implications of our results for optimizing the operating conditions of the detector when used in high event rate experiments.

Keywords: electron multipliers (vacuum), LAPPD, lifetime, micro-channel plate photo-multipliers tubes, photoemission, time-of-flight

Procedia PDF Downloads 149