Search results for: soft soil
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1103

Search results for: soft soil

593 Investigation of Phytoextraction Coefficient Different Combination of Heavy Metals in Barley and Alfalfa

Authors: F. Zaefarian, M. Rezvani, F. Rejali, M.R. Ardakani

Abstract:

Two seperate experiments by barley and alfalfa were conducted to a 2×8 factorial completely randomised design, with four replicates. Factors were inoculation (M) with Gomus mosseae or uninoculation (M0) and seven levels of contaminants (Co, Cd, Pb and combinations) plus an uncontaminated control treatment (C). Heavy metals in plant tissues and soil were quantified by Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) (Variant- Liberty 150AX Turbo). Phytoextraction coefficient of contaminants calculated by concentration of heavy metals in the shoot (mgkg-1) / concentration of heavy metals in soil (mgkg-1). In the barley, the highest rate of phytoextraction coefficient of Pb, Cd and Co was in M0Pb, M0PbCoCd and MCo, respectively (P<0.05). In the alfalfa plants, the highest phytoextraction coefficient of Cd, Co and Pb obtained in the treatments M0CoCd, M0Co and M0PbCd, respectively.

Keywords: phytoextraction coefficient, heavy metals, barley, alfalfa

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
592 Study on Seismic Performance of Reinforced Soil Walls to Modify the Pseudo Static Method

Authors: Majid Yazdandoust

Abstract:

This study, tries to suggest a design method based on displacement using finite difference numerical modeling in reinforcing soil retaining wall with steel strip. In this case, dynamic loading characteristics such as duration, frequency, peak ground acceleration, geometrical characteristics of reinforced soil structure and type of the site are considered to correct the pseudo static method and finally introduce the pseudo static coefficient as a function of seismic performance level and peak ground acceleration. For this purpose, the influence of dynamic loading characteristics, reinforcement length, height of reinforced system and type of the site are investigated on seismic behavior of reinforcing soil retaining wall with steel strip. Numerical results illustrate that the seismic response of this type of wall is highly dependent to cumulative absolute velocity, maximum acceleration, and height and reinforcement length so that the reinforcement length can be introduced as the main factor in shape of failure. Considering the loading parameters, geometric parameters of the wall and type of the site showed that the used method in this study leads to efficient designs in comparison with other methods, which are usually based on limit-equilibrium concept. The outputs show the over-estimation of equilibrium design methods in comparison with proposed displacement based methods here.

Keywords: Pseudo static coefficient, seismic performance design, numerical modeling, steel strip reinforcement, retaining walls, cumulative absolute velocity, failure shape.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
591 A Numerical Modeling of Piping Phenomenon in Earth Dams

Authors: N. Zaki Alamdari, M. Banihashemi, A. Mirghasemi

Abstract:

To estimate the risks of dam failure phenomenon, it is necessary to understand this phenomenon and the involved governing factors. Overtopping and piping are the two main reasons of earthdam failures. In the piping context, the piping is determined as a phenomenon which is occurred between two phases, the water liquid and the solid soil. In this investigation, the onset of piping and its development, as well as the movement of water in soil, are numerically approached. In this regard, a one-dimensional numerical model based on the mass-conserving finite-volume method is developed and applied in order to simulate the piping phenomenon in a continuous circular tunnel of given initial length and radius, located between upstream and downstream. The simulation result includes the time-variations of radius along the tunnel until the radius value reaches its critical and the piping phenomenon converts to overtopping.

Keywords: Earth dam, dam break, piping, internal erosion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2727
590 Mineral Nitrogen Retention, Nitrogen Availability and Plant Growth in the Soil Influenced by Addition of Organic and Mineral Fertilizers – Lysimetric Experiment

Authors: Lukáš Plošek, Jaroslav Hynšt, Jaroslav Záhora, Jakub Elbl, Antonín Kintl, Ivana Charousová, Silvia Kovácsová

Abstract:

Compost can influence soil fertility and plant health. At the same time compost can play an important role in the nitrogen cycle and it can influence leaching of mineral nitrogen from soil to underground water.

