Search results for: structural and electronic properties.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4311

Search results for: structural and electronic properties.

4191 Derivation of Empirical Formulae to Predict Pressure and Impulsive Asymptotes for P-I Diagrams of One-way RC Panels

Authors: Azrul A. Mutalib, Masoud Abedini, Shahrizan Baharom, Hong Hao

Abstract:

There are only limited studies that directly correlate the increase in reinforced concrete (RC) panel structural capacities in resisting the blast loads with different RC panel structural properties in terms of blast loading characteristics, RC panel dimensions, steel reinforcement ratio and concrete material strength. In this paper, numerical analyses of dynamic response and damage of the one-way RC panel to blast loads are carried out using the commercial software LS-DYNA. A series of simulations are performed to predict the blast response and damage of columns with different level and magnitude of blast loads. The numerical results are used to develop pressureimpulse (P-I) diagrams of one-way RC panels. Based on the numerical results, the empirical formulae are derived to calculate the pressure and impulse asymptotes of the P-I diagrams of RC panels. The results presented in this paper can be used to construct P-I diagrams of RC panels with different concrete and reinforcement properties. The P-I diagrams are very useful to assess panel capacities in resisting different blast loads.

Keywords: One-way reinforced concrete (RC) panels, Explosive loads, LS-DYNA Software, Pressure-Impulse (P-I) diagram, Numerical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2723
4190 Design and Realization of an Electronic Load for a PEM Fuel Cell

Authors: Arafet Bouaicha, Hatem Allegui, Amar Rouane, El-Hassane Aglzim, Abdelkader Mami

Abstract:

In order to further understand the behavior of PEM fuel cell and optimize their performance, it is necessary to perform measurements in real time. The internal impedance measurement by electrochemical impedance spectroscopy (EIS) is of great importance. In this work, we present the impedance measurement method of a PEM fuel cell by electrochemical impedance spectroscopy method and the realization steps of electronic load for this measuring technique implementation. The theoretical results are obtained from the simulation of software PSPICE® and experimental tests are carried out using the Ballard Nexa™ PEM fuel cell system.

Keywords: Electronic load, MOS transistor, PEM fuel cell, Impedance measurement, Electrochemical Impedance Spectroscopy (EIS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310
4189 The HDH Model for the Development of Creative Structural Thinking and Its Applications to Other Systems

Authors: Mosseri Avraham

Abstract:

Teaching structures and structural design in architectural studies is considered a difficult mission due to complex reasons and circumstances. This article proposes a new conceptual model (HDH) for teaching structures and structural design in architectural studies. Because of its systems-thinking orientation it is also relevant and applicable to other fields and systems. The HDH model was developed in order to encourage the integration of science and art, especially in relation to structures, in architectural studies.

Keywords: Structural Thinking, Conceptual Design, Teaching Structures, Systems Thinking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
4188 Motivated Support Vector Regression using Structural Prior Knowledge

Authors: Wei Zhang, Yao-Yu Li, Yi-Fan Zhu, Qun Li, Wei-Ping Wang

Abstract:

It-s known that incorporating prior knowledge into support vector regression (SVR) can help to improve the approximation performance. Most of researches are concerned with the incorporation of knowledge in the form of numerical relationships. Little work, however, has been done to incorporate the prior knowledge on the structural relationships among the variables (referred as to Structural Prior Knowledge, SPK). This paper explores the incorporation of SPK in SVR by constructing appropriate admissible support vector kernel (SV kernel) based on the properties of reproducing kernel (R.K). Three-levels specifications of SPK are studied with the corresponding sub-levels of prior knowledge that can be considered for the method. These include Hierarchical SPK (HSPK), Interactional SPK (ISPK) consisting of independence, global and local interaction, Functional SPK (FSPK) composed of exterior-FSPK and interior-FSPK. A convenient tool for describing the SPK, namely Description Matrix of SPK is introduced. Subsequently, a new SVR, namely Motivated Support Vector Regression (MSVR) whose structure is motivated in part by SPK, is proposed. Synthetic examples show that it is possible to incorporate a wide variety of SPK and helpful to improve the approximation performance in complex cases. The benefits of MSVR are finally shown on a real-life military application, Air-toground battle simulation, which shows great potential for MSVR to the complex military applications.

