

Abstract—This paper deals with the problem of testing the
Electronic Control Unit (ECU) for the specified function validation.
Modern ECUs have many functions which need to be tested. This
process requires tracking between the test and the specification. The
technique discussed in this paper explores the system for automating
this process. The paper focuses on the introduction to the problem in
general, then it describes the proposed test system concept and its
principle. It looks at how the process of the ECU interface specification
file for automated interface testing and test tracking works. In the end,
the future possible development of the project is discussed.

Keywords—Electronic control unit testing, embedded system, test

generate, test automation, process automation, CAN bus, Ethernet.

I. INTRODUCTION

HIS paper is about the use of the structured file with the
ECU interface description. This file is used for automating

interface tests, or making it control the unit simulation for full
virtual testing. This virtual tool collection can be used for the
test case development before the real ECU exists.
Automatically generated test skeletons help to cover the ECU
interfaces by tests. The use of this technique is based on
standard software unit test tools used for the classic
programming language. With this tool, it is possible to automate
and control their behavior. The results are used to generate test
reports.

A. Motivation

The reason for the verification of this system was the need to
create a large number of tests and controls in the development
of ECUs. With a large number of tests, it is very difficult to
keep the actual state of all test specifications and their
implementations in sync. From this situation came the idea of
using a file to describe the interface of the control unit, to help
with the creation of test specifications and their
implementation. To implement this idea, it was necessary to
create a unified interface for access to communication with the
control unit. Another important part is the supporting tools for
generating source codes and processing information from
database systems. This entire system is intended to ensure more
effective testing and a substantial reduction in repetitive
activities, which are a frequent source of human error. The main
expectation from the use of this system is to reduce the cost of
test development and increase the quality of both the tests and
the tested product. Communication interfaces for signal
transmission over the Controller Area Network (CAN) bus and

Petr Šimek and Kamil Kostruk are with the Electronics and Information
Technology Department, University of West Bohemia, Pilsen, Czechia (e-mail:
pesimek@fel.zcu.cz, kosturik@fel.zcu.cz).

Scalable service-Oriented MiddlewarE over IP (SOME/IP)
interface over the Ethernet bus were used for the system
verification.

The design of the test environment was based on the
principles below. An example of an electronic control unit that
can be tested by this system can be seen in [3]. The principles
for testing real controllers described in Section VI F were
obtained from [4]. Automotive software testing requirements
were obtained from [5]. The principles for creating a runtime
environment and simulation in Section VI B were obtained from
[6].

II. CAN BUS

CAN bus is a shared communication with a non-
deterministic approach to the communication bus. The main
advantage is the collision-free access control, which
significantly reduces communication latency. The most
widespread type of communication is the transmission of
signals used for real-time control. The transmitted signals
occupy any position and size in the data area of the transmission
frame. This information is also contained in a file describing the
interface of the control unit. By processing this information, the
tests are able to transmit and receive these signals. The data area
of a communication frame consists of three objects nested
inside each other. Theoretical knowledge was acquired from
[1].
A. Frame: It is object describing the parameters of a CAN bus

communication frame, such as an identifier or the length of
a data area.

B. Packet Data Unit: It is object describing the composition of
the data area of the communication frame, defines the size
of the data segment and its location.

C. Signal: It is an element transmitting the required
information. An element is described using a set of
information such as size, position, offset, ratio, minimum,
and maximum value.

Fig. 1 CAN communication frame

Testing of Electronic Control Unit Communication
Interface

Petr Šimek, Kamil Kostruk

T

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:17, No:7, 2023

158International Scholarly and Scientific Research & Innovation 17(7) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

7,
 2

02
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

15
2.

pd
f

III. ETHERNET

It is a common communication line known from the field of
computer technology, which began to assert itself in other
branches of industry. The main advantage is a standardized
interface to which various types of circuits can be connected to
access the communication medium. SOME/IP communication
using the Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP) transport layer was selected to verify
this system. Example of practical use [2].

A. Data Packet

Data packet is a set of data encapsulated in several
communication layers, similar to a signal interface. The data
contain important information for the identification of the
transmitted service, methods and parameter data.

Fig. 2 Ethernet communication frame

B. Communication Diagram

Service-oriented communication uses various types of
communication protocols, see Fig. 3. The basic communication
is client/server, sender/receiver and event-driven multicasting.

Fig. 3 Communication diagrams

IV. TEST SET DESCRIPTION

A. ECU Interface Description

For interface description the AUTomotive Open System
ARchitecture (Autosar) Extensible Markup Language (XML)
format is used. For processing this file there are many different
tools and a software library.

B. Signals

It is the basic quantity processed by the ECU. The description
file contains all important information, such as the
communication medium, coding and the position in the data
section.

