
 

 

  
Abstract—Several methods are available for weight and shape 

optimization of structures, among which Evolutionary Structural 
Optimization (ESO) is one of the most widely used methods. In ESO, 
however, the optimization criterion is completely case-dependent. 
Moreover, only the improving solutions are accepted during the 
search. In this paper a Simulated Annealing (SA) algorithm is used 
for structural optimization problem. This algorithm differs from other 
random search methods by accepting non-improving solutions. The 
implementation of SA algorithm is done through reducing the 
number of finite element analyses (function evaluations). 
Computational results show that SA can efficiently and effectively 
solve such optimization problems within short search time. 
 

Keywords—Simulated annealing, Structural optimization, 
Compliance, C.V. product. 

I. INTRODUCTION 
EIGHT optimization is one of the most important issues 
in designing different structures such as machine 

elements, towers and frames. Design engineer working in the 
field of research and development has to often design 
completely new structures. The loading and support 
conditions of a particular design problem are usually known in 
advance, but the designer should decide on the final shape and 
geometry of structure. Weight is known to be one of the main 
criteria in structural design. For this reason, weight reduction 
is often set as the main objective of the design task. Due to 
financial and safety considerations, optimum design of 
structures has received much attention in the literature.  

Among different optimization methods, Evolutionary 
Structural Optimization (ESO) is the most widely used 
techniques. ESO is based on a simple idea that an optimal 
structure (with maximum stiffness but minimum weight) can 
be achieved by gradually removing inefficient materials from 
design domain. This method was first proposed by Xie and 
Steven [1]. The basic concept of ESO is that by systematically 
removing inefficient materials, the structure evolves towards a 
lighter one. It is usually employed for sizing, shape and layout 
problems under stress considerations [1], [2].  

A major drawback with ESO is that the optimization results 
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are likely to be local optimums, as the removal is one-sided 
and thus some useful elements are probably deleted in the 
early evolutional generations. To overcome this problem, ESO 
has been extended to bidirectional evolutionary structural 
optimization (BESO) which allows materials to be added to 
the structure at the same time as the inefficient ones are 
removed [3].  

However, the results from ESO/BESO are likely to be local 
optimums other than the global optimum desired [4-6]. One 
obvious deficiency of ESO/BESO is that these methods may 
result in a non-convergent solution [4]. In other words, the 
solution may be worse and worse in terms of the objective 
function, e.g. compliance, if the ESO/BESO procedure 
continues without stop. Apparently, the solution using this 
type of ESO/BESO procedure is problematic when a broken 
member with no or low strain energy happens to be a part of 
the final topology [5]. In addition, for BESO method, the new 
elements are introduced only around existing elements with a 
high value of the criterion function. Such an element 
introduction may be unsuccessful in rectifying incorrect 
element rejections. It could also be unsuccessful in connecting 
large areas/volumes where much material has been removed 
[6].  

In this paper, a Simulated Annealing (SA) approach for 
structural optimization is presented. The objective is to find a 
design with minimum compliance with respect to a desired 
volume. The optimization is done in such a way that design 
specifications such as structure performance and overall 
geometry are maintained.  

II. SIMULATED ANNEALING 
Simulated annealing (SA), first proposed by Kirkpatrik et 

al. [7], is a method suitable for solving optimization problems 
of large scales. This algorithm, among few other heuristics, is 
suitable for complicated problems where global optimum is 
hidden among many local optima. The idea of the method is 
an analogy with the way molten metals cool and anneal. For 
slowly cooled process, system is able to find the minimum 
energy state. So slow cooling is essential for ensuring that a 
low energy state is achieved.  

A standard SA procedure begins by generating an initial 
solution at random. At initial stages, a small random change is 
made in the current solution. Then the objective function 
value of new solution is calculated and compared with that of 
current solution. A move is made to the new solution if it has 
better value or if the probability function implemented in SA 
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has a higher value than a randomly generated number. 
Otherwise a new solution generated and evaluated.  

The probability of accepting a new solution is given as 
follows: 

⎪⎩
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                                                               (1)                                                                                    

The calculation of this probability relies on a temperature 
parameter, T, which is referred to as temperature, since it 
plays a similar role as the temperature in the physical 
annealing process. To avoid getting trapped at a local 
minimum point, the rate of reduction should be slow. In our 
problem the following method to reduce the temperature has 
been used: 

19.0...,1,01 <≤==+ candicTT ii                            (2) 
Thus, at the start of SA most worsening moves may be 

accepted, but at the end only improving ones are likely to be 
allowed. This can help the procedure jump out of a local 
minimum. The algorithm may be terminated after a certain 
volume fraction for the structure has been reached or after a 
pre-specified run time. 

Additional concepts about SA and some of its applications 
can easily be found in literature (e.g., [8], [9]).  

III. PROBLEM FORMULATION 
The SA formulation for structural optimization is based on 

the continuous problem of minimizing the total compliance in 
volume product (C.V Product) [2]. The general model for C.V 
optimization is as follows: 
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In the above model, V is the volume of structure at each 
iteration during optimization process, 0V  is initial volume and 
volfrac is the minimum volume ratio with respect to initial 
volume. In Finite Element (FE) analysis, the total compliance 
of structure is given by: 

 

∑
=

=
N

i
i

T
i

P
i uKuxxC

1
}]{[}{)(  (4) 

In equation (4) ix  is the vector of design variable that 

defines the density of i-th element, N is the total number of 
elements, P is the penalization power (typically P=3), }{ iu  is 
the displacement vector for i-th element and [K] is the global 
stiffness matrix. 