Keywords: admissible support vector kernel, reproducing kernel, structural prior knowledge, motivated support vector regression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
4187 Motivated Support Vector Regression with Structural Prior Knowledge

Authors: Wei Zhang, Yao-Yu Li, Yi-Fan Zhu, Qun Li, Wei-Ping Wang

Abstract:

It-s known that incorporating prior knowledge into support vector regression (SVR) can help to improve the approximation performance. Most of researches are concerned with the incorporation of knowledge in form of numerical relationships. Little work, however, has been done to incorporate the prior knowledge on the structural relationships among the variables (referred as to Structural Prior Knowledge, SPK). This paper explores the incorporation of SPK in SVR by constructing appropriate admissible support vector kernel (SV kernel) based on the properties of reproducing kernel (R.K). Three-levels specifications of SPK are studies with the corresponding sub-levels of prior knowledge that can be considered for the method. These include Hierarchical SPK (HSPK), Interactional SPK (ISPK) consisting of independence, global and local interaction, Functional SPK (FSPK) composed of exterior-FSPK and interior-FSPK. A convenient tool for describing the SPK, namely Description Matrix of SPK is introduced. Subsequently, a new SVR, namely Motivated Support Vector Regression (MSVR) whose structure is motivated in part by SPK, is proposed. Synthetic examples show that it is possible to incorporate a wide variety of SPK and helpful to improve the approximation performance in complex cases. The benefits of MSVR are finally shown on a real-life military application, Air-toground battle simulation, which shows great potential for MSVR to the complex military applications.

Keywords: admissible support vector kernel, reproducing kernel, structural prior knowledge, motivated support vector regression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358
4186 The Use of Electronic Shelf Labels in the Retail Food Sector

Authors: Brent McKenzie, Victoria Taylor

Abstract:

The use of QR (Quick Response Codes) codes for customer scanning with mobile phones is a rapidly growing trend. The QR code can provide the consumer with product information, user guides, product use, competitive pricing, etc. One sector for QR use has been in retail, through the use of Electronic Shelf Labeling (henceforth, ESL). In Europe, the use of ESL for pricing has been in practice for a number of years but continues to lag in acceptance in North America. Stated concerns include costs as a key constraint, but there is also evidence that consumer acceptance represents a limitation as well. The purpose of this study is to present the findings of a consumer based study to gage the impact on their use in the retail food sector.

Keywords: Electronic shelf labels (ESL), consumer insights, retail food sector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3224
4185 Structural and Electrical Characterization of Polypyrrole and Cobalt Aluminum Oxide Nanocomposites

Authors: Sutar Rani Ananda, M. V. Murugendrappa

Abstract:

To investigate electrical properties of conducting polypyrrole (PPy) and cobalt aluminum oxide (CAO) nanocomposites, impedance analyzer in frequency range of 100 Hz to 5 MHz is used. In this work, PPy/CAO nanocomposites were synthesized by chemical oxidation polymerization method in different weight percent of CAO in PPy. The dielectric properties and AC conductivity studies were carried out for different nanocomposites in temperature range of room temperature to 180 °C. With the increase in frequency, the dielectric constant for all the nanocomposites was observed to decrease. AC conductivity of PPy was improved by addition of CAO nanopowder.

Keywords: Polypyrrole, dielectric constant, dielectric loss, AC conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
4184 Metabolites of Polygonum L. Plants Having Antitumor Properties

Authors: Dmitriy Yu. Korulkin, Raissa A. Muzychkina

Abstract:

The article represents the results of research of antitumor activity of different structural types of plant flavonoids extracted by authors from Polygonum L. plants in commercial reserves at the territory of the Republic of Kazakhstan. For the first time ever the results comparative research of antitumor activity of plant flavonoids of different structural groups and their synthetic derivatives have been represented. The results of determination of toxicity of flavonoids in single parenteral infusion conditions have been represented. Experimental substantiation of possible mechanisms of antiproliferative and cytotoxic action of flavonoids has been suggested. The perspectives of usage of plant flavonoids as medications and creation of effective dosage forms of antitumor medicines on their basis have been substantiated.

