Search results for: Explosive loads
514 Possibilities of Mathematical Modelling of Explosive Substance Aerosol and Vapour Dispersion in the Atmosphere
Authors: A. Bumbová, J. Kellner, J. Navrátil, D. Pluskal, M. Kozubková, E. Kozubek
Abstract:
The paper deals with the possibilities of modelling vapour propagation of explosive substances in the FLUENT software. With regard to very low tensions of explosive substance vapours the experiment has been verified as exemplified by mononitrotoluene. Either constant or time variable meteorological conditions have been used for calculation. Further, it has been verified that the eluent source may be time-dependent and may reflect a real situation or the liberation rate may be constant. The execution of the experiment as well as evaluation were clear and it could also be used for modelling vapour and aerosol propagation of selected explosive substances in the atmospheric boundary layer.Keywords: atmospheric boundary layer, explosive substances, FLUENT software, modelling of propagation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707513 A FEM Study of Explosive Welding of Double Layer Tubes
Authors: R. Alipour, F.Najarian
Abstract:
Explosive welding is a process which uses explosive detonation to move the flyer plate material into the base material to produce a solid state joint. Experimental tests have been carried out by other researchers; have been considered to explosively welded aluminium 7039 and steel 4340 tubes in one step. The tests have been done using various stand-off distances and explosive ratios. Various interface geometries have been obtained from these experiments. In this paper, all the experiments carried out were simulated using the finite element method. The flyer plate and collision velocities obtained from the analysis were validated by the pin-measurement experiments. The numerical results showed that very high localized plastic deformation produced at the bond interface. The Ls_dyna_971 FEM has been used for all simulation process.Keywords: Explosive Welding, Johnson-Cook Equation, Finite Element, JWL Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034512 The Empirical Survey on the Effect of Using Media in Explosive Forming of Tubular Shells
Authors: V. Hadavi, J. Zamani, R. Hosseini
Abstract:
The special and unique advantages of explosive forming, has developed its use in different industries. Considering the important influence of improving the current explosive forming techniques on increasing the efficiency and control over the explosive forming procedure, the effects of air and water as the energy-conveying medium, and also their differences will be illustrated in this paper. Hence, a large number of explosive forming tests have been conducted on two sizes of thin walled cylindrical shells by using air and water as the working medium. Comparative diagrams of the maximum radial deflection of work-pieces of the same size, as a function of the scaled distance, show that for the points with the same values of scaled distance, the maximum radial deformation caused by the under water explosive loading is 4 to 5 times more than the deflection of the shells under explosive forming, while using air. Results of this experimental research have also been compared with other studies which show that using water as the energy conveying media increases the efficiency up to 4.8 times. The effect of the media on failure modes of the shells, and the necking mechanism of the walls of the specimens, while being explosively loaded, are also discussed in this issue. Measuring the tested specimens shows that, the increase in the internal volume has been accompanied by necking of the walls, which finally results in the radial rupture of the structure.Keywords: Explosive Forming, Energy Conveying Medium, Tubular Shell
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347511 On the Characteristics of Liquid Explosive Dispersing Flow
Authors: Lei Li, Xiaobing Ren, Xiaoxia Lu, Xiaofang Yan
Abstract:
In this paper, some experiments of liquid dispersion flow driven by explosion in vertical plane were carried out using a liquid explosive dispersion device with film cylindrical constraints. The separated time series describing the breakup shape and dispersion process of liquid were recorded with high speed CMOS camera. The experimental results were analyzed and some essential characteristics of liquid dispersing flow are presented.
Keywords: Explosive Disseminations, liquid dispersion Flow, Cavitations, Gasification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808510 Modeling and Investigation of Elongation in Free Explosive Forming of Aluminum Alloy Plate
Authors: R. Alipour, F.Najarian
Abstract:
Because of high ductility, aluminum alloys, have been widely used as an important base of metal forming industries. But the main week point of these alloys is their low strength so in forming them with conventional methods like deep drawing, hydro forming, etc have been always faced with problems like fracture during of forming process. Because of this, recently using of explosive forming method for forming of these plates has been recommended. In this paper free explosive forming of A2024 aluminum alloy is numerically simulated and during it, explosion wave propagation process is studied. Consequences of this simulation can be effective in prediction of quality of production. These consequences are compared with an experimental test and show the superiority of this method to similar methods like hydro forming and deep drawing.