C. Functions

Complex communication uses the function interface. This is

interpreted as a standard programming function call. There are
differences in function processing. This function is the call from
the client but the execution is processed by the server. The
function can be collected into object call services. The basic
information is the communication interface, input and output
parameters, coding and the position in the data section.

V. DATA PROCESSING

The XML file structure can be processed by using the
description file XML Schema Definition (XSD). From the XSD
file the conversion object is created, which is used for
transforming the XML file into the memory object. The data
describe the ECU interface. Based on this interface description,
the test skeleton and simulation will be generated.

A. Control Unit Simulation

The file is created as a description of tested electronics
control units networks. The file describes input and output
signals, and the provided and consumed function. When
generating the source code, a decision is made on how to create
skeletons, simulation, all events and functions. Simulation
events are called if the unit receives the message with signal or
function data. When the defined function is called, the
communication message is sent to the corresponding node. For
the signal, the variable buffer is generated with the read and
write function. Signals’ timings are read form the description
file, too.

B. Tests

During the generation of the test skeleton, it is necessary to
swap all the communication direction for functions and signals.
The main difference from generating a simulation is the
creation of test skeletons for the simulation interface. For all
signals and functions a set of random and limit value tests is
generated. For example, signal “A” is specified as an 8bit
unsigned value, with the range from 10 to 100. The first test is
possible to do as a random value in a valid range. The second
test is a minimum value. The third test is a maximum value and
the last test is an invalid value. These tests verify the behavior
of the ECU. For each function and signal, a separate file with a
basic test skeleton is made. This structure is suitable for better
clarity. Every test skeleton is marked as inconclusive. This
marking ensures that one does not forget to test the complete
ECU interface.

C. Architecture

For simulation and the test correcting function, it is necessary
to create a runtime module and communication interface. The
modules allow access to a virtual or real communication
interface. The software component for the runtime environment
and communication interface is designed symmetrically. It
means that it is possible to send and receive data from any
interface. This symmetry allows us to use the same module for
tests and simulation.

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:17, No:7, 2023

159International Scholarly and Scientific Research & Innovation 17(7) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

7,
 2

02
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

15
2.

pd
f

Fig. 4 Architecture of the tested system

D. Runtime Environment

The runtime environment is used to process the signal and
function arguments. The main purpose of this module is to
make signal transformation and an assembly data packet. Data
processing is driven by a specification file. In the initialization
phase, the specification file is loaded and objects representing
signals and functions are created. The read object is used for
processing and constructing the communication data packet.
All information requested for constructing and processing the
data packet, signal transformation and function or signal
identification, is also loaded from the specification file. A fixed
user interface is defined to control the runtime. This function
unifies access to the internal object by the text name. For
example, the function for setting the signal value contains the
argument represented by the signal text name and signal value
like the float variable. This function allows us to set any signal
from the specification file, and enables to unify generated
interface for testing and simulation. A similar principle is
applied to functions defined in the specification file.

E. Communication Interface

The communication interface is used for the communication
direction set and communication buses access. This module
handles the setting for the system, virtual or physical
communication buses. All configurations are read from the
specification file. The input for this module is the data packet
prepared in runtime environment. These data are sent to the
corresponding place by the runtime setting. Selection between
the virtual and physical communication interface is made by the
information read from the environment configuration file which
is used for the configuration of the whole test environment.

F. System Environment

The system environment is the collection of tools. The
purpose of these tools is running and controlling the whole test
system. One part of this tools set is the source code generator.
This generator creates a set of test skeletons for all the ECU
input interface, and receives events for the output interface.
After implementing tests and simulation, it is possible to verify
that the tests generate correct communication sequences. Both
modules enable to work separately. It is possible to simulate the
ECU specified in the description file or run all test cases
separately with a real ECU. This behavior is controlled by the
main configuration file. The main purpose of this system is to
create the full virtual environment, for testing before the real

ECU exists.

G. Runtime Tools

Simulation and tests are the standard program function. It is
possible to compile them as the standard software library. These
functions can be initialized and called from a unit test
framework. The unit test framework is the standard test
environment which enables to automate, control and generate
the test report. The main goal of this setup is the high level of
automation. Another important thing is the possibility of using
the source control versioning and project management tools.

H. Automation

To accelerate the development, it is necessary to make all
steps automatically. This reduces a large count of human-
caused errors. This system is a collection of a source code,
which is necessary to be versioned by any tools. The version
control system must by connected to the project management
tool. The project management imposes requirements on
functionality of ECU. All requirements must by linked to the
test source code stored in the versioned control system. Every
test change triggers a complete system compilation and run of
all the tests. After the test run, the test report is generated and
stored in the database. This automation helps us to discover
errors in ECU software implementation very fast.