Keywords: Antitumor activity, cytotoxicity, flavonoids, Polygonum L., secondary metabolites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2311
4183 Corrosion Protection of Structural Steel by Surfactant Containing Reagents

Authors: D. Erdenechimeg, T. Bujinlkham, N. Erdenepurev

Abstract:

The anti-corrosion performance of fatty acid coated mild steel samples is studied. Samples of structural steel coated with collector reagents deposited from surfactant in ethanol solution and overcoated with an epoxy barrier paint. A quantitative corrosion rate was determined by linear polarization resistance method using biopotentiostat/galvanostat 400. Coating morphology was determined by scanning electronic microscopy. A test for hydrophobic surface of steel by surfactant was done. From the samples, the main component or high content iron was determined by chemical method and other metal contents were determined by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) method. Prior to measuring the corrosion rate, mechanical and chemical treatments were performed to prepare the test specimens. Overcoating the metal samples with epoxy barrier paint after exposing them with surfactant the corrosion rate can be inhibited by 34-35 µm/year.

Keywords: Corrosion, linear polarization resistance, coating, surfactant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 580
4182 Synthesis and Characterization of ZnO and Fe3O4 Nanocrystals from Oleat-based Organometallic Compounds

Authors: PoiSim Khiew, WeeSiong Chiu, ThianKhoonTan, Shahidan Radiman, Roslan Abd-Shukor, Muhammad Azmi Abd-Hamid, ChinHua Chia

Abstract:

Magnetic and semiconductor nanomaterials exhibit novel magnetic and optical properties owing to their unique size and shape-dependent effects. With shrinking the size down to nanoscale region, various anomalous properties that normally not present in bulk start to dominate. Ability in harnessing of these anomalous properties for the design of various advance electronic devices is strictly dependent on synthetic strategies. Hence, current research has focused on developing a rational synthetic control to produce high quality nanocrystals by using organometallic approach to tune both size and shape of the nanomaterials. In order to elucidate the growth mechanism, transmission electron microscopy was employed as a powerful tool in performing real time-resolved morphologies and structural characterization of magnetic (Fe3O4) and semiconductor (ZnO) nanocrystals. The current synthetic approach is found able to produce nanostructures with well-defined shapes. We have found that oleic acid is an effective capping ligand in preparing oxide-based nanostructures without any agglomerations, even at high temperature. The oleate-based precursors and capping ligands are fatty acid compounds, which are respectively originated from natural palm oil with low toxicity. In comparison with other synthetic approaches in producing nanostructures, current synthetic method offers an effective route to produce oxide-based nanomaterials with well-defined shapes and good monodispersity. The nanocystals are well-separated with each other without any stacking effect. In addition, the as-synthesized nanopellets are stable in terms of chemically and physically if compared to those nanomaterials that are previous reported. Further development and extension of current synthetic strategy are being pursued to combine both of these materials into nanocomposite form that will be used as “smart magnetic nanophotocatalyst" for industry waste water treatment.

Keywords: Metal oxide nanomaterials, Nanophotocatalyst, Organometallic synthesis, Morphology Control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2533
4181 Self-Sensing Concrete Nanocomposites for Smart Structures

Authors: A. D'Alessandro, F. Ubertini, A. L. Materazzi

Abstract:

In the field of civil engineering, Structural Health Monitoring is a topic of growing interest. Effective monitoring instruments permit the control of the working conditions of structures and infrastructures, through the identification of behavioral anomalies due to incipient damages, especially in areas of high environmental hazards as earthquakes. While traditional sensors can be applied only in a limited number of points, providing a partial information for a structural diagnosis, novel transducers may allow a diffuse sensing. Thanks to the new tools and materials provided by nanotechnology, new types of multifunctional sensors are developing in the scientific panorama. In particular, cement-matrix composite materials capable of diagnosing their own state of strain and tension, could be originated by the addition of specific conductive nanofillers. Because of the nature of the material they are made of, these new cementitious nano-modified transducers can be inserted within the concrete elements, transforming the same structures in sets of widespread sensors. This paper is aimed at presenting the results of a research about a new self-sensing nanocomposite and about the implementation of smart sensors for Structural Health Monitoring. The developed nanocomposite has been obtained by inserting multi walled carbon nanotubes within a cementitious matrix. The insertion of such conductive carbon nanofillers provides the base material with piezoresistive characteristics and peculiar sensitivity to mechanical modifications. The self-sensing ability is achieved by correlating the variation of the external stress or strain with the variation of some electrical properties, such as the electrical resistance or conductivity. Through the measurement of such electrical characteristics, the performance and the working conditions of an element or a structure can be monitored. Among conductive carbon nanofillers, carbon nanotubes seem to be particularly promising for the realization of self-sensing cement-matrix materials. Some issues related to the nanofiller dispersion or to the influence of the nano-inclusions amount in the cement matrix need to be carefully investigated: the strain sensitivity of the resulting sensors is influenced by such factors. This work analyzes the dispersion of the carbon nanofillers, the physical properties of the fresh dough, the electrical properties of the hardened composites and the sensing properties of the realized sensors. The experimental campaign focuses specifically on their dynamic characterization and their applicability to the monitoring of full-scale elements. The results of the electromechanical tests with both slow varying and dynamic loads show that the developed nanocomposite sensors can be effectively used for the health monitoring of structures.

Keywords: Carbon nanotubes, self-sensing nanocomposites, smart cement-matrix sensors, structural health monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3394
4180 Influence of Non-Structural Elements on Dynamic Response of Multi-Storey Rc Building to Mining Shock

Authors: Joanna M. Dulińska, Maria Fabijańska

Abstract:

In the paper the results of calculations of the dynamic response of a multi-storey reinforced concrete building to a strong mining shock originated from the main region of mining activity in Poland (i.e. the Legnica-Glogow Copper District) are presented. The representative time histories of accelerations registered in three directions were used as ground motion data in calculations of the dynamic response of the structure. Two variants of a numerical model were applied: the model including only structural elements of the building and the model including both structural and non-structural elements (i.e. partition walls and ventilation ducts made of brick). It turned out that non-structural elements of multi-storey RC buildings have a small impact of about 10 % on natural frequencies of these structures. It was also proved that the dynamic response of building to mining shock obtained in case of inclusion of all non-structural elements in the numerical model is about 20 % smaller than in case of consideration of structural elements only. The principal stresses obtained in calculations of dynamic response of multi-storey building to strong mining shock are situated on the level of about 30% of values obtained from static analysis (dead load).

Keywords: Dynamic characteristics of buildings, mining shocks, dynamic response of buildings, non-structural elements

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
4179 Power Electronic Solution for High Energetic Efficiency of a Thermo Plant

Authors: Aziza Benaboud, Alfred Rufer

Abstract:

In this paper the authors propose a flexible electronic solution, to improve the energetic efficiency of a thermo plant. This is achieved by replacing the mechanical gear box, placed traditionally between a gas turbine and a synchronous generator; by a power electronic converter. After reminding problematic of gear boxes and interest of a proposed electronic solution in high power plants, the authors describe a new control strategy for an indirect frequency converter, which is characterized by its high efficiency due to the use of SWM: Square Wave Modulation. The main advantage of this mode is the quasi absence of switching losses. A control method is also proposed to resolve some problems incurred by using square wave modulation, in particular to reduce the harmonics distortion of the output inverter voltage and current. Simulation examples as well as experimental results are included.

Keywords: Angle shift, high efficiency, indirect converter, gas turbine, NPC three level converter, square wave modulation SWM, switching angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
4178 Structure Based Computational Analysis and Molecular Phylogeny of C- Phycocyanin Gene from the Selected Cyanobacteria

Authors: N. Reehana, A. Parveez Ahamed, D. Mubarak Ali, A. Suresh, R. Arvind Kumar, N. Thajuddin

Abstract:

Cyanobacteria play a vital role in the production of phycobiliproteins that includes phycocyanin and phycoerythrin pigments. Phycocyanin and related phycobiliproteins have wide variety of application that is used in the food, biotechnology and cosmetic industry because of their color, fluorescent and antioxidant properties. The present study is focused to understand the pigment at molecular level in the Cyanobacteria Oscillatoria terebriformis NTRI05 and Oscillatoria foreaui NTRI06. After extraction of genomic DNA, the amplification of C-Phycocyanin gene was done with the suitable primer PCβF and PCαR and the sequencing was performed. Structural and Phylogenetic analysis was attained using the sequence to develop a molecular model.

