Search results for: structural health monitoring.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3091

Search results for: structural health monitoring.

3091 Kalman Filter Design in Structural Identification with Unknown Excitation

Authors: Z. Masoumi, B. Moaveni

Abstract:

This article is about first step of structural health monitoring by identifying structural system in the presence of unknown input. In the structural system identification, identification of structural parameters such as stiffness and damping are considered. In this study, the Kalman filter (KF) design for structural systems with unknown excitation is expressed. External excitations, such as earthquakes, wind or any other forces are not measured or not available. The purpose of this filter is its strengths to estimate the state variables of the system in the presence of unknown input. Also least squares estimation (LSE) method with unknown input is studied. Estimates of parameters have been adopted. Finally, using two examples advantages and drawbacks of both methods are studied.

Keywords: Structural health monitoring, Kalman filter, Least square estimation, structural system identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2230
3090 Structural Health Monitoring of Buildings and Infrastructure

Authors: Mojtaba Valinejadshoubi, Ashutosh Bagchi, Osama Moselhi

Abstract:

Structures such as buildings, bridges, dams, wind turbines etc. need to be maintained against various factors such as deterioration, excessive loads, environment, temperature, etc. Choosing an appropriate monitoring system is important for determining any critical damage to a structure and address that to avoid any adverse consequence. Structural Health Monitoring (SHM) has emerged as an effective technique to monitor the health of the structures. SHM refers to an ongoing structural performance assessment using different kinds of sensors attached to or embedded in the structures to evaluate their integrity and safety to help engineers decide on rehabilitation measures. Ability of SHM in identifying the location and severity of structural damages by considering any changes in characteristics of the structures such as their frequency, stiffness and mode shapes helps engineers to monitor the structures and take the most effective corrective actions to maintain their safety and extend their service life. The main objective of this study is to review the overall SHM process specifically determining the natural frequency of an instrumented simply-supported concrete beam using modal testing and finite element model updating.

Keywords: Structural Health Monitoring, Natural Frequency, FFT analysis, Finite element model updating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2389
3089 Structural Health Monitoring of Offshore Structures Using Wireless Sensor Networking under Operational and Environmental Variability

Authors: Srinivasan Chandrasekaran, Thailammai Chithambaram, Shihas A. Khader

Abstract:

The early-stage damage detection in offshore structures requires continuous structural health monitoring and for the large area the position of sensors will also plays an important role in the efficient damage detection. Determining the dynamic behavior of offshore structures requires dense deployment of sensors. The wired Structural Health Monitoring (SHM) systems are highly expensive and always needs larger installation space to deploy. Wireless sensor networks can enhance the SHM system by deployment of scalable sensor network, which consumes lesser space. This paper presents the results of wireless sensor network based Structural Health Monitoring method applied to a scaled experimental model of offshore structure that underwent wave loading. This method determines the serviceability of the offshore structure which is subjected to various environment loads. Wired and wireless sensors were installed in the model and the response of the scaled BLSRP model under wave loading was recorded. The wireless system discussed in this study is the Raspberry pi board with Arm V6 processor which is programmed to transmit the data acquired by the sensor to the server using Wi-Fi adapter, the data is then hosted in the webpage. The data acquired from the wireless and wired SHM systems were compared and the design of the wireless system is verified.

Keywords: Condition assessment, damage detection, structural health monitoring, structural response, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2912
3088 Health Monitoring and Failure Detection of Electronic and Structural Components in Small Unmanned Aerial Vehicles

Authors: Gopi Kandaswamy, P. Balamuralidhar

Abstract:

Fully autonomous small Unmanned Aerial Vehicles (UAVs) are increasingly being used in many commercial applications. Although a lot of research has been done to develop safe, reliable and durable UAVs, accidents due to electronic and structural failures are not uncommon and pose a huge safety risk to the UAV operators and the public. Hence there is a strong need for an automated health monitoring system for UAVs with a view to minimizing mission failures thereby increasing safety. This paper describes our approach to monitoring the electronic and structural components in a small UAV without the need for additional sensors to do the monitoring. Our system monitors data from four sources; sensors, navigation algorithms, control inputs from the operator and flight controller outputs. It then does statistical analysis on the data and applies a rule based engine to detect failures. This information can then be fed back into the UAV and a decision to continue or abort the mission can be taken automatically by the UAV and independent of the operator. Our system has been verified using data obtained from real flights over the past year from UAVs of various sizes that have been designed and deployed by us for various applications.

