Search results for: S. De Saeger
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: S. De Saeger

4 Chronic Aflatoxin Exposure During Pregnancy Is Associated With Lower Fetal Growth Trajectories: A Prospective Cohort Study in Rural Ethiopia

Authors: K. Tesfamariam, S. Gebreyesus, C. Lachat, P. Kolsteren, S. De Saeger, M. De Boevre, A. Argaw

Abstract:

Aflatoxins are toxic secondary metabolites produced by Aspergillus fungi, which are ubiquitously present in the food supplies of low- and middle-income countries. Studies of maternal aflatoxin exposure and fetal outcomes are mainly focused on size at birth and the effect on intrauterine fetal growth has not been assessed using repeated longitudinal fetal biometry across gestation. Therefore, this study intends to assess the association between chronic aflatoxin exposure during pregnancy and fetal growth trajectories in a rural Ethiopian setting. In a prospective cohort study, we enrolled 492 pregnant women. A phlebotomist collected 5 mL of a venous blood sample from eligible women before 28 completed weeks of gestation and aflatoxin B1-lysine concentration was determined using liquid chromatography-tandem mass spectrometry. The mean (±SD) gestational age was 19.1 (3.71) weeks at enrollment, and 28.5 (3.51) and 34.5 (2.44) weeks of gestation at the second and third rounds of ultrasound measurements, respectively. Estimated fetal weight was expressed in centiles using the INTERGROWTH-21st reference. We fitted a multivariable linear mixed-effects model to estimate the rate of fetal growth between aflatoxin-exposed (i.e., aflatoxin B1-lysine concentration above or equal to the limit of detection) and non-exposed mothers in the study. Mothers had a mean (±SD) age of 26.0 (4.58) years. The median (P25, P75) serum AFB1-lysine concentration was 12.6 (0.93, 96.9) pg/mg albumin, and aflatoxin exposure was observed in 86.6% of maternal blood samples. Eighty-five percent of the women enrolled provided at least two ultrasound measurements for analysis. On average, the aflatoxin-exposed group had a significantly lower change over time in fetal weight-for-gestational age centile than the unexposed group (ß = -1.01 centiles/week, 95% CI: -1.87, -0.15, p = 0.02). Chronic maternal AF exposure is associated with lower fetal weight gain over time. Our findings emphasize the importance of nutrition-sensitive strategies to mitigate dietary aflatoxin exposure as well as adopting food safety measures in low-income settings, particularly during the fetal period of development.

Keywords: aflatoxin, fetal growth, low-income setting, mycotoxins

Procedia PDF Downloads 94
3 Synthesis of MIPs towards Precursors and Intermediates of Illicit Drugs and Their following Application in Sensing Unit

Authors: K. Graniczkowska, N. Beloglazova, S. De Saeger

Abstract:

The threat of synthetic drugs is one of the most significant current drug problems worldwide. The use of drugs of abuse has increased dramatically during the past three decades. Among others, Amphetamine-Type Stimulants (ATS) are globally the second most widely used drugs after cannabis, exceeding the use of cocaine and heroin. ATS are potent central nervous system (CNS) stimulants, capable of inducing euphoric static similar to cocaine. Recreational use of ATS is widespread, even though warnings of irreversible damage of the CNS were reported. ATS pose a big problem and their production contributes to the pollution of the environment by discharging big volumes of liquid waste to sewage system. Therefore, there is a demand to develop robust and sensitive sensors that can detect ATS and their intermediates in environmental water samples. A rapid and simple test is required. Analysis of environmental water samples (which sometimes can be a harsh environment) using antibody-based tests cannot be applied. Therefore, molecular imprinted polymers (MIPs), which are known as synthetic antibodies, have been chosen for that approach. MIPs are characterized with a high mechanical and thermal stability, show chemical resistance in a broad pH range and various organic or aqueous solvents. These properties make them the preferred type of receptors for application in the harsh conditions imposed by environmental samples. To the best of our knowledge, there are no existing MIPs-based sensors toward amphetamine and its intermediates. Also not many commercial MIPs for this application are available. Therefore, the aim of this study was to compare different techniques to obtain MIPs with high specificity towards ATS and characterize them for following use in a sensing unit. MIPs against amphetamine and its intermediates were synthesized using a few different techniques, such as electro-, thermo- and UV-initiated polymerization. Different monomers, cross linkers and initiators, in various ratios, were tested to obtain the best sensitivity and polymers properties. Subsequently, specificity and selectivity were compared with commercially available MIPs against amphetamine. Different linkers, such as lipoic acid, 3-mercaptopioponic acid and tyramine were examined, in combination with several immobilization techniques, to select the best procedure for attaching particles on sensor surface. Performed experiments allowed choosing an optimal method for the intended sensor application. Stability of MIPs in extreme conditions, such as highly acidic or basic was determined. Obtained results led to the conclusion about MIPs based sensor applicability in sewage system testing.