Keywords: Free explosive forming, CEL, Johnson cook.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2308509 Derivation of Empirical Formulae to Predict Pressure and Impulsive Asymptotes for P-I Diagrams of One-way RC Panels
Authors: Azrul A. Mutalib, Masoud Abedini, Shahrizan Baharom, Hong Hao
Abstract:
There are only limited studies that directly correlate the increase in reinforced concrete (RC) panel structural capacities in resisting the blast loads with different RC panel structural properties in terms of blast loading characteristics, RC panel dimensions, steel reinforcement ratio and concrete material strength. In this paper, numerical analyses of dynamic response and damage of the one-way RC panel to blast loads are carried out using the commercial software LS-DYNA. A series of simulations are performed to predict the blast response and damage of columns with different level and magnitude of blast loads. The numerical results are used to develop pressureimpulse (P-I) diagrams of one-way RC panels. Based on the numerical results, the empirical formulae are derived to calculate the pressure and impulse asymptotes of the P-I diagrams of RC panels. The results presented in this paper can be used to construct P-I diagrams of RC panels with different concrete and reinforcement properties. The P-I diagrams are very useful to assess panel capacities in resisting different blast loads.
Keywords: One-way reinforced concrete (RC) panels, Explosive loads, LS-DYNA Software, Pressure-Impulse (P-I) diagram, Numerical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2762508 Numerical Analysis of Dynamic Responses of the Plate Subjected to Impulsive Loads
Authors: Behzad Mohammadzadeh, Huyk Chun Noh
Abstract:
Plate is one of the popular structural elements used in a wide range of industries and structures. They may be subjected to blast loads during explosion events, missile attacks or aircraft attacks. This study is to investigate dynamic responses of the rectangular plate subjected to explosive loads. The effects of material properties and plate thickness on responses of the plate are to be investigated. The compressive pressure is applied to the surface of the plate. Different amounts of thickness in the range from 1mm to 30mm are considered for the plate to evaluate the changes in responses of the plate with respect to plate thickness. Two different properties are considered for the steel. First, the analysis is performed by considering only the elastic-plastic properties for the steel plate. Later on damping is considered to investigate its effects on the responses of the plate. To do analysis, numerical method using a finite element based package ABAQUS is applied. Finally, dynamic responses and graphs showing the relation between maximum displacement of the plate and aim parameters are provided.
Keywords: Impulsive loaded plates, dynamic analysis, abaqus, material nonlinearity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821507 Analysis of Dynamic Loads Induced by Spectator Movements in Stadium
Authors: Gee-Cheol Kim, Sang-Hoon Lee, Joo-Won Kang
Abstract:
In the stadium structure, the significant dynamic responses such as resonance or similar behavior can be occurred by spectator rhythmical activities. Thus, accurate analysis and precise investigation of stadium structure that is subjected to dynamic loads are required for practical design and serviceability check of stadium structures. Moreover, it is desirable to measure and analyze the dynamic loads of spectator activities because these dynamic loads can not be easily expressed in numerical formula. In this study, various dynamic loads induced by spectator movements are measured and analyzed. These dynamic loads induced by spectators movement of stadium structure can be classified into the impact load and the periodic load. These dynamic loads can be expressed as Fourier harmonic load. And, these dynamic loads could be applied for the accurate vibration analysis of a stadium structure.Keywords: stadium structure, spectator rhythmical activities, vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2813506 Analysis of the Elastic Energy Released and Characterization of the Eruptive Episodes Intensity’s during 2014-2015 at El Reventador Volcano, Ecuador
Authors: Paúl I. Cornejo
Abstract:
The elastic energy released through Strombolian explosions has been quite studied, detailing various processes, sources, and precursory events at several volcanoes. We realized an analysis based on the relative partitioning of the elastic energy radiated into the atmosphere and ground by Strombolian-type explosions recorded at El Reventador volcano, using infrasound and seismic signals at high and moderate seismicity episodes during intense eruptive stages of explosive and effusive activity. Our results show that considerable values of Volcano Acoustic-Seismic Ratio (VASR or η) are obtained at high seismicity stages. VASR is a physical diagnostic of explosive degassing that we used to compare eruption mechanisms at El Reventador volcano for two datasets of explosions recorded at a Broad-Band BB seismic and infrasonic station located at ~5 kilometers from the vent. We conclude that the acoustic energy EA released during explosive activity (VASR η = 0.47, standard deviation σ = 0.8) is higher than the EA released during effusive activity; therefore, producing the highest values of η. Furthermore, we realized the analysis and characterization of the eruptive intensity for two episodes at high seismicity, calculating a η three-time higher for an episode of effusive activity with an occasional explosive component (η = 0.32, and σ = 0.42), than a η for an episode of only effusive activity (η = 0.11, and σ = 0.18), but more energetic.Keywords: Effusive, explosion quakes, explosive, strombolian, VASR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 785505 Modeling and Simulation of Honeycomb Steel Sandwich Panels under Blast Loading
Authors: Sayed M. Soleimani, Nader H. Ghareeb, Nourhan H. Shaker, Muhammad B. Siddiqui
Abstract:
Honeycomb sandwich panels have been widely used as protective structural elements against blast loading. The main advantages of these panels include their light weight due to the presence of voids, as well as their energy absorption capability. Terrorist activities have imposed new challenges to structural engineers to design protective measures for vital structures. Since blast loading is not usually considered in the load combinations during the design process of a structure, researchers around the world have been motivated to study the behavior of potential elements capable of resisting sudden loads imposed by the detonation of explosive materials. One of the best candidates for this objective is the honeycomb sandwich panel. Studying the effects of explosive materials on the panels requires costly and time-consuming experiments. Moreover, these type of experiments need permission from defense organizations which can become a hurdle. As a result, modeling and simulation using an appropriate tool can be considered as a good alternative. In this research work, the finite element package ABAQUS® is used to study the behavior of hexagonal and squared honeycomb steel sandwich panels under the explosive effects of different amounts of trinitrotoluene (TNT). The results of finite element modeling of a specific honeycomb configuration are initially validated by comparing them with the experimental results from literature. Afterwards, several configurations including different geometrical properties of the honeycomb wall are investigated and the results are compared with the original model. Finally, the effectiveness of the core shape and wall thickness are discussed, and conclusions are made.Keywords: Blast loading, finite element modeling, steel honeycomb sandwich panel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704504 Gas Detonation Forming by a Mixture of H2+O2 Detonation
Authors: Morteza Khaleghi Meybodi, Hossein Bisadi
Abstract:
Explosive forming is one of the unconventional techniques in which, most commonly, the water is used as the pressure transmission medium. One of the newest methods in explosive forming is gas detonation forming which uses a normal shock wave derived of gas detonation, to form sheet metals. For this purpose a detonation is developed from the reaction of H2+O2 mixture in a long cylindrical detonation tube. The detonation wave goes through the detonation tube and acts as a blast load on the steel blank and forms it. Experimental results are compared with a finite element model; and the comparison of the experimental and numerical results obtained from strain, thickness variation and deformed geometry is carried out. Numerical and experimental results showed approximately 75 – 90 % similarity in formability of desired shape. Also optimum percent of gas mixture obtained when we mix 68% H2 with 32% O2.Keywords: Explosive forming, High strain rate, Gas detonation, Finite element analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151503 Structural Behavior of Incomplete Box Girder Bridges Subjected to Unpredicted Loads
Authors: E. H. N. Gashti, J. Razzaghi, K. Kujala
Abstract:
In general, codes and regulations consider seismic loads only for completed structures of the bridges while, evaluation of incomplete structure of bridges, especially those constructed by free cantilever method, under these loads is also of great importance. Hence, this research tried to study the behavior of incomplete structure of common bridge type (box girder bridge), in construction phase under vertical seismic loads. Subsequently, the paper provided suitable guidelines and solutions to resist this destructive phenomenon. Research results proved that use of preventive methods can significantly reduce the stresses resulted from vertical seismic loads in box cross sections to an acceptable range recommended by design codes.