Keywords: Fault detection, health monitoring, unmanned aerial vehicles, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
3087 Bridge Health Monitoring: A Review

Authors: Mohammad Bakhshandeh

Abstract:

Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.

Keywords: Structural health monitoring, bridge health monitoring, sensor-based methods, machine-learning algorithms, model-based techniques, sensor placement, data acquisition, data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 102
3086 Monitoring and Analysis of Bridge Crossing Ground Fissures

Authors: Zhiqing Zhang, Xiangong Zhou, Zihan Zhou

Abstract:

Ground fissures can be seen in some cities all over the world. As a special urban geological disaster, ground fissures in Xi'an have caused great harm to infrastructure. Chang'an Road Interchange in Xi'an City is a bridge across ground fissures. The damage to Chang'an Road interchange is the most serious and typical. To study the influence of ground fissures on the bridge, we established a bridge monitoring system. The main monitoring items include elevation monitoring, structural displacement monitoring, etc. The monitoring results show that the typical failure is mainly reflected in the bridge deck damage caused by horizontal tension and vertical dislocation. For the construction of urban interchange spanning ground fissures, the interchange should be divided reasonably, a simple support structure with less restriction should be adopted, and the monitoring of supports should be strengthened to prevent the occurrence of beam falling.

Keywords: Bridge monitoring, ground fissures, typical disease, structural displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 548
3085 Application of Transform Fourier for Dynamic Control of Structures with Global Positioning System

Authors: J. M. de Luis Ruiz, P. M. Sierra García, R. P. García, R. P. Álvarez, F. P. García, E. C. López

Abstract:

Given the evolution of viaducts, structural health monitoring requires more complex techniques to define their state. two alternatives can be distinguished: experimental and operational modal analysis. Although accelerometers or Global Positioning System (GPS) have been applied for the monitoring of structures under exploitation, the dynamic monitoring during the stage of construction is not common. This research analyzes whether GPS data can be applied to certain dynamic geometric controls of evolving structures. The fundamentals of this work were applied to the New Bridge of Cádiz (Spain), a worldwide milestone in bridge building. GPS data were recorded with an interval of 1 second during the erection of segments and turned to the frequency domain with Fourier transform. The vibration period and amplitude were contrasted with those provided by the finite element model, with differences of less than 10%, which is admissible. This process provides a vibration record of the structure with GPS, avoiding specific equipment.

Keywords: Fourier transform, global position system, operational modal analysis, structural health monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 858
3084 A Visual Analytics Tool for the Structural Health Monitoring of an Aircraft Panel

Authors: F. M. Pisano, M. Ciminello

Abstract:

Aerospace, mechanical, and civil engineering infrastructures can take advantages from damage detection and identification strategies in terms of maintenance cost reduction and operational life improvements, as well for safety scopes. The challenge is to detect so called “barely visible impact damage” (BVID), due to low/medium energy impacts, that can progressively compromise the structure integrity. The occurrence of any local change in material properties, that can degrade the structure performance, is to be monitored using so called Structural Health Monitoring (SHM) systems, in charge of comparing the structure states before and after damage occurs. SHM seeks for any "anomalous" response collected by means of sensor networks and then analyzed using appropriate algorithms. Independently of the specific analysis approach adopted for structural damage detection and localization, textual reports, tables and graphs describing possible outlier coordinates and damage severity are usually provided as artifacts to be elaborated for information extraction about the current health conditions of the structure under investigation. Visual Analytics can support the processing of monitored measurements offering data navigation and exploration tools leveraging the native human capabilities of understanding images faster than texts and tables. Herein, a SHM system enrichment by integration of a Visual Analytics component is investigated. Analytical dashboards have been created by combining worksheets, so that a useful Visual Analytics tool is provided to structural analysts for exploring the structure health conditions examined by a Principal Component Analysis based algorithm.