Keywords: Cyanobacteria, C-Phycocyanin gene, Phylogenetic analysis, Structural analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3013
4177 Heat Treatment of Aluminum Alloy 7449

Authors: Suleiman E. Al-lubani, Mohammad E. Matarneh, Hussien M. Al-Wedyan, Ala M. Rayes

Abstract:

Aluminum alloy has an extensive range of industrial application due to its consistent mechanical properties and structural integrity. The heat treatment by precipitation technique affected the Magnesium, Silicon Manganese and copper crystals dissolved in the Aluminum alloy. The crystals dislocated to precipitate on the crystal’s boundaries of the Aluminum alloy when given a thermal energy increased its hardness. In this project various times and temperature were varied to find out the best combination of these variables to increase the precipitation of the metals on the Aluminum crystal’s boundaries which will lead to get the highest hardness. These specimens are then tested for their hardness and tensile strength. It is noticed that when the temperature increases, the precipitation increases and consequently the hardness increases. A threshold temperature value (264C0) of Aluminum alloy should not be reached due to the occurrence of recrystalization which causes the crystal to grow. This recrystalization process affected the ductility of the alloy and decrease hardness. In addition, and while increasing the temperature the alloy’s mechanical properties will decrease. The mechanical properties, namely tensile and hardness properties are investigated according to standard procedures. In this research, different temperature and time have been applied to increase hardening.The highest hardness at 100°c in 6 hours equals to 207.31 HBR, while at the same temperature and time the lowest elongation equals to 146.5.

Keywords: Aluminum alloy, recrystalization process, heat treatment, hardness properties, precipitation, intergranular breakage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4025
4176 Preparation of Nanophotonics LiNbO3 Thin Films and Studying Their Morphological and Structural Properties by Sol-Gel Method for Waveguide Applications

Authors: A. Fakhri Makram, Marwa S. Alwazni, Al-Douri Yarub, Evan T. Salim, Hashim Uda, Chin C. Woei

Abstract:

Lithium niobate (LiNbO3) nanostructures are prepared on quartz substrate by the sol-gel method. They have been deposited with different molarity concentration and annealed at 500°C. These samples are characterized and analyzed by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM). The measured results showed an importance increasing in molarity concentrations that indicate the structure starts to become crystal, regular, homogeneous, well crystal distributed, which made it more suitable for optical waveguide application.

Keywords: Lithium niobate, morphological properties, Pechini method, thin film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
4175 The Future of Electronic Money

Authors: Maria E. de Boyrie, Darlene Nelson, James A. Nelson

Abstract:

The history of money is described in relationship to the history of computing. With the transformation and acceptance of money as information, major challenges to the security of money have involved engineering, computer science, and management. Research opportunities and challenges are described as money continues its transformation into information.

Keywords: Electronic, information, money, risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863
4174 Testing of Electronic Control Unit Communication Interface

Authors: Petr Šimek, Kamil Kostruk

Abstract:

This paper deals with the problem of testing the Electronic Control Unit (ECU) for the specified function validation. Modern ECUs have many functions which need to be tested. This process requires tracking between the test and the specification. The technique discussed in this paper explores the system for automating this process. The paper focuses on the introduction to the problem in general, then it describes the proposed test system concept and its principle. It looks at how the process of the ECU interface specification file for automated interface testing and test tracking works. In the end, the future possible development of the project is discussed.