Keywords: amphetamine type stimulants, environment, molecular imprinted polymers, MIPs, sensor

Procedia PDF Downloads 217
2 Comparison of a Capacitive Sensor Functionalized with Natural or Synthetic Receptors Selective towards Benzo(a)Pyrene

Authors: Natalia V. Beloglazova, Pieterjan Lenain, Martin Hedstrom, Dietmar Knopp, Sarah De Saeger

Abstract:

In recent years polycyclic aromatic hydrocarbons (PAHs), which represent a hazard to humans and entire ecosystem, have been receiving an increased interest due to their mutagenic, carcinogenic and endocrine disrupting properties. They are formed in all incomplete combustion processes of organic matter and, as a consequence, ubiquitous in the environment. Benzo(a)pyrene (BaP) is on the priority list published by the Environmental Agency (US EPA) as the first PAH to be identified as a carcinogen and has often been used as a marker for PAHs contamination in general. It can be found in different types of water samples, therefore, the European Commission set up a limit value of 10 ng L–1 (10 ppt) for BAP in water intended for human consumption. Generally, different chromatographic techniques are used for PAHs determination, but these assays require pre-concentration of analyte, create large amounts of solvent waste, and are relatively time consuming and difficult to perform on-site. An alternative robust, stand-alone, and preferably cheap solution is needed. For example, a sensing unit which can be submerged in a river to monitor and continuously sample BaP. An affinity sensor based on capacitive transduction was developed. Natural antibodies or their synthetic analogues can be used as ligands. Ideally the sensor should operate independently over a longer period of time, e.g. several weeks or months, therefore the use of molecularly imprinted polymers (MIPs) was discussed. MIPs are synthetic antibodies which are selective for a chosen target molecule. Their robustness allows application in environments for which biological recognition elements are unsuitable or denature. They can be reused multiple times, which is essential to meet the stand-alone requirement. BaP is a highly lipophilic compound and does not contain any functional groups in its structure, thus excluding non-covalent imprinting methods based on ionic interactions. Instead, the MIPs syntheses were based on non-covalent hydrophobic and π-π interactions. Different polymerization strategies were compared and the best results were demonstrated by the MIPs produced using electropolymerization. 4-vinylpyridin (VP) and divinylbenzene (DVB) were used as monomer and cross-linker in the polymerization reaction. The selectivity and recovery of the MIP were compared to a non-imprinted polymer (NIP). Electrodes were functionalized with natural receptor (monoclonal anti-BaP antibody) and with MIPs selective towards BaP. Different sets of electrodes were evaluated and their properties such as sensitivity, selectivity and linear range were determined and compared. It was found that both receptor can reach the cut-off level comparable to the established ML, and despite the fact that the antibody showed the better cross-reactivity and affinity, MIPs were more convenient receptor due to their ability to regenerate and stability in river till 7 days.

Keywords: antibody, benzo(a)pyrene, capacitive sensor, MIPs, river water

Procedia PDF Downloads 277
1 Impact of Electric Field on the Optical Properties of Hydrophilic Quantum Dots

Authors: Valentina V. Goftman, Vladislav A. Pankratov, Alexey V. Markin, Tangi Aubert, Zeger Hens, Sarah De Saeger, Irina Yu. Goryacheva

Abstract:

The most important requirements for biochemical applicability of quantum dots (QDs) are: 1) the surface cap should render intact or improved optical properties; 2) mono-dispersion and good stability in aqueous phase in a wide range of pH and ionic strength values; 3) presence of functional groups, available for bioconjugation; 4) minimal impact from the environment on the QDs’ properties and, vice versa, minimal influence of the QDs’ components on the environment; and 5) stability against chemical/biochemical/physical influence. The latter is especially important for in vitro and in vivo applications. For example, some physical intracellular delivery strategies (e.g., electroporation) imply a rapid high-voltage electric field impulse in order to temporarily generate hydrophilic pores in the cell plasma membrane, necessary for the passive transportation of QDs into the cell. In this regard, it is interesting to investigate how different capping layers, which can provide high stability and sufficient fluorescent properties of QDs in a water solution, behave under these abnormal conditions. In this contribution, hydrophobic core-shell CdSe/CdS/CdZnS/ZnS QDs (λem=600 nm), produced by means of the Successive Ion Layer Adsorption and Reaction (SILAR) technique, were transferred to a water solution using two of the most commonly used methods: (i) encapsulation in an amphiphilic brush polymer based on poly(maleic anhydride-alt-1-octadecene) (PMAO) modified with polyethylene glycol (PEG) chains and (ii) silica covering. Polymer encapsulation preserves the initial ligands on the QDs’ surface owing to the hydrophobic attraction between the hydrophobic groups of the amphiphilic molecules and the surface hydrophobic groups of the QDs. This covering process allows maintaining the initial fluorescent properties, but it leads to a considerable increase of the QDs’ size. However, covering with a silica shell, by means of the reverse microemulsion method, allows maintaining both size and fluorescent properties of the initial QDs. The obtained water solutions of polymer covered and silica-coated QDs in three different concentrations were exposed to a low-voltage electric field for a short time and the fluorescent properties were investigated. It is shown that the PMAO-PEG polymer acquires some additional charges in the presence of the electric field, which causes repulsion between the polymer and the QDs’ surface. This process destroys the homogeneity of the whole amphiphilic shell and it dramatically decreases the fluorescent properties (dropping to 10% from its initial value) because of the direct contact of the QDs with the strongly oxidative environment (water). In contrast, a silica shell possesses dielectric properties which allow retaining 90% of its initial fluorescence intensity, even after a longer electric impact. Thus, silica shells are clearly a preferable covering for bio-application of QDs, because – besides the high uniform morphology, controlled size and biocompatibility – it allows protecting QDs from oxidation, even under the influence of an electric field.

Keywords: electric field, polymer coating, quantum dots, silica covering, stability

Procedia PDF Downloads 433