Keywords: Box girder bridges, Prestress loads, Free cantilever method, Seismic loads, Construction phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808502 Possibilities of using a Portable Continuous Concentrator for Detection and Identification of Explosives
Authors: Z. Večeřa, P. Mikuška, J. Kellner, J. Navrátil, A. Langerová
Abstract:
The submitted paper deals with the problems of trapping and enriching the gases and aerosols of the substances to be determined in the ambient atmosphere. Further, the paper is focused on the working principle of the miniaturized portable continuous concentrator we have designed and the possibilities of its application in air sampling and accumulation of organic and inorganic substances with which the air is contaminated. The stress is laid on trapping vapours and aerosols of solid substances with the comparatively low vapour tension such as explosive compounds.Keywords: Detectors of explosives, portable continuousconcentrator, misuse of explosive, terrorism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360501 Effects of Material Properties of Warhead Casing on Natural Fragmentation Performance of High Explosive (HE) Warhead
Authors: G. Tanapornraweekit, W. Kulsirikasem
Abstract:
This research paper presents numerical studies of the characteristics of warhead fragmentation in terms of initial velocities, spray angles of fragments and fragment mass distribution of high explosive (HE) warhead. The behavior of warhead fragmentation depends on shape and size of warhead, thickness of casing, type of explosive, number and position of detonator, and etc. This paper focuses on the effects of material properties of warhead casing, i.e. failure strain, initial yield and ultimate strength on the characteristics of warhead fragmentation. It was found that initial yield and ultimate strength of casing has minimal effects on the initial velocities and spray angles of fragments. Moreover, a brittle warhead casing with low failure strain tends to produce higher number of fragments with less average fragment mass.Keywords: Detonation, Material Properties, Natural Fragment, Warhead
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3748500 Analysis of Explosive Shock Wave and its Application in Snow Avalanche Release
Authors: Mahmoud Zarrini, R. N. Pralhad
Abstract:
Avalanche velocity (from start to track zone) has been estimated in the present model for an avalanche which is triggered artificially by an explosive devise. The initial development of the model has been from the concept of micro-continuum theories [1], underwater explosions [2] and from fracture mechanics [3] with appropriate changes to the present model. The model has been computed for different slab depth R, slope angle θ, snow density ¤ü, viscosity μ, eddy viscosity η*and couple stress parameter η. The applicability of the present model in the avalanche forecasting has been highlighted.
Keywords: Snow avalanche velocity, avalanche zones, shockwave, couple stress fluids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682499 Seismic Behavior of Thin Shear Wall under the Exerted Loads
Authors: Ali A. Ofoghi
Abstract:
While the shear walls are not economical in buildings, thin shear walls are widely used in the buildings. In the present study, the ratio of different loads to their plasticity and seismic behavior of the wall under different loads have been investigated. Modeling and analysis are carried out by the finite element analysis software ABAQUS. The results show that any increase in the exerted loads will have adverse effects on the seismic behavior of the thin shear walls and causes the wall to collapse by small displacements.Keywords: Thin shear wall, nonlinear dynamic analysis, reinforced concrete, plasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 946498 Numerical Simulation of the Aerodynamic Loads acting on top of the SMART Centre for PV Applications
Authors: M. Raciti Castelli, S. Toniato, E. Benini
Abstract:
The flow filed around a flatted-roof compound has been investigated by means of 2D and 3D numerical simulations. A constant wind velocity profile, based both on the maximum reference wind speed in the building site (peak gust speed worked out for a 50- year return period) and on the local roughness coefficient, has been simulated in order to determine the wind-induced loads on top of the roof. After determining the influence of the incoming wind directions on the induced roof loads, a 2D analysis of the most severe load condition has been performed, achieving a numerical quantification of the expected wind-induced forces on the PV panels on top of the roof.Keywords: CFD, wind-induced loads, flow around buildings, photovoltaic system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565497 Topping Failure Analysis of Anti-Dip Bedding Rock Slopes Subjected to Crest Loads
Authors: Chaoyi Sun, Congxin Chen, Yun Zheng, Kaizong Xia, Wei Zhang
Abstract:
Crest loads are often encountered in hydropower, highway, open-pit and other engineering rock slopes. Toppling failure is one of the most common deformation failure types of anti-dip bedding rock slopes. Analysis on such failure of anti-dip bedding rock slopes subjected to crest loads has an important influence on engineering practice. Based on the step-by-step analysis approach proposed by Goodman and Bray, a geo-mechanical model was developed, and the related analysis approach was proposed for the toppling failure of anti-dip bedding rock slopes subjected to crest loads. Using the transfer coefficient method, a formulation was derived for calculating the residual thrust of slope toe and the support force required to meet the requirements of the slope stability under crest loads, which provided a scientific reference to design and support for such slopes. Through slope examples, the influence of crest loads on the residual thrust and sliding ratio coefficient was investigated for cases of different block widths and slope cut angles. The results show that there exists a critical block width for such slope. The influence of crest loads on the residual thrust is non-negligible when the block thickness is smaller than the critical value. Moreover, the influence of crest loads on the slope stability increases with the slope cut angle and the sliding ratio coefficient of anti-dip bedding rock slopes increases with the crest loads. Finally, the theoretical solutions and numerical simulations using Universal Distinct Element Code (UDEC) were compared, in which the consistent results show the applicability of both approaches.