Keywords: Electronic control unit testing, embedded system, test generate, test automation, process automation, CAN bus, Ethernet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184
4173 Simulated Annealing Application for Structural Optimization

Authors: Farhad Kolahan, M. Hossein Abolbashari, Samaeddin Mohitzadeh

Abstract:

Several methods are available for weight and shape optimization of structures, among which Evolutionary Structural Optimization (ESO) is one of the most widely used methods. In ESO, however, the optimization criterion is completely case-dependent. Moreover, only the improving solutions are accepted during the search. In this paper a Simulated Annealing (SA) algorithm is used for structural optimization problem. This algorithm differs from other random search methods by accepting non-improving solutions. The implementation of SA algorithm is done through reducing the number of finite element analyses (function evaluations). Computational results show that SA can efficiently and effectively solve such optimization problems within short search time.

Keywords: Simulated annealing, Structural optimization, Compliance, C.V. product.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
4172 Experimental Investigation on Residual Stresses in Welded Medium-Walled I-shaped Sections Fabricated from Q460GJ Structural Steel Plates

Authors: Qian Zhu, Shidong Nie, Bo Yang, Gang Xiong, Guoxin Dai

Abstract:

GJ steel is a new type of high-performance structural steel which has been increasingly adopted in practical engineering. Q460GJ structural steel has a nominal yield strength of 460 MPa, which does not decrease significantly with the increase of steel plate thickness like normal structural steel. Thus, Q460GJ structural steel is normally used in medium-walled welded sections. However, research works on the residual stress in GJ steel members are few though it is one of the vital factors that can affect the member and structural behavior. This article aims to investigate the residual stresses in welded I-shaped sections fabricated from Q460GJ structural steel plates by experimental tests. A total of four full scale welded medium-walled I-shaped sections were tested by sectioning method. Both circular curve correction method and straightening measurement method were adopted in this study to obtain the final magnitude and distribution of the longitudinal residual stresses. In addition, this paper also explores the interaction between flanges and webs. And based on the statistical evaluation of the experimental data, a multilayer residual stress model is proposed.

Keywords: Q460GJ structural steel, residual stresses, sectioning method, Welded medium-walled I-shaped sections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1007
4171 Seismic Performance Evaluation of the Composite Structural System with Separated Gravity and Lateral Resistant Systems

Authors: Zi-Ang Li, Mu-Xuan Tao

Abstract:

During the process of the industrialization of steel structure housing, a composite structural system with separated gravity and lateral resistant systems has been applied in engineering practices, which consists of composite frame with hinged beam-column joints, steel brace and RC shear wall. As an attempt in steel structural system area, seismic performance evaluation of the separated composite structure is important for further application in steel housing. This paper focuses on the seismic performance comparison of the separated composite structural system and traditional steel frame-shear wall system under the same inter-story drift ratio (IDR) provision limit. The same architectural layout of a high-rise building is designed as two different structural systems at the same IDR level, and finite element analysis using pushover method is carried out. Static pushover analysis implies that the separated structural system exhibits different lateral deformation mode and failure mechanism with traditional steel frame-shear wall system. Different indexes are adopted and discussed in seismic performance evaluation, including IDR, safe factor (SF), shear wall damage, etc. The performance under maximum considered earthquake (MCE) demand spectrum shows that the shear wall damage of two structural systems are similar; the separated composite structural system exhibits less plastic hinges; and the SF index value of the separated composite structural system is higher than the steel frame shear wall structural system.

Keywords: Finite element analysis, seismic performance evaluation, separated composite structural system, static pushover analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 500
4170 Effects of Various Substrate Openings for Electronic Cooling under Forced and Natural Convection

Authors: Shen-Kuei Du, Jen-Chieh Chang, Chia-Hong Kao, Tzu-Chen Hung, Chii-Ray Lin

Abstract:

This study experimentally investigates the heat transfer effects of forced convection and natural convection under different substrate openings design. A computational fluid dynamics (CFD) model was established and implemented to verify and explain the experimental results and heat transfer behavior. It is found that different opening position will destroy the growth of the boundary layer on substrates to alter the cooling ability for both forced under low Reynolds number and natural convection. Nevertheless, having too many opening may reduce heat conduction and affect the overall heat transfer performance. This study provides future researchers with a guideline on designing and electronic package manufacturing.