The variable x can be zero or one. Thus if an element exists 
in the model its density is 1 and otherwise it is set to zero; i.e., 

}1,0{∈x . In this paper, to avoid singularity we use x = 0.0001 
instead x = 0.  

IV. EXAMPLE PROBLEM AND FE ANALYSIS 
Fig. 1 shows a typical topology optimization problem in 

which the compliance is to be minimized for various volume 

fractions [5]. There is a fix support at the left and a roller 
support at the top. Young’s modulus is taken as unity and 
Poisson’s ratio as zero. The element thickness may only be 
unity or zero. The load condition consists of a horizontal load 
of intensity 2.0 and a vertical load of intensity 1.0.  

The objective is to minimize the product of compliance by 
weight in such a way that the overall shape of structure is 
maintained and the structure can still endure the applied load 
without failure. 

During the optimization process, in each iteration, the value 
C(x) has to be calculated using FE analysis. For this purpose 
and to speed up search, we have created the FE analysis 
subroutine using MATLAB code and implanted it in the SA 
algorithm. In this way, the FE analysis is done much faster.  In 
FE analysis a model with 100 four-node quadrilateral 
elements has been used. 

 

 
Fig. 1 test example, initial design with FE mesh 

 

V. IMPLEMENTATION OF SA ALGORITHM 
As shown in Fig. 1, to begin the optimization procedure, the 

initial design domain is considered as a rectangular consists of 
7 elements in vertical direction and 32 elements in horizontal 
direction. Then, the densities of 100 elements that constituted 
the original model (shape) are set to unity; i.e. 1=ix . These 
elements are shown in black in Fig. 2. The densities of 
remaining elements are set to zero (white color). 

 

 
Fig. 2 Initial and original design domains 

 
The search starts with the original design. In each iteration, 

SA randomly finds an element in original domain and changes 
its density from 1 to 0.0001 (near zero). Then FE program is 
executed to calculate compliance for the new shape. This 
compliance is then returned to main program to determine the 
objective function value. The new and current objective 
function values are then compared. A move to new solution 
(shape) is made under two conditions: 1) the value of new 
objective function is better than the current one and 2) the 
probability of accepting a new solution, given by equation 1, 
is greater than a uniform random number between (0,1]. 
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Otherwise if none of these conditions is satisfied, the density 
of that selected element is returned to its previous value 
namely 1 and a new move is generated. The search is 
terminated after a pre-defined volume fraction is obtained or 
after a specified run time, whichever comes first. 

For simulated annealing algorithm, we have set the initial 
temperature 5 times of compliance of initial 
design )5( 00 CT ×= . The temperature control function was 

set to )(9.0 1−= ii TT , with i denoting number of iterations. 

In designing the optimization procedure, important 
functional constraints have been taken into consideration. For 
instance, the algorithm was not allowed to remove those 
elements that create vertical tie and elements that carry out the 
load. Also to avoid discontinuity in structure, the removal of 
any element that resulted in discontinuity was prohibited to 
the algorithm.  

 

 
Fig. 3 Evolution of the solution during the search 

 

For a sample run, the evolution of structure design, during 
different stages of the search, is illustrated in Fig. 3. 

Since SA is a probabilistic search algorithm, different runs 
may result in dissimilar configurations. Some of these 
solutions may not be optimum, especially if the search is 
terminated prematurely. This fact is well demonstrated in Fig.  
4 which shows the final structures for different runs with 
various numbers of iterations.  

 
Fig. 4 Final results for different runs after: (a) 262 iterations, (b) 272 

iterations, (c) 302 iterations, (d) 303 iterations, (e) 290 iterations,     
(f) 405 iterations (Best result) 

 
It should be noted that all of the final designs of Fig. 4 

satisfy our volume fraction constraint. Nevertheless, Fig. 4-f is 
the optimal solution for the example problem [10]. The ESO 
method also results in the same structural configuration.  

Fig. 5 shows the changes in volume fractions during SA 
search. As can be seen, at the final stages of the search, the 
volume fraction reaches its optimal value with small 
variations.  
 

 
Fig. 5 Volume variations during optimization process 

 
Similarly, Fig. 6 shows the changes in compliance values 

during the optimization process. Although the value 
compliance has increased in the final solution, the overall 
value of the objective function, with respect to volume 
fraction, has been minimized.  
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Fig. 6 Compliance variation during SA process 

 
This fact is demonstrated in Fig. 7 that shows the 

convergence curve of C.V product (objective function value). 
This final structure design has much lower weight than the 
original one; while satisfies the design constraints and 
specifications. 

 

 
Fig. 7 C.V product (Objective Function) Variation during SA process 

 

VI. CONCLUSION 
In this research, as an alternative to ESO method, a 

simulated annealing (SA) algorithm has successfully been 
used to optimize the structure design problem. Based on the 
example shown, the proposed approach is quite capable of 
solving structural optimization problems within short search 
times. Computational results have also revealed that the SA 
solution procedure can results in optimal solutions in most 
cases. Given its flexibility and ease of adaptation, SA can be 
viewed as a valuable and attractive tool for structural 
optimization. An extension of this research may be developing 
hybrid heuristic algorithms and more robust solutions 
evaluation criteria in order to tackle such optimization 
problems more efficiently. 
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