This paper deals with the influence of compost addition and mineral nitrogen fertilizer on leaching of mineral nitrogen, nitrogen availability in microbial biomass and plant biomass production in the lysimetric experiment. Twenty one lysimeters were filed with topsoil and subsoil collected in the area of protection zone of underground source of drinking water - Březová nad Svitavou. The highest leaching of mineral nitrogen was detected in the variant fertilized only mineral nitrogen fertilizer (624.58 mg m-2), the lowest leaching was recorded in the variant with high addition of compost (315.51 mg m-2). On the other hand, losses of mineral nitrogen are not in connection with the losses of available form of nitrogen in microbial biomass. Because lost of mineral nitrogen was detected in variant with the least change in the availability of N in microbial biomass.

The leaching of mineral nitrogen, yields as well as the results concerning nitrogen availability from the first year of long term experiment suggest that compost can positive influence the leaching of nitrogen into underground water.

Keywords: Nitrogen, Compost, Biomass production, Lysimeter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2727
589 Numerical Simulation for a Shallow Braced Excavation of Campus Building

Authors: Sao-Jeng Chao, Wen-Cheng Chen, Wei-Humg Lu

Abstract:

In order to prevent encountering unpredictable factors, geotechnical engineers always conduct numerical analysis for braced excavation design. Simulation work in advance can predict the response of subsequent excavation and thus will be designed to increase the security coefficient of construction. The parameters that are considered include geological conditions, soil properties, soil distributions, loading types, and the analysis and design methods. National Ilan University is located on the LanYang plain, mainly deposited by clayey soil and loose sand, and thus is vulnerable to external influence displacement. National Ilan University experienced a construction of braced excavation with a complete program of monitoring excavation. This study takes advantage of a one-dimensional finite element method RIDO to simulate the excavation process. The predicted results from numerical simulation analysis are compared with the monitored results of construction to explore the differences between them. Numerical simulation analysis of the excavation process can be used to analyze retaining structures for the purpose of understanding the relationship between the displacement and supporting system. The resulting deformation and stress distribution from the braced excavation cab then be understand in advance. The problems can be prevented prior to the construction process, and thus acquire all the affected important factors during design and construction.

Keywords: Excavation, numerical simulation, rido, retaining structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 877
588 Assessment of Water Quality Used for Irrigation: Case Study of Josepdam Irrigation Scheme

Authors: M. A. Adejumobi, J. O. Ojediran

Abstract:

The aim of irrigation is to recharge the available water in the soil. Quality of irrigation water is essential for the yield and quality of crops produced, maintenance of soil productivity and protection of the environment. The analysis of irrigation water arises as a need to know the impact of irrigation water on the yield of crops, the effect, and the necessary control measures to rectify the effect of this for optimum production and yield of crops. This study was conducted to assess the quality of irrigation water with its performance on crop planted, in Josepdam irrigation scheme Bacita, Nigeria. Field visits were undertaken to identify and locate water supply sources and collect water samples from these sources; X1 Drain, Oshin, River Niger loop and Ndafa. Laboratory experiments were then undertaken to determine the quality of raw water from these sources. The analysis was carried for various parameters namely; physical and chemical analyses after water samples have been taken from four sources. The samples were tested in laboratory. Results showed that the raw water sources shows no salinity tendencies with SAR values less than 1me/l and Ecvaules at Zero while the pH were within the recommended range by FAO, there are increase in potassium and sulphate content contamination in three of the location. From this, it is recommended that there should be proper monitoring of the scheme by conducting analysis of water and soil in the environment, preferable test should be carried out at least one year to cover the impact of seasonal variations and to determine the physical and chemical analysis of the water used for irrigation at the scheme.

Keywords: Irrigation, Salinity, Raw water quality, Scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379
587 Implementation of Generalized Plasticity in Load-Deformation Behavior of Foundation with Emphasis on Localization Problem

Authors: A. H. Akhaveissy

Abstract:

Nonlinear finite element method with eight noded isoparametric quadrilateral element is used for prediction of loaddeformation behavior including bearing capacity of foundations. Modified generalized plasticity model with non-associated flow rule is applied for analysis of soil-footing system. Also Von Mises and Tresca criterions are used for simulation of soil behavior. Modified generalized plasticity model is able to simulate load-deformation including softening behavior. Localization phenomena are considered by different meshes. Localization phenomena have not been seen in the examples. Predictions by modified generalized plasticity model show good agreement with laboratory data and theoretical prediction in comparison the other models.