Fig. 5 Automation steps

VI. USED TECHNOLOGIES

To validate the system, the C# programming language with
the “.NET6” runtime environment was used. The MS test tool
was used to run the tests. The access to the communication
buses is provided by a communication interface from Vector
Informatics. The Windows operating system takes care of the
network access. Despite the higher demands of this
environment on computing power, communication latency of
about +- 1 ms was achieved. This performance was achieved
experimentally for a single message. Real control units do not
use such short repetition periods in practice.

VII. MEASUREMENT

For the signal interface on the CAN bus the test measurement
was made, to verify the performance of the system, see Figs. 6
and 7. With a transmission period of 1 ms for 10 s, a maximum
of 5 messages skips its period. These values should be below
the resolution of the internal control mechanisms of the
controller. The next step should be to verify the performance

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:17, No:7, 2023

160International Scholarly and Scientific Research & Innovation 17(7) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

7,
 2

02
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

15
2.

pd
f

for more different messages, carrying a larger amount of signal.
The goal of this measurement should be to determine whether

the system is able to process such a large amount of information
with sufficiently low latency.

Fig. 6 Log period message

Fig. 7 Test data

VIII. FUTURE DEVELOPMENTS

A large number of tests examine the behavior and responses
to system error states, and these are recorded into the memory.
For this reason, Unified Diagnostic Services (UDS) appears to
be an additional component suitable for expansion to provide
access to diagnostic information. When developing the control
units, it is often required to gain access to inside information
that is not part of the standard interface. These can be internal
state or calibration values. For this purpose, the Universal
Measurement and Calibration Protocol (XCP) is used, which
can make part or all of the internal memory of the unit available
to the developer. This component could follow the development
of the diagnostic module.

IX. CONCLUSION

The developed system enables to use parallel work on the

ECU and tests. It ensures better control over the complete
testing process and decreases the time for error discovery. The
test skeleton generator significantly speeds up test
development, and improves functionality. In the test
development it is not necessary to focus on adding a new
scenario, and it is possible to be fully focused on the test
scenario design from the test requirement. It is possible to use
simulation instead of a real ECU. Before the real unit exists, it
is possible to use it for the complete system behavior
simulation. After releasing the ECU, it is possible to use the
designed test for continual error detection from the requested
functionality.

ACKNOWLEDGMENT

This article was created with the support of an internal
project SGS-2021-005: Research and development electronic

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:17, No:7, 2023

161International Scholarly and Scientific Research & Innovation 17(7) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

7,
 2

02
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

15
2.

pd
f

and communication systems in scientific and engineering
applications.

REFERENCES
[1] Wolfhard Lawrenz. (2013). CAN System Engineering, ISBN: 978-1-

4471-5613-0
[2] T. Steinbach, K. Müller, F. Korf and R. Röllig, "Demo: Real-time

Ethernet in-car backbones: First insights into an automotive prototype,"
2014 IEEE Vehicular Networking Conference (VNC), Paderborn,
Germany, 2014, pp. 133-134, doi: 10.1109/VNC.2014.7013331.

[3] H. Moon, G. Kim, Y. Kim, S. Shin, K. Kim and S. Im, "Automation Test
Method for Automotive Embedded Software Based on AUTOSAR," 2009
Fourth International Conference on Software Engineering Advances,
Porto, Portugal, 2009, pp. 158-162, doi: 10.1109/ICSEA.2009.32.

[4] A. Varshney, S. Joshi and K. Namrata, "Automated Testing of Faults of
an Automotive System," 2019 IEEE 5th International Conference for
Convergence in Technology (I2CT), Bombay, India, 2019, pp. 1-5, doi:
10.1109/I2CT45611.2019.9033751.

[5] K. N. Hodel, J. Reinaldo Da Silva, L. R. Yoshioka, J. F. Justo and M. M.
D. Santos, "FAT-AES: Systematic Methodology of Functional Testing for
Automotive Embedded Software," in IEEE Access, vol. 10, pp. 74259-
74279, 2022, doi: 10.1109/ACCESS.2021.3128431.

[6] D. Brkić, A. Kostić, M. Herceg and M. Popović, "Test environment code
and test-case generators," 2022 IEEE Zooming Innovation in Consumer
Technologies Conference (ZINC), Novi Sad, Serbia, 2022, pp. 159-164,
doi: 10.1109/ZINC55034.2022.9840658.

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:17, No:7, 2023

162International Scholarly and Scientific Research & Innovation 17(7) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

7,
 2

02
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

15
2.

pd
f