Keywords: Anti-dip slopes, crest loads, stability analysis, toppling failure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905496 Characterising Effects of Applied Loads on the Mechanical Properties of Formed Steel Sheets
Authors: Esther T. Akinlabi, Stephen A. Akinlabi
Abstract:
The purpose of this research study is to investigate the manner in which various loads affect the mechanical properties of the formed mild steel plates. The investigation focuses on examining the cross-sectional area of the metal plate at the centre of the formed mild steel plate. Six mild steel plates were deformed with different loads. The loads applied on the plates had a magnitude of 5 kg, 10 kg, 15 kg, 20 kg, 25 kg and 30 kg. The radius of the punching die was 120 mm and the loads were applied at room temperature. The investigations established that the applied load causes the Vickers microhardness at the cross-sectional area of the plate to increase due to strain hardening. Hence, the percentage increase of the hardness due to the load was found to be directly proportional to the increase in the load. Furthermore, the tensile test results for the parent material showed that the average Ultimate Tensile Strength (UTS) for the three samples was 308 MPa while the average Yield Strength and Percentage Elongation were 227 MPa and 38 % respectively. Similarly, the UTS of the formed components increased after the deformation of the plate, as such it can be concluded that the forming loads alter the mechanical properties of the materials by improving and strengthening the material properties.
Keywords: Applied load, forming and Mechanical Properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427495 Elastic Stress Analysis of Annular Bi-Material Discs with Variable Thickness under Mechanical and Thermomechanical Loads
Authors: E. Çetin, A. Kurşun, Ş. Aksoy, M. Tunay Çetin
Abstract:
The closed form study deals with elastic stress analysis of annular bi-material discs with variable thickness subjected to the mechanical and thermomechanical loads. Those discs have many applications in the aerospace industry, such as gas turbines and gears. Those discs normally work under thermal and mechanical loads. Their life cycle can increase when stress components are minimized. Each material property is assumed to be isotropic. The results show that material combinations and thickness of profiles play an important role in determining the responses of bi-material discs and an optimal design of those structures. Stress distribution is investigated and results are shown as graphs.
Keywords: Bi-material discs, elastic stress analysis, mechanical loads, rotating discs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428494 Stress Analysis of Laminated Cylinders Subject to the Thermomechanical Loads
Authors: Ş. Aksoy, A. Kurşun, E. Çetin, M. R. Haboğlu
Abstract:
In this study, thermo elastic stress analysis is performed on a cylinder made of laminated isotropic materials under thermomechanical loads. Laminated cylinders have many applications such as aerospace, automotive and nuclear plant in the industry. These cylinders generally performed under thermomechanical loads. Stress and displacement distribution of the laminated cylinders are determined using by analytical method both thermal and mechanical loads. Based on the results, materials combination plays an important role on the stresses distribution along the radius. Variation of the stresses and displacements along the radius are presented as graphs. Calculations program are prepared using MATLAB® by authors.
Keywords: Isotropic materials, laminated cylinders, thermoelastic stress, thermomechanical load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3746493 Wear Behavior of Commercial Aluminium Engine Block and Piston under Dry Sliding Condition
Authors: M. S. Kaiser, Swagata Dutta
Abstract:
In the present work, the effect of load and sliding distance on the performance tribology of commercially used aluminium-silicon engine block and piston was evaluated at ambient conditions with humidity of 80% under dry sliding conditions using a pin-on-disc with two different loads of 5N and 20N yielding applied pressure of 0.30MPa and 1.4MPa, respectively, at sliding velocity of 0.29ms-1 and with varying sliding distance ranging from 260m- 4200m. Factors and conditions that had significant effect were identified. The results showed that the load and the sliding distance affect the wear rate of the alloys and the wear rate increased with increasing load for both the alloys. Wear rate also increases almost linearly at low loads and increase to a maximum then attain a plateau with increasing sliding distance. For both applied loads the piston alloy showed the better performance due to higher Ni and Mg content. The worn surface and wear debris was characterized by optical microscope, SEM and EDX analyzer. The worn surface was characterized by surface with shallow grooves at loads while the groove width and depth increased as the loads increases. Oxidative wear was found to be the predominant mechanisms in the dry sliding of Al-Si alloys at low loads.