Keywords: Localization phenomena, Generalized plasticity, Non-associated Flow Rule

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
586 Removal of Total Petroleum Hydrocarbons from Contaminated Soils by Electrochemical Method

Authors: D. M. Cocârță, I. A. Istrate, C. Streche, D. M. Dumitru

Abstract:

Soil contamination phenomena are a wide world issue that has received the important attention in the last decades. The main pollutants that have affected soils are especially those resulted from the oil extraction, transport and processing. This paper presents results obtained in the framework of a research project focused on the management of contaminated sites with petroleum products/ REMPET. One of the specific objectives of the REMPET project was to assess the electrochemical treatment (improved with polarity change respect to the typical approach) as a treatment option for the remediation of total petroleum hydrocarbons (TPHs) from contaminated soils. Petroleum hydrocarbon compounds attach to soil components and are difficult to remove and degrade. Electrochemical treatment is a physicochemical treatment that has gained acceptance as an alternative method, for the remediation of organic contaminated soils comparing with the traditional methods as bioremediation and chemical oxidation. This type of treatment need short time and have high removal efficiency, being usually applied in heterogeneous soils with low permeability. During the experimental tests, the following parameters were monitored: pH, redox potential, humidity, current intensity, energy consumption. The electrochemical method was applied in an experimental setup with the next dimensions: 450 mm x 150 mm x 150 mm (L x l x h). The setup length was devised in three electrochemical cells that were connected at two power supplies. The power supplies configuration was provided in such manner that each cell has a cathode and an anode without overlapping. The initial value of TPH concentration in soil was of 1420.28 mg/kgdw. The remediation method has been applied for only 21 days, when it was already noticed an average removal efficiency of 31 %, with better results in the anode area respect to the cathode one (33% respect to 27%). The energy consumption registered after the development of the experiment was 10.6 kWh for exterior power supply and 16.1 kWh for the interior one. Taking into account that at national level, the most used methods for soil remediation are bioremediation (which needs too much time to be implemented and depends on many factors) and thermal desorption (which involves high costs in order to be implemented), the study of electrochemical treatment will give an alternative to these two methods (and their limitations).

Keywords: Electrochemical remediation, pollution, soil contamination, total petroleum hydrocarbons

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1031
585 Early-Warning Lights Classification Management System for Industrial Parks in Taiwan

Authors: Yu-Min Chang, Kuo-Sheng Tsai, Hung-Te Tsai, Chia-Hsin Li

Abstract:

This paper presents the early-warning lights classification management system for industrial parks promoted by the Taiwan Environmental Protection Administration (EPA) since 2011, including the definition of each early-warning light, objectives, action program and accomplishments. All of the 151 industrial parks in Taiwan were classified into four early-warning lights, including red, orange, yellow and green, for carrying out respective pollution management according to the monitoring data of soil and groundwater quality, regulatory compliance, and regulatory listing of control site or remediation site. The Taiwan EPA set up a priority list for high potential polluted industrial parks and investigated their soil and groundwater qualities based on the results of the light classification and pollution potential assessment. In 2011-2013, there were 44 industrial parks selected and carried out different investigation, such as the early warning groundwater well networks establishment and pollution investigation/verification for the red and orange-light industrial parks and the environmental background survey for the yellow-light industrial parks. Among them, 22 industrial parks were newly or continuously confirmed that the concentrations of pollutants exceeded those in soil or groundwater pollution control standards. Thus, the further investigation, groundwater use restriction, listing of pollution control site or remediation site, and pollutant isolation measures were implemented by the local environmental protection and industry competent authorities; the early warning lights of those industrial parks were proposed to adjust up to orange or red-light. Up to the present, the preliminary positive effect of the soil and groundwater quality management system for industrial parks has been noticed in several aspects, such as environmental background information collection, early warning of pollution risk, pollution investigation and control, information integration and application, and inter-agency collaboration. Finally, the work and goal of self-initiated quality management of industrial parks will be carried out on the basis of the inter-agency collaboration by the classified lights system of early warning and management as well as the regular announcement of the status of each industrial park.