Keywords: Interactive dashboards, optical fibers, structural health monitoring, visual analytics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753
3083 A Procedure for Post-Earthquake Damage Estimation Based on Detection of High-Frequency Transients

Authors: Aleksandar Zhelyazkov, Daniele Zonta, Helmut Wenzel, Peter Furtner

Abstract:

In the current research structural health monitoring is considered for addressing the critical issue of post-earthquake damage detection. A non-standard approach for damage detection via acoustic emission is presented - acoustic emissions are monitored in the low frequency range (up to 120 Hz). Such emissions are termed high-frequency transients. Further a damage indicator defined as the Time-Ratio Damage Indicator is introduced. The indicator relies on time-instance measurements of damage initiation and deformation peaks. Based on the time-instance measurements a procedure for estimation of the maximum drift ratio is proposed. Monitoring data is used from a shaking-table test of a full-scale reinforced concrete bridge pier. Damage of the experimental column is successfully detected and the proposed damage indicator is calculated.

Keywords: Acoustic emission, Damage detection, Shaking table test, Structural health monitoring, High-frequency transients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
3082 GSM Based Smart Patient Monitoring System

Authors: Ayman M. Mansour

Abstract:

In this paper, we propose an intelligent system that is used for monitoring the health conditions of patients. Monitoring the health condition of patients is a complex problem that involves different medical units and requires continuous monitoring especially in rural areas because of inadequate number of available specialized physicians. The proposed system will improve patient care and drive costs down comparing to the existing system in Jordan. The proposed system will be the start point to faster and improve the communication between different units in the health system in Jordan. Connecting patients and their physicians beyond hospital doors regarding their geographical area is an important issue in developing the health system in Jordan. The ability of making medical decisions, the quality of medical is expected to be improved.

Keywords: GSM, SMS, Patient, Monitoring system, Fuzzy Logic, Multi-agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2956
3081 A Multi-Agent Intelligent System for Monitoring Health Conditions of Elderly People

Authors: Ayman M. Mansour

Abstract:

In this paper, we propose a multi-agent intelligent system that is used for monitoring the health conditions of elderly people. Monitoring the health condition of elderly people is a complex problem that involves different medical units and requires continuous monitoring. Such expert system is highly needed in rural areas because of inadequate number of available specialized physicians or nurses. Such monitoring must have autonomous interactions between these medical units in order to be effective. A multi-agent system is formed by a community of agents that exchange information and proactively help one another to achieve the goal of elderly monitoring. The agents in the developed system are equipped with intelligent decision maker that arms them with the rule-based reasoning capability that can assist the physicians in making decisions regarding the medical condition of elderly people.

Keywords: Fuzzy Logic, Inference system, Monitoring system, Multi-agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2235
3080 Implementation of Security Algorithms for u-Health Monitoring System

Authors: Jiho Park, Yong-Gyu Lee, Gilwon Yoon

Abstract:

Data security in u-Health system can be an important issue because wireless network is vulnerable to hacking. However, it is not easy to implement a proper security algorithm in an embedded u-health monitoring because of hardware constraints such as low performance, power consumption and limited memory size and etc. To secure data that contain personal and biosignal information, we implemented several security algorithms such as Blowfish, data encryption standard (DES), advanced encryption standard (AES) and Rivest Cipher 4 (RC4) for our u-Health monitoring system and the results were successful. Under the same experimental conditions, we compared these algorithms. RC4 had the fastest execution time. Memory usage was the most efficient for DES. However, considering performance and safety capability, however, we concluded that AES was the most appropriate algorithm for a personal u-Health monitoring system.

Keywords: biosignal, data encryption, security measures, u-health

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2082
3079 Self-Sensing Concrete Nanocomposites for Smart Structures

Authors: A. D'Alessandro, F. Ubertini, A. L. Materazzi

Abstract:

In the field of civil engineering, Structural Health Monitoring is a topic of growing interest. Effective monitoring instruments permit the control of the working conditions of structures and infrastructures, through the identification of behavioral anomalies due to incipient damages, especially in areas of high environmental hazards as earthquakes. While traditional sensors can be applied only in a limited number of points, providing a partial information for a structural diagnosis, novel transducers may allow a diffuse sensing. Thanks to the new tools and materials provided by nanotechnology, new types of multifunctional sensors are developing in the scientific panorama. In particular, cement-matrix composite materials capable of diagnosing their own state of strain and tension, could be originated by the addition of specific conductive nanofillers. Because of the nature of the material they are made of, these new cementitious nano-modified transducers can be inserted within the concrete elements, transforming the same structures in sets of widespread sensors. This paper is aimed at presenting the results of a research about a new self-sensing nanocomposite and about the implementation of smart sensors for Structural Health Monitoring. The developed nanocomposite has been obtained by inserting multi walled carbon nanotubes within a cementitious matrix. The insertion of such conductive carbon nanofillers provides the base material with piezoresistive characteristics and peculiar sensitivity to mechanical modifications. The self-sensing ability is achieved by correlating the variation of the external stress or strain with the variation of some electrical properties, such as the electrical resistance or conductivity. Through the measurement of such electrical characteristics, the performance and the working conditions of an element or a structure can be monitored. Among conductive carbon nanofillers, carbon nanotubes seem to be particularly promising for the realization of self-sensing cement-matrix materials. Some issues related to the nanofiller dispersion or to the influence of the nano-inclusions amount in the cement matrix need to be carefully investigated: the strain sensitivity of the resulting sensors is influenced by such factors. This work analyzes the dispersion of the carbon nanofillers, the physical properties of the fresh dough, the electrical properties of the hardened composites and the sensing properties of the realized sensors. The experimental campaign focuses specifically on their dynamic characterization and their applicability to the monitoring of full-scale elements. The results of the electromechanical tests with both slow varying and dynamic loads show that the developed nanocomposite sensors can be effectively used for the health monitoring of structures.

Keywords: Carbon nanotubes, self-sensing nanocomposites, smart cement-matrix sensors, structural health monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3388
3078 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring

Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti

Abstract:

Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., entropy, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one-class classification (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, principal component analysis (PCA), kernel principal component analysis (KPCA), and autoassociative neural network (ANN) are presented and their performance are compared. It is also shown that, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 95%.

Keywords: Anomaly detection, dimensionality reduction, frequencies selection, modal analysis, neural network, structural health monitoring, vibration measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 635
3077 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning

Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.

Keywords: Structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 368
3076 Dynamically Monitoring Production Methods for Identifying Structural Changes relevant to Logistics

Authors: Marco Kennemann, Steffen C. Eickemeyer, Peter Nyhuis

Abstract:

Due to the growing dynamic and complexity within the market environment production enterprises in particular are faced with new logistic challenges. Moreover, it is here in this dynamic environment that the Logistic Operating Curve Theory also reaches its limits as a method for describing the correlations between the logistic objectives. In order to convert this theory into a method for dynamically monitoring productions this paper will introduce methods for reliably and quickly identifying structural changes relevant to logistics.

Keywords: Dynamics, Logistic Operating Curves, Production Logistics, Production Planning and Control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1324
3075 Structural Damage Detection via Incomplete Modal Data Using Output Data Only

Authors: Ahmed Noor Al-Qayyim, Barlas Ozden Caglayan

Abstract:

Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on to obtain very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. The study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using ‘Two Points Condensation (TPC) technique’. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices obtain from optimization the equation of motion using the measured test data. The current stiffness matrices compare with original (undamaged) stiffness matrices. The large percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element, where two cases consider. The method detects the damage and determines its location accurately in both cases. In addition, the results illustrate these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can be used also for big structures.

Keywords: Damage detection, two points–condensation, structural health monitoring, signals processing, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2649
3074 A Detection Method of Faults in Railway Pantographs Based on Dynamic Phase Plots

Authors: G. Santamato, M. Solazzi, A. Frisoli

Abstract:

Systems for detection of damages in railway pantographs effectively reduce the cost of maintenance and improve time scheduling. In this paper, we present an approach to design a monitoring tool fitting strong customer requirements such as portability and ease of use. Pantograph has been modeled to estimate its dynamical properties, since no data are available. With the aim to focus on suspensions health, a two Degrees of Freedom (DOF) scheme has been adopted. Parameters have been calculated by means of analytical dynamics. A Finite Element Method (FEM) modal analysis verified the former model with an acceptable error. The detection strategy seeks phase-plots topology alteration, induced by defects. In order to test the suitability of the method, leakage in the dashpot was simulated on the lumped model. Results are interesting because changes in phase plots are more appreciable than frequency-shift. Further calculations as well as experimental tests will support future developments of this smart strategy.