Keywords: electronic cooling, experiment, opening concept, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
4169 Influence of Internal Topologies on Components Produced by Selective Laser Melting: Numerical Analysis

Authors: C. Malça, P. Gonçalves, N. Alves, A. Mateus

Abstract:

Regardless of the manufacturing process used, subtractive or additive, material, purpose and application, produced components are conventionally solid mass with more or less complex shape depending on the production technology selected. Aspects such as reducing the weight of components, associated with the low volume of material required and the almost non-existent material waste, speed and flexibility of production and, primarily, a high mechanical strength combined with high structural performance, are competitive advantages in any industrial sector, from automotive, molds, aviation, aerospace, construction, pharmaceuticals, medicine and more recently in human tissue engineering. Such features, properties and functionalities are attained in metal components produced using the additive technique of Rapid Prototyping from metal powders commonly known as Selective Laser Melting (SLM), with optimized internal topologies and varying densities. In order to produce components with high strength and high structural and functional performance, regardless of the type of application, three different internal topologies were developed and analyzed using numerical computational tools. The developed topologies were numerically submitted to mechanical compression and four point bending testing. Finite Element Analysis results demonstrate how different internal topologies can contribute to improve mechanical properties, even with a high degree of porosity relatively to fully dense components. Results are very promising not only from the point of view of mechanical resistance, but especially through the achievement of considerable variation in density without loss of structural and functional high performance.

Keywords: Additive Manufacturing, Internal topologies, Porosity, Rapid Prototyping, Selective Laser Melting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
4168 Seismic Performance of Masonry Buildings in Algeria

Authors: F. Lazzali, S. Bedaoui

Abstract:

Structural performance and seismic vulnerability of masonry buildings in Algeria are investigated in this paper. Structural classification of such buildings is carried out regarding their structural elements. Seismicity of Algeria is briefly discussed. Then vulnerability of masonry buildings and their failure mechanisms in the Boumerdes earthquake (May, 2003) are examined.

Keywords: Masonry building, seismic deficiencies, vulnerability classes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310
4167 Thermodynamic, Structural and Transport Properties of Molten Copper-Thallium Alloys

Authors: D. Adhikari, R. P. Koirala, B.P. Singh

Abstract:

A self-association model has been used to understand the concentration dependence of free energy of mixing (GM), heat of mixing (HM), entropy of mixing (SM), activity (a) and microscopic structures, such as concentration fluctuation in long wavelength limit (Scc(0)) and Warren-Cowley short range order parameter ( 1 α )for Cu- Tl molten alloys at 1573K. A comparative study of surface tension of the alloys in the liquid state at that temperature has also been carried out theoretically as function of composition in the light of Butler-s model, Prasad-s model and quasi-chemical approach. Most of the computed thermodynamic properties have been found in agreement with the experimental values. The analysis reveals that the Cu-Tl molten alloys at 1573K represent a segregating system at all concentrations with moderate interaction. Surface tensions computed from different approaches have been found to be comparable to each other showing increment with the composition of copper.

Keywords: Concentration fluctuations, surface tension, thermodynamic properties, Quasi-chemical approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118
4166 Effect of Heat-Moisture Treatment on the Formation and Properties of Resistant Starches From Mung Bean (Phaseolus radiatus) Starches

Authors: Su-Ling Li, Qun-Yu Gao

Abstract:

Mung bean starches were subjected to heat-moisture treatment (HMT) by different moisture contents (15%, 20%, 25%, 30% and 35%) at 120Ôäâ for 12h. The impact on the yields of resistant starch (RS), microstructure, physicochemical and functional properties was investigated. Compared to native starch, the RS content of heat-moisture treated starches increased significantly. The RS level of HMT-20 was the highest of all the starches. Birefringence was displayed clear at the center of native starch. For HMT starches, pronounced birefringence was exhibited on the periphery of starch granules; however, birefringence disappeared at the centre of some starch granules. The shape of HMT starches hadn-t been changed and the integrity of starch granules was preserved for all the conditions. Concavity could be observed on HMT starches under scanning electronic microscopy. After HMT, apparent amylose contents were increased and starch macromolecule was degraded in comparison with those of native starch. There was a reduction in swelling power on HMT starches, but the solubility of HMT starches was higher than that of native starch. Both of native and HMT starches showed A-type X-ray diffraction pattern. Furthermore, there is a higher intensity at the peak of 15.0 and 22.9 Å than those of native starch.