Keywords: Industrial park, soil and groundwater quality management, early-warning lights classification, SOP for reporting and treatment of monitored abnormal events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
584 Effects of Sea Water Level Fluctuations on Seismic Response of Jacket Type Offshore Platforms

Authors: M. Rad, M. Dolatshahi Pirooz, M. Esmayili

Abstract:

To understand the seismic behavior of the offshore structures, the dynamic interaction of the water-structure-soil should be assessed. In this regard the role of the water dynamic properties in magnifying or reducing of the effects of earthquake induced motions on offshore structures haven't been investigated in precise manner in available literature. In this paper the sea water level fluctuations effects on the seismic behavior of a sample of offshore structures has been investigated by emphasizing on the water-structure interaction phenomenon. For this purpose a two dimensional finite element model of offshore structures as well as surrounded water has been developed using ANSYS software. The effect of soil interaction with embedded pile foundation has been imposed by using a series of nonlinear springs in horizontal and vertical directions in soil-piles contact points. In the model, the earthquake induced motions have been applied on springs and consequently the motions propagated upward to the structure and surrounded water. As a result of numerical study, the horizontal deformations of the offshore deck as well as internal force and buckling coefficient in structural elements have been recorded and controlled with and without water presence. In part of study a parametric study has been accomplished on sea water level fluctuations and effect of this parameter has been studied on the aforementioned numerical results.

Keywords: Fluid-Structure Interaction, Jacket, Sea Water Level, Seismic Loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
583 Reinforcement Effect on Dynamic Properties of Saturated Sand

Authors: R. Ziaie Moayed, M. Alibolandi

Abstract:

Dynamic behavior of soil are evaluated relative to a number of factors including: strain level, density, number of cycles, material type, fine content, geosynthetic inclusion, saturation, and effective stress .This paper investigate the dynamic behavior of saturated reinforced sand under cyclic stress condition. The cyclic triaxial tests are conducted on remolded specimens under various CSR which reinforced by different arrangement of non-woven geotextile. Aforementioned tests simulate field reinforced saturated deposits during earthquake or other cyclic loadings. This analysis revealed that the geotextile arrangement played dominant role on dynamic soil behavior and as geotextile close to top of specimen, the liquefaction resistance increased.

Keywords: Dynamic Behavior, Reinforced Sand, Triaxial Test, Non-woven Geotextile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2724
582 ANN based Multi Classifier System for Prediction of High Energy Shower Primary Energy and Core Location

Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta

Abstract:

Cosmic showers, during the transit through space, produce sub - products as a result of interactions with the intergalactic or interstellar medium which after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of High Energy Particle Showers involve a plethora of theoretical and experimental works with a host of constraints resulting in inaccuracies in measurements. Therefore, there exist a necessity to develop a readily available system based on soft-computational approaches which can be used for EAS analysis. This is due to the fact that soft computational tools such as Artificial Neural Network (ANN)s can be trained as classifiers to adapt and learn the surrounding variations. But single classifiers fail to reach optimality of decision making in many situations for which Multiple Classifier System (MCS) are preferred to enhance the ability of the system to make decisions adjusting to finer variations. This work describes the formation of an MCS using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN) with data inputs from correlation mapping Self Organizing Map (SOM) blocks and the output optimized by another SOM. The results show that the setup can be adopted for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.

Keywords: EAS, Shower, Core, ANN, Location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1258
581 Displacement Fields in Footing-Sand Interactions under Cyclic Loading

Authors: S. Joseph Antony, Z. K. Jahanger

Abstract:

Soils are subjected to cyclic loading in situ in situations such as during earthquakes and in the compaction of pavements. Investigations on the local scale measurement of the displacements of the grain and failure patterns within the soil bed under the cyclic loading conditions are rather limited. In this paper, using the digital particle image velocimetry (DPIV), local scale displacement fields of a dense sand medium interacting with a rigid footing are measured under the plane-strain condition for two commonly used types of cyclic loading, and the quasi-static loading condition for the purposes of comparison. From the displacement measurements of the grains, the failure envelopes of the sand media are also presented. The results show that, the ultimate cyclic bearing capacity (qultcyc) occurred corresponding to a relatively higher settlement value when compared with that of under the quasi-static loading. For the sand media under the cyclic loading conditions considered here, the displacement fields in the soil media occurred more widely in the horizontal direction and less deeper along the vertical direction when compared with that of under the quasi-static loading. The 'dead zone' in the sand grains beneath the footing is identified for all types of the loading conditions studied here. These grain-scale characteristics have implications on the resulting bulk bearing capacity of the sand media in footing-sand interaction problems.