Keywords: Pantograph models, phase-plots, structural health monitoring, vibration-based condition monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
3073 Integration of Seismic and Seismological Data Interpretation for Subsurface Structure Identification

Authors: Iftikhar Ahmed Satti, Wan Ismail Wan Yusoff

Abstract:

The structural interpretation of a part of eastern Potwar (Missa Keswal) has been carried out with available seismological, seismic and well data. Seismological data contains both the source parameters and fault plane solution (FPS) parameters and seismic data contains ten seismic lines that were re-interpreted by using well data. Structural interpretation depicts two broad types of fault sets namely, thrust and back thrust faults. These faults together give rise to pop up structures in the study area and also responsible for many structural traps and seismicity. Seismic interpretation includes time and depth contour maps of Chorgali Formation while seismological interpretation includes focal mechanism solution (FMS), depth, frequency, magnitude bar graphs and renewal of Seismotectonic map. The Focal Mechanism Solutions (FMS) that surrounds the study area are correlated with the different geological and structural maps of the area for the determination of the nature of subsurface faults. Results of structural interpretation from both seismic and seismological data show good correlation. It is hoped that the present work will help in better understanding of the variations in the subsurface structure and can be a useful tool for earthquake prediction, planning of oil field and reservoir monitoring.

Keywords: Focal mechanism solution (FMS), Fault plane solution (FPS), Reservoir monitoring, earthquake prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2429
3072 MIMO Radar-Based System for Structural Health Monitoring and Geophysical Applications

Authors: Davide D’Aria, Paolo Falcone, Luigi Maggi, Aldo Cero, Giovanni Amoroso

Abstract:

The paper presents a methodology for real-time structural health monitoring and geophysical applications. The key elements of the system are a high performance MIMO RADAR sensor, an optical camera and a dedicated set of software algorithms encompassing interferometry, tomography and photogrammetry. The MIMO Radar sensor proposed in this work, provides an extremely high sensitivity to displacements making the system able to react to tiny deformations (up to tens of microns) with a time scale which spans from milliseconds to hours. The MIMO feature of the system makes the system capable of providing a set of two-dimensional images of the observed scene, each mapped on the azimuth-range directions with noticeably resolution in both the dimensions and with an outstanding repetition rate. The back-scattered energy, which is distributed in the 3D space, is projected on a 2D plane, where each pixel has as coordinates the Line-Of-Sight distance and the cross-range azimuthal angle. At the same time, the high performing processing unit allows to sense the observed scene with remarkable refresh periods (up to milliseconds), thus opening the way for combined static and dynamic structural health monitoring. Thanks to the smart TX/RX antenna array layout, the MIMO data can be processed through a tomographic approach to reconstruct the three-dimensional map of the observed scene. This 3D point cloud is then accurately mapped on a 2D digital optical image through photogrammetric techniques, allowing for easy and straightforward interpretations of the measurements. Once the three-dimensional image is reconstructed, a 'repeat-pass' interferometric approach is exploited to provide the user of the system with high frequency three-dimensional motion/vibration estimation of each point of the reconstructed image. At this stage, the methodology leverages consolidated atmospheric correction algorithms to provide reliable displacement and vibration measurements.

Keywords: Interferometry, MIMO RADAR, SAR, tomography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842
3071 Measurement of Temperature, Humidity and Strain Variation Using Bragg Sensor

Authors: Amira Zrelli, Tahar Ezzeddine

Abstract:

Measurement and monitoring of temperature, humidity and strain variation are very requested in great fields and areas such as structural health monitoring (SHM) systems. Currently, the use of fiber Bragg grating sensors (FBGS) is very recommended in SHM systems due to the specifications of these sensors. In this paper, we present the theory of Bragg sensor, therefore we try to measure the efficient variation of strain, temperature and humidity (SV, ST, SH) using Bragg sensor. Thus, we can deduce the fundamental relation between these parameters and the wavelength of Bragg sensor.

Keywords: Optical fiber, strain, temperature, humidity, measurement, Bragg sensor, SHM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1079
3070 Monitoring the Fiscal Health of Taiwan’s Local Government: Application of the 10-Point Scale of Fiscal Distress

Authors: Yuan-Hong Ho, Chiung-Ju Huang

Abstract:

This article presents a monitoring indicators system that predicts whether a local government in Taiwan is heading for fiscal distress and identifies a suitable fiscal policy that would allow the local government to achieve fiscal balance in the long run. This system is relevant to stockholders’ interest, simple for national audit bodies to use, and provides an early warning of fiscal distress that allows preventative action to be taken.