Keywords: Wear, friction, gravimetric analysis, aluminiumsilicon alloys, SEM, EDX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2530492 Effect of Aquatic and Land Plyometric Training on Selected Physical Fitness Variables in Intercollegiate Male Handball Players
Authors: Nisith K. Datta, Rakesh Bharti
Abstract:
The purpose of the study was to find out the effects of Aquatic and Land plyometric training on selected physical variables in intercollegiate male handball players. To achieve this purpose of the study, forty five handball players of Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat were selected as players at random and their age ranged between 18 to 21 years. The selected players were divided into three equal groups of fifteen players each. Group I underwent Aquatic plyometric training, Group II underwent Land plyometric training and Group III Control group for three days per week for twelve weeks. Control Group did not participate in any special training programme apart from their regular activities as per their curriculum. The following physical fitness variables namely speed; leg explosive power and agility were selected as dependent variables. All the players of three groups were tested on selected dependent variables prior to and immediately after the training programme. The analysis of covariance was used to analyze the significant difference, if any among the groups. Since, three groups were compared, whenever the obtained ‘F’ ratio for adjusted posttest was found to be significant, the Scheffe’s test to find out the paired mean differences, if any. The 0.05 level of confidence was fixed as the level of significance to test the ‘F’ ratio obtained by the analysis of covariance, which was considered as an appropriate. The result of the study indicates due to Aquatic and Land plyometric training on speed, explosive power, and agility has been improved significantly.Keywords: Aquatic training, explosive power, plyometric training, speed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722491 Improvement in Properties of Ni-Cr-Mo-V Steel through Process Control
Authors: Arnab Majumdar, Sanjoy Sadhukhan
Abstract:
Although gun barrel steels are an important variety from defense view point, available literatures are very limited. In the present work, an IF grade Ni-Cr-Mo-V high strength low alloy steel is produced in Electric Earth Furnace-ESR Route. Ingot was hot forged to desired dimension with a reduction ratio of 70-75% followed by homogenization, hardening and tempering treatment. Sample chemistry, NMIR, macro and micro structural analyses were done. Mechanical properties which include tensile, impact, and fracture toughness were studied. Ultrasonic testing was done to identify internal flaws. The existing high strength low alloy Ni-Cr-Mo-V steel shows improved properties in modified processing route and heat treatment schedule in comparison to properties noted earlier for manufacturing of gun barrels. The improvement in properties seems to withstand higher explosive loads with the same amount of steel in gun barrel application.Keywords: Gun barrel steels, IF grade, physical properties, thermal and mechanical processing, mechanical properties, ultrasonic testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433490 Simulation of Particle Damping under Centrifugal Loads
Authors: Riaz A. Bhatti, Wang Yanrong
Abstract:
Particle damping is a technique to reduce the structural vibrations by means of placing small metallic particles inside a cavity that is attached to the structure at location of high vibration amplitudes. In this paper, we have presented an analytical model to simulate the particle damping of two dimensional transient vibrations in structure operating under high centrifugal loads. The simulation results show that this technique remains effective as long as the ratio of the dynamic acceleration of the structure to the applied centrifugal load is more than 0.1. Particle damping increases with the increase of particle to structure mass ratio. However, unlike to the case of particle damping in the absence of centrifugal loads where the damping efficiency strongly depends upon the size of the cavity, here this dependence becomes very weak. Despite the simplicity of the model, the simulation results are considerably in good agreement with the very scarce experimental data available in the literature for particle damping under centrifugal loads.Keywords: Impact damping, particle damping, vibration control, vibration suppression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798489 Blast Induced Ground Shock Effects on Pile Foundations
Authors: L. B. Jayasinghe, D. P. Thambiratnam, N. Perera, J. H. A. R. Jayasooriya
Abstract:
Due to increased number of terrorist attacks in recent years, loads induced by explosions need to be incorporated in building designs. For safer performance of a structure, its foundation should have sufficient strength and stability. Therefore, prior to any reconstruction or rehabilitation of a building subjected to blast, it is important to examine adverse effects on the foundation caused by blast induced ground shocks. This paper evaluates the effects of a buried explosion on a pile foundation. It treats the dynamic response of the pile in saturated sand, using explicit dynamic nonlinear finite element software LS-DYNA. The blast induced wave propagation in the soil and the horizontal deformation of pile are presented and the results are discussed. Further, a parametric study is carried out to evaluate the effect of varying the explosive shape on the pile response. This information can be used to evaluate the vulnerability of piled foundations to credible blast events as well as develop guidance for their design.