Keywords: Cyclic loading, DPIV, settlement, soil-structure interactions, strip footing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 831
580 Water and Beverage Consumption among Children and Adolescents in Tehran Metropolitan City of Iran

Authors: Mitra Abtahi, Esmat Nasseri, Morteza Abodllahi

Abstract:

Introduction: Adequate hydration is necessary for proper physical and mental function. The aim of this study is to determine the consumption of water and all other beverages in children (8-13 years) and adolescents (14-17 years) in Tehran metropolitan city of Iran. Materials and Methods: In this cross-sectional study, 455 children (8-13 years) and 334 adolescents (14-17 years) were retrieved from north, center, and south of Tehran (18 schools). Instrument for data collection consisted of a “demographic and general health” questionnaire and a “7-day fluid record”. Data analyses were performed with SPSS 16 software. Results: The mean total consumption of fluids in school children was 1302 ± 500.6 ml/day. The highest mean intakes were observed for water (666 ± 398 ml/day), followed by milk (239 ± 183 ml/day), regular soft beverages (RSB) (188 ± 148 ml/day), and juices (60 ± 74 ml/day). Water, hot drinks (mainly tea) and soft drinks intake was significantly more in boys than girls. A significantly lower intake of milk and a higher intake of RSB and hot beverages (mainly tea) have been seen among adolescents compared to children. Conclusion: The most important finding is that mean fluid intake of children and adolescents does not meet international adequate intake references for water and fluids. This finding may suggest the necessity of development of the local references. To improve fluid intake habits of children and adolescents, relevant policy making and actions are warranted.

Keywords: Adolescents, beverages, children, water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 630
579 Preparation of Fe3Si/Ferrite Micro- and Nano-Powder Composite

Authors: R. Bures, M. Streckova, M. Faberova, P. Kurek

Abstract:

Composite material based on Fe3Si micro-particles and Mn-Zn nano-ferrite was prepared using powder metallurgy technology. The sol-gel followed by autocombustion process was used for synthesis of Mn0.8Zn0.2Fe2O4 ferrite. 3 wt.% of mechanically milled ferrite was mixed with Fe3Si powder alloy. Mixed micro-nano powder system was homogenized by the Resonant Acoustic Mixing using ResodynLabRAM Mixer. This non-invasive homogenization technique was used to preserve spherical morphology of Fe3Si powder particles. Uniaxial cold pressing in the closed die at pressure 600 MPa was applied to obtain a compact sample. Microwave sintering of green compact was realized at 800°C, 20 minutes, in air. Density of the powders and composite was measured by Hepycnometry. Impulse excitation method was used to measure elastic properties of sintered composite. Mechanical properties were evaluated by measurement of transverse rupture strength (TRS) and Vickers hardness (HV). Resistivity was measured by 4 point probe method. Ferrite phase distribution in volume of the composite was documented by metallographic analysis. It has been found that nano-ferrite particle distributed among micro- particles of Fe3Si powder alloy led to high relative density (~93%) and suitable mechanical properties (TRS >100 MPa, HV ~1GPa, E-modulus ~140 GPa) of the composite. High electric resistivity (R~6.7 ohm.cm) of prepared composite indicate their potential application as soft magnetic material at medium and high frequencies.

Keywords: Micro- and nano-composite, soft magnetic materials, microwave sintering, mechanical and electric properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3726
578 Contamination of Organochlorine Pesticides in Nest Soil, Egg, and Blood of the Snail-eating Turtle (Malayemys macrocephala) from the Chao Phraya River Basin, Thailand

Authors: Sarun Keithmaleesatti, Pakorn Varanusupakul, Wattasit Siriwong, Kumthorn Thirakhupt, Mark Robson, Noppadon Kitana

Abstract:

Organochlorine pesticides (OCPs) are known to be persistent and bioaccumulative toxicants that may cause reproductive impairments in wildlife as well as human. The current study uses the snail-eating turtle Malayemys macrocephala, a long-lived animal commonly distribute in rice field habitat in central part of Thailand, as a sentinel to monitor OCP contamination in environment. The nest soil, complete clutch of eggs, and blood of the turtle were collected from agricultural areas in the Chao Phraya River Basin, Thailand during the nesting season of 2007-2008. The novel methods for tissue extraction by an accelerated solvent extractor (ASE, for egg) and liquid-liquid extraction (for blood) have been developed. The nineteen OCP residues were analyzed by gas chromatography with micro-electron captured detector (GC-μECD). The validated methods have met requirements of the AOAC standard. The results indicated that significant amounts of OCPs are still contaminated in nest soil and eggs of the turtle even though the OCPs had been banned in this area for many years. This suggested the potential risk to health of wildlife as well as human in the area.