Keywords: Fiscal distress, fiscal health, monitoring signals, 10-point scale.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
3069 Event Monitoring Based On Web Services for Heterogeneous Event Sources

Authors: Arne Koschel

Abstract:

This article discusses event monitoring options for heterogeneous event sources as they are given in nowadays heterogeneous distributed information systems. It follows the central assumption, that a fully generic event monitoring solution cannot provide complete support for event monitoring; instead, event source specific semantics such as certain event types or support for certain event monitoring techniques have to be taken into account. Following from this, the core result of the work presented here is the extension of a configurable event monitoring (Web) service for a variety of event sources. A service approach allows us to trade genericity for the exploitation of source specific characteristics. It thus delivers results for the areas of SOA, Web services, CEP and EDA.

Keywords: Event monitoring, ECA, CEP, SOA, Web services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292
3068 The Importance of Bridge Health Monitoring

Authors: Punya Chupanit, Chayatan Phromsorn

Abstract:

In the past, there were many bridge-s collapses due to lack of bridge structural capacity information. Most of concrete bridge health was relied on information from visual inspection, which sometime was inadequate. This study was conducted in order to investigate relationship between bridge structural condition and bridge visual condition. This study was a part of a big project conducted at Department of Highways of Thailand. In this study, 31 bridges including slab-type bridges, plank-girder bridges, prestressed box-beam bridges, prestressed I-girder bridges and prestressed multibeam bridges were selected for visual inspection and load test. It was found a positive correlation between bridge appearance and bridge-s load carrying capacity. However, statistical characteristic revealed low correlation between them.

Keywords: Bridge, Visual Inspection, Load Test, Condition Rating, Rating Factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
3067 The Estimation Method of Stress Distribution for Beam Structures Using the Terrestrial Laser Scanning

Authors: Sang Wook Park, Jun Su Park, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

This study suggests the estimation method of stress distribution for the beam structures based on TLS (Terrestrial Laser Scanning). The main components of method are the creation of the lattices of raw data from TLS to satisfy the suitable condition and application of CSSI (Cubic Smoothing Spline Interpolation) for estimating stress distribution. Estimation of stress distribution for the structural member or the whole structure is one of the important factors for safety evaluation of the structure. Existing sensors which include ESG (Electric strain gauge) and LVDT (Linear Variable Differential Transformer) can be categorized as contact type sensor which should be installed on the structural members and also there are various limitations such as the need of separate space where the network cables are installed and the difficulty of access for sensor installation in real buildings. To overcome these problems inherent in the contact type sensors, TLS system of LiDAR (light detection and ranging), which can measure the displacement of a target in a long range without the influence of surrounding environment and also get the whole shape of the structure, has been applied to the field of structural health monitoring. The important characteristic of TLS measuring is a formation of point clouds which has many points including the local coordinate. Point clouds are not linear distribution but dispersed shape. Thus, to analyze point clouds, the interpolation is needed vitally. Through formation of averaged lattices and CSSI for the raw data, the method which can estimate the displacement of simple beam was developed. Also, the developed method can be extended to calculate the strain and finally applicable to estimate a stress distribution of a structural member. To verify the validity of the method, the loading test on a simple beam was conducted and TLS measured it. Through a comparison of the estimated stress and reference stress, the validity of the method is confirmed.

Keywords: Structural health monitoring, terrestrial laser scanning, estimation of stress distribution, coordinate transformation, cubic smoothing spline interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2681
3066 Condition Monitoring System of Mine Air Compressors Based on Wireless Sensor Network

Authors: Sheng Fu, Yinbo Gao, Hao Lin

Abstract:

In the current mine air compressors monitoring system, there are some difficulties in the installation and maintenance because of the wired connection. To solve the problem, this paper introduces a new air compressors monitoring system based on ZigBee in which the monitoring parameters are transmitted wirelessly. The collecting devices are designed to form a cluster network to collect vibration, temperature, and pressure of air cylinders and other parameters. All these devices are battery-powered. Besides, the monitoring software in PC is developed using MFC. Experiments show that the designed wireless sensor network works well in the site environmental condition and the system is very convenient to be installed since the wireless connection. This monitoring system will have a wide application prospect in the upgrade of the old monitoring system of the air compressors.