Keywords: Underground explosion, numerical simulation, pilefoundation, saturated soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3647488 Effects of Axial Loads and Soil Density on Pile Group Subjected to Triangular Soil Movement
Authors: Ihsan Al-Abboodi, Tahsin Toma-Sabbagh
Abstract:
Laboratory tests have been carried out to investigate the response of 2x2 pile group subjected to triangular soil movement. The pile group was instrumented with displacement and tilting devices at the pile cap and strain gauges on two piles of the group. In this paper, results from four model tests were presented to study the effects of axial loads and soil density on the lateral behavior of piles. The responses in terms of bending moment, shear force, soil pressure, deflection, and rotation of piles were compared. Test results indicate that increasing the soil strength could increase the measured moment, shear, soil pressure, and pile deformations. Most importantly, adding loads to the pile cap induces additional moment to the head of front-pile row unlike the back-pile row which was influenced insignificantly.
Keywords: Pile group, passive piles, lateral soil movement, soil density, axial loads.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1158487 Structural Assessment of Low-rise Reinforced Concrete Frames under Tsunami Loads
Authors: Hussain Jiffry, Kypros Pilakoutas, Reyes Garcia
Abstract:
This study examines analytically the effect of tsunami loads on reinforced concrete (RC) frame buildings. The impact of tsunami wave loads and waterborne objects are analyzed using a typical substandard full-scale two-story RC frame building tested as part of the EU-funded Ecoleader project. The building was subjected to shake table tests in bare condition, and subsequently strengthened using Carbon Fiber Reinforced Polymers (CFRP) composites and retested. Numerical models of the building in both bare and CFRP-strengthened conditions are calibrated in DRAIN-3DX software to match the test results. To investigate the response of wave loads and impact forces, the numerical models are subjected to nonlinear dynamic analyses using force time-history input records. The analytical results are compared in terms of displacements at the floors and at the “impact point” of a boat. The results show that the roof displacement of the CFRP-strengthened building reduced by 63% when compared to the bare building. The results also indicate that strengthening only the mid-height of the impact column using CFRP is more effective at reducing damage when compared to strengthening other parts of the column. Alternative solutions to mitigate damage due to tsunami loads are suggested.
Keywords: Tsunami loads, hydrodynamic load, impact load, waterborne objects, RC buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933486 Behaviour of Lightweight Expanded Clay Aggregate Concrete Exposed to High Temperatures
Authors: Lenka Bodnárová, Rudolf Hela, Michala Hubertová, Iveta Nováková
Abstract:
This paper is concerning the issues of behaviour of lightweight expanded clay aggregates concrete exposed to high temperature. Lightweight aggregates from expanded clay are produced by firing of row material up to temperature 1050°C. Lightweight aggregates have suitable properties in terms of volume stability, when exposed to temperatures up to 1050°C, which could indicate their suitability for construction applications with higher risk of fire. The test samples were exposed to heat by using the standard temperature-time curve ISO 834. Negative changes in resulting mechanical properties, such as compressive strength, tensile strength, and flexural strength were evaluated. Also visual evaluation of the specimen was performed. On specimen exposed to excessive heat, an explosive spalling could be observed, due to evaporation of considerable amount of unbounded water from the inner structure of the concrete.
Keywords: Expanded clay aggregate, explosive spalling, high temperature, lightweight concrete, temperature-time curve ISO 834.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3594485 Thermal and Mechanical Buckling of Short and Long Functionally Graded Cylindrical Shells Using First Order Shear Deformation Theory
Authors: O. Miraliyari, M.M. Najafizadeh, A.R. Rahmani, A. Momeni Hezaveh
Abstract:
This paper presents the buckling analysis of short and long functionally graded cylindrical shells under thermal and mechanical loads. The shell properties are assumed to vary continuously from the inner surface to the outer surface of the shell. The equilibrium and stability equations are derived using the total potential energy equations, Euler equations and first order shear deformation theory assumptions. The resulting equations are solved for simply supported boundary conditions. The critical temperature and pressure loads are calculated for both short and long cylindrical shells. Comparison studies show the effects of functionally graded index, loading type and shell geometry on critical buckling loads of short and long functionally graded cylindrical shells.Keywords: Buckling, Functionally graded materials, Short and long cylindrical shell, Thermal and mechanical loads.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155