Keywords: Gas chromatography, persistent organic pollutants, rice field, sentinel species.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
577 Bearing Behavior of a Hybrid Monopile Foundation for Offshore Wind Turbines

Authors: Zicheng Wang

Abstract:

Offshore wind energy provides a huge potential for the expansion of renewable energies to the coastal countries. High demands are required concerning the shape and type of foundations for offshore wind turbines (OWTs) to find an economically, technically and environmentally-friendly optimal solution. A promising foundation concept is the hybrid foundation system, which consists of a steel plate attached to the outer side of a hollow steel pipe pile. In this study, the bearing behavior of a large diameter foundation is analyzed using a 3-dimensional finite element (FE) model. Non-linear plastic soil behavior is considered. The results of the numerical simulations are compared to highlight the priority of the hybrid foundation to the conventional monopile foundation.

Keywords: Hybrid foundation system, mechanical parameters, plastic soil behaviors, numerical simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 556
576 Effect of Shallow Groundwater Table on the Moisture Depletion Pattern in Crop Root Zone

Authors: Vijay Shankar

Abstract:

Different techniques for estimating seasonal water use from soil profile water depletion frequently do not account for flux below the root zone. Shallow water table contribution to supply crop water use may be important in arid and semi-arid regions. Development of predictive root uptake models, under influence of shallow water table makes it possible for planners to incorporate interaction between water table and root zone into design of irrigation projects. A model for obtaining soil moisture depletion from root zone and water movement below it is discussed with the objective to determine impact of shallow water table on seasonal moisture depletion patterns under water table depth variation, up to the bottom of root zone. The role of different boundary conditions has also been considered. Three crops: Wheat (Triticum aestivum), Corn (Zea mays) and Potato (Solanum tuberosum), common in arid & semi-arid regions, are chosen for the study. Using experimentally obtained soil moisture depletion values for potential soil moisture conditions, moisture depletion patterns using a non linear root uptake model have been obtained for different water table depths. Comparative analysis of the moisture depletion patterns under these conditions show a wide difference in percent depletion from different layers of root zone particularly top and bottom layers with middle layers showing insignificant variation in moisture depletion values. Moisture depletion in top layer, when the water table rises to root zone increases by 19.7%, 22.9% & 28.2%, whereas decrease in bottom layer is 68.8%, 61.6% & 64.9% in case of wheat, corn & potato respectively. The paper also discusses the causes and consequences of increase in moisture depletion from top layers and exceptionally high reduction in bottom layer, and the possible remedies for the same. The numerical model developed for the study can be used to help formulating irrigation strategies for areas where shallow groundwater of questionable quality is an option for crop production.

Keywords: Moisture Depletion, crop root zone, ground water table, irrigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
575 Numerical Simulations of Frost Heave Using COMSOL Multiphysics Software in Unsaturated Freezing Soils

Authors: Sara Soltanpour, Adolfo Foriero

Abstract:

Frost heave is arguably the most problematic adverse phenomenon in cold region areas. It is a complex process that depends on heat and water transfer. The coupled physical fields generate considerable heave stresses as well as deformations. In the present study, a coupled Thermal-Hydraulic-Mechanical (THM) model using COMSOL Multiphysics in frozen unsaturated soils, such as fine sand, is investigated. Particular attention to the frost heave and temperature distribution, as well as the water migrating during soil freezing, is assessed. The results obtained from the numerical simulations are consistent with the results measured in the full-scale tests conducted by Cold Regions Research and Engineering Laboratory (CRREL).

Keywords: Frost heave, numerical simulations, COMSOL software, unsaturated freezing soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204
574 The Effectiveness of Mineral Fertilization of Winter Wheat by Nitrogen in the Soil and Climatic Conditions in the Cr

Authors: Václav Voltr, Jan Leština

Abstract:

The basis of examines is survey of 500 in the years 2002-2010, which was selected according to homogeneity of land cover and where 1090 revenues were evaluated. For achieved yields of winter wheat is obtained multicriterial regression function depending on the major factors influencing the consumption of nitrogen. The coefficient of discrimination of the established model is 0.722. The increase in efficiency of fertilization is involved in supply of organic nutrients, tillage, soil pH, past weather, the humus content in the subsoil and grain content to 0.001 mm. The decrease in efficiency was mainly influenced by the total dose of mineral nitrogen, although it was divided into multiple doses, the proportion loamy particles up to 0.01 mm, rainy, or conversely dry weather during the vegetation. The efficiency of nitrogen was found to be the smallest on undeveloped soils and the highest on chernozem and alluvial soils.