Keywords: Condition monitoring, wireless sensor network, air compressor, ZigBee, data collecting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
3065 IOT Based Process Model for Heart Monitoring Process

Authors: Dalyah Y. Al-Jamal, Maryam H. Eshtaiwi, Liyakathunisa Syed

Abstract:

Connecting health services with technology has a huge demand as people health situations are becoming worse day by day. In fact, engaging new technologies such as Internet of Things (IOT) into the medical services can enhance the patient care services. Specifically, patients suffering from chronic diseases such as cardiac patients need a special care and monitoring. In reality, some efforts were previously taken to automate and improve the patient monitoring systems. However, the previous efforts have some limitations and lack the real-time feature needed for chronic kind of diseases. In this paper, an improved process model for patient monitoring system specialized for cardiac patients is presented. A survey was distributed and interviews were conducted to gather the needed requirements to improve the cardiac patient monitoring system. Business Process Model and Notation (BPMN) language was used to model the proposed process. In fact, the proposed system uses the IOT Technology to assist doctors to remotely monitor and follow-up with their heart patients in real-time. In order to validate the effectiveness of the proposed solution, simulation analysis was performed using Bizagi Modeler tool. Analysis results show performance improvements in the heart monitoring process. For the future, authors suggest enhancing the proposed system to cover all the chronic diseases.

Keywords: Business process model and notation, cardiac patient, cardiac monitoring, heart monitoring, healthcare, internet of things, remote patient monitoring system, process model, telemedicine, wearable sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
3064 Landfill Gas Monitoring at Borehole Wells using an Autonomous Environmental Monitoring System

Authors: Breda M. Kiernan, Stephen Beirne, Cormac Fay, Dermot Diamond

Abstract:

An autonomous environmental monitoring system (Smart Landfill) has been constructed for the quantitative measurement of the components of landfill gas found at borehole wells at the perimeter of landfill sites. The main components of landfill gas are the greenhouse gases, methane and carbon dioxide and have been monitored in the range 0-5 % volume. This monitoring system has not only been tested in the laboratory but has been deployed in multiple field trials and the data collected successfully compared with on-site monitors. This success shows the potential of this system for application in environments where reliable gas monitoring is crucial.

Keywords: Environmental monitoring, greenhouse gas, landfill gas, sensor deployment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
3063 Internet of Health Things as a Win-Win Solution for Mitigating the Paradigm Shift inside Senior Patient-Physician Shared Health Management

Authors: Marilena Ianculescu, Adriana Alexandru

Abstract:

Internet of Health Things (IoHT) has already proved to be a persuasive means to support a proper assessment of the living conditions by collecting a huge variety of data. For a customized health management of a senior patient, IoHT provides the capacity to build a dynamic solution for sustaining the shift inside the patient-physician relationship by allowing a real-time and continuous remote monitoring of the health status, well-being, safety and activities of the senior, especially in a non-clinical environment. Thus, is created a win-win solution in which both the patient and the physician enhance their involvement and shared decision-making, with significant outcomes. Health monitoring systems in smart environments are becoming a viable alternative to traditional healthcare solutions. The ongoing “Non-invasive monitoring and health assessment of the elderly in a smart environment (RO-SmartAgeing)” project aims to demonstrate that the existence of complete and accurate information is critical for assessing the health condition of the seniors, improving wellbeing and quality of life in relation to health. The researches performed inside the project aim to highlight how the management of IoHT devices connected to the RO-SmartAgeing platform in a secure way by using a role-based access control system, can allow the physicians to provide health services at a high level of efficiency and accessibility, which were previously only available in hospitals. The project aims to identify deficient aspects in the provision of health services tailored to a senior patient’s specificity and to offer a more comprehensive perspective of proactive and preventive medical acts.

Keywords: Health management, Internet of Health Things, remote monitoring, senior patient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 582
3062 Biosignal Measurement System Based On Ultra-Wide Band Human Body Communication

Authors: Jonghoon Kim, Gilwon Yoon

Abstract:

A wrist-band type biosignal measurement system and its data transfer through human body communication (HBC) were investigated. An HBC method based on pulses of ultra-wide band instead of using frequency or amplitude modulations was studied and implemented since the system became very compact and it was more suited for personal or mobile health monitoring. Our system measured photo-plethysmogram (PPG) and measured PPG signals were transmitted through a finger to a monitoring PC system. The device was compact and low-power consuming. HBC communication has very strongsecurity measures since it does not use wireless network.Furthermore, biosignal monitoring system becomes handy because it does not need to have wire connections.

Keywords: Biosignal, human body communication, mobile health, PPG, ultrawide band.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2362