Keywords: Resistant starch, mung bean (Phaseolus radiatus) starch, heat-moisture treatment, physicochemical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3480
4165 Influence of Tool Profile on Mechanical Properties of Friction Stir Welded Aluminium Alloy 5083

Authors: A. Chandrashekar, H. N. Reddappa, B. S. Ajaykumar

Abstract:

A Friction stir welding tool is a critical component to the success of the process. The tool typically consists of a rotating round shoulder and a threaded cylindrical pin that heats the work piece, mostly by friction, and moves the softened alloy around it to form the joint. In this research work, an attempt has been made to investigate the relationship between FSW variables mainly tool profile, rotating speed, welding speed and the mechanical properties (tensile strength, yield strength, percentage elongation, and micro hardness) of friction stir welded aluminum alloy 5083 joints. From the experimental details, it can be assessed that the joint produced by using Triflute profile tool has contribute superior mechanical and structural properties as compared to Tapered unthreaded & Threaded tool for 1000rpm.

Keywords: Friction stir welding, Tool profile, Rotating speed, Strength, Speed ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2439
4164 A Resource Survey of Lateritic Soils and Impact Evaluation toward Community Members Living Nearby the Excavation Pits

Authors: Ratchasak Suvannatsiri

Abstract:

The objectives of the research are to find the basic engineering properties of lateritic soil and to predict the impact on community members who live nearby the excavation pits in the area of Amphur Pak Thor, Ratchaburi Province in the western area of Thailand. The research was conducted by collecting soil samples from four excavation pits for basic engineering properties, testing and collecting questionnaire data from 120 community members who live nearby the excavation pits, and applying statistical analysis. The results found that the basic engineering properties of lateritic soil can be classified into silt soil type which is cohesionless as the loess or collapsible soil which is not suitable to be used for a pavement structure for commuting highway because it could lead to structural and functional failure in the long run. In terms of opinion from community members toward the impact, the highest impact was on the dust from excavation activities. The prediction from the logistic regression in terms of impact on community members was at 84.32 which can be adapted and applied onto other areas with the same context as a guideline for risk prevention and risk communication since it could impact the infrastructures and also impact the health of community members.

Keywords: Lateritic soil, excavation pits, engineering properties, impact on community members

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 706
4163 A Secure Blind Signature Scheme for Computation Limited Users

Authors: Chun-I Fan, Ming-Te Chen

Abstract:

This manuscript presents a fast blind signature scheme with extremely low computation for users. Only several modular additions and multiplications are required for a user to obtain and verify a signature in the proposed scheme. Comparing with the existing ones in the literature, the scheme greatly reduces the computations for users.

Keywords: Blind signatures, Untraceable electronic cash, Security & privacy, Electronic commerce

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
4162 Citizens’ Readiness to Adopt and Use Electronic Voting System in Ghana

Authors: Isaac Kofi Mensah

Abstract:

The adoption and application of Information and Communication Technologies (ICTs) in government administration through e-government is expected to permeate all sectors of state/ public institutions as well as democratic institutions. One of such public institutions is the Electoral Commission of Ghana mandated by the 1992 Constitution to hold all public elections including presidential and parliamentary elections. As Ghana holds its 7th General Elections since 1992, on 7th November 2016, there are demands from key stakeholders for the Election Management Body, which is the Electoral Commission (EC) of Ghana to adopt and implement an electronic voting system. This case study, therefore, attempts to contribute significantly to the debate by examining influencing factors that would impact on citizen’s readiness to adopt and use an electronic voting system in Ghana. The Technology Acceptance Model (TAM) was used as a theoretical framework for this study, out of which a research model and hypotheses were developed. Importantly, the outcome of this research finding would form a basis for appropriate policy recommendation for consideration of Government and EC of Ghana.

Keywords: Citizens readiness, e-government, electronic voting, technology acceptance model (TAM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420