Keywords: Nitrogen efficiency, winter wheat, regression model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
573 Experimental Investigation and Sensitivity Analysis for the Effects of Fracture Parameters to the Conductance Properties of Laterite

Authors: Bai Wei, Kong Ling-Wei, Guo Ai-Guo

Abstract:

This experiment discusses the effects of fracture parameters such as depth, length, width, angle and the number of the fracture to the conductance properties of laterite using the DUK-2B digital electrical measurement system combined with the method of simulating the fractures. The results of experiment show that the changes of fracture parameters produce effects to the conductance properties of laterite. There is a clear degressive period of the conductivity of laterite during increasing the depth, length, width, or the angle and the quantity of fracture gradually. When the depth of fracture exceeds the half thickness of the soil body, the conductivity of laterite shows evidently non-linear diminishing pattern and the amplitude of decrease tends to increase. The length of fracture has fewer effects than the depth to the conductivity. When the width of fracture reaches some fixed values, the change of the conductivity is less sensitive to the change of the width, and at this time, the conductivity of laterite maintains at a stable level. When the angle of fracture is less than 45°, the decrease of the conductivity is more clearly as the angle increases. But when angle is more than 45°, change of the conductivity is relatively gentle as the angle increases. The increasing quantity of the fracture causes the other fracture parameters having great impact on the change of conductivity. When moisture content and temperature were unchanged, depth and angle of fractures are the major factors affecting the conductivity of laterite soil; quantity, length, and width are minor influencing factors. The sensitivity of fracture parameters affect conductivity of laterite soil is: depth >angles >quantity >length >width.

Keywords: laterite, fracture parameters, conductance properties, conductivity, uniform design, sensitivity analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388
572 Synchrotron X-Ray Based Investigation of As and Fe Bonding Environment in Collard Green Tissue Samples at Different Growth Stages

Authors: Sunil Dehipawala, Aregama Sirisumana, P. Schneider, G. Tremberger Jr, D. Lieberman, Todd Holden T. Cheung

Abstract:

The arsenic and iron environments in different growth stages have been studied with EXAFS and XANES using Brookhaven Synchrotron Light Source. Collard Greens plants were grown and tissue samples were harvested. The project studied the EXAFS and XANES of tissue samples using As and Fe K-edges. The Fe absorption and the Fourier transform bond length information were used as a control comparison. The Fourier transform of the XAFS data revealed the coexistence of As (III) and As (V) in the As bonding environment inside the studied plant tissue samples, although the soil only had As (III). The data suggests that Collard Greens has a novel pathway to handle arsenic absorption in soil.

Keywords: EXAFS, Fourier Transform, metalloproteins, XANES.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
571 Seismic Analysis of Structurally Hybrid Wind Mill Tower

Authors: Atul K. Desai, Hemal J. Shah

Abstract:

The tall windmill towers are designed as monopole tower or lattice tower. In the present research, a 125-meter high hybrid tower which is a combination of lattice and monopole type is proposed. The response of hybrid tower is compared with conventional monopole tower. The towers were analyzed in finite element method software considering nonlinear seismic time history load. The synthetic seismic time history for different soil is derived using the SeismoARTIF software. From the present research, it is concluded that, in the hybrid tower, we are not getting resonance condition. The base shear is less in hybrid tower compared to monopole tower for different soil conditions.

Keywords: Dynamic analysis, hybrid wind mill tower, resonance condition, synthetic time history.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698
570 Effect of Fill Material Density under Structures on Ground Motion Characteristics Due to Earthquake

Authors: Ahmed T. Farid, Khaled Z. Soliman

Abstract:

Due to limited areas and excessive cost of land for projects, backfilling process has become necessary. Also, backfilling will be done to overcome the un-leveling depths or raising levels of site construction, especially near the sea region. Therefore, backfilling soil materials used under the foundation of structures should be investigated regarding its effect on ground motion characteristics, especially at regions subjected to earthquakes. In this research, 60-meter thickness of sandy fill material was used above a fixed 240-meter of natural clayey soil underlying by rock formation to predict the modified ground motion characteristics effect at the foundation level. Comparison between the effect of using three different situations of fill material compaction on the recorded earthquake is studied, i.e. peak ground acceleration, time history, and spectra acceleration values. The three different densities of the compacted fill material used in the study were very loose, medium dense and very dense sand deposits, respectively. Shake computer program was used to perform this study. Strong earthquake records, with Peak Ground Acceleration (PGA) of 0.35 g, were used in the analysis. It was found that, higher compaction of fill material thickness has a significant effect on eliminating the earthquake ground motion properties at surface layer of fill material, near foundation level. It is recommended to consider the fill material characteristics in the design of foundations subjected to seismic motions. Future studies should be analyzed for different fill and natural soil deposits for different seismic conditions.

Keywords: Fill, material, density, compaction, earthquake, PGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 838
569 The Potential of Natural Waste (Corn Husk) for Production of Environmental Friendly Biodegradable Film for Seedling

Authors: M. Z. Norashikin, M. Z. Ibrahim

Abstract:

The use of plastic materials in agriculture causes serious hazards to the environment. The introduction of biodegradable materials, which can be disposed directly into the soil can be one possible solution to this problem. In the present research results of experimental tests carried out on biodegradable film fabricated from natural waste (corn husk) are presented. The film was characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA) and atomic force microscope (AFM) observation. The film is shown to be readily degraded within 7-9 months under controlled soil conditions, indicating a high biodegradability rate. The film fabricated was use to produce biodegradable pot (BioPot) for seedlings plantation. The introduction and the expanding use of biodegradable materials represent a really promising alternative for enhancing sustainable and environmentally friendly agricultural activities.

Keywords: Environment, waste, plastic, biodegradable.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4928
568 Analytic on Various Grounding Configurations in Uniform Layer Soil

Authors: Mohd Shahriman B. Mohd Yunus, Mohd Hanif B. Jamaludin, Norain Bt. Bahror

Abstract:

The performance of an embedded grounding system is very important for the safe operation of electrical appliances and human beings. In principle, a safe grounding system has two objectives, which are to dissipate fault current without exceeding any operating and equipment limits and to ensure there is no risk of electric shock to humans in the vicinity of earthed facilities. The case studies in this paper present the calculating grounding resistance for multiple configurations of vertical and horizontally by using a simple and accurate formula. From the analytic calculated results, observed good/empirical relationship between the grounding resistance and length of the embedded grounding configurations. Moreover, the configurations of vertical and horizontal observed effectiveness of grounding resistance and good agreement on the reduction of grounding resistance values especially for vertical configuration.

Keywords: Grounding system, grounding resistance, soil resistivity, electrode geometry, configurations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 426
567 Application the Statistical Conditional Entropy Function for Definition of Cause-and-Effect Relations during Primary Soil Formation

Authors: Vladimir K. Mukhomorov

Abstract:

Within the framework of a method of the information theory it is offered statistics and probabilistic model for definition of cause-and-effect relations in the coupled multicomponent subsystems. The quantitative parameter which is defined through conditional and unconditional entropy functions is introduced. The method is applied to the analysis of the experimental data on dynamics of change of the chemical elements composition of plants organs (roots, reproductive organs, leafs and stems). Experiment is directed on studying of temporal processes of primary soil formation and their connection with redistribution dynamics of chemical elements in plant organs. This statistics and probabilistic model allows also quantitatively and unambiguously to specify the directions of the information streams on plant organs.

Keywords: Chemical elements, entropy function, information, plants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
566 The Influence of Organic Waste on Vegetable Nutritional Components and Healthy Livelihood, Minna, Niger State, Nigeria

Authors: A. Abdulkadir, A. A. Okhimamhe, Y. M. Bello, H. Ibrahim, D. H. Makun, M. T. Usman

Abstract:

Household waste form a larger proportion of waste generated across the state, accumulation of organic waste is an apparent problem and the existing dump sites could be overstress. Niger state has abundant arable land and water resources thus should be one of the highest producers of agricultural crops in the country. However, the major challenge to agricultural sector today is loss of soil nutrient coupled with high cost of fertilizer. These have continued to increase the use of fertilizer and decomposed solid waste for enhance agricultural yield, which have varying effects on the soil as well a threat to human livelihood. Consequently, vegetable yield samples from poultry droppings, decomposed household waste manure, NPK treatments and control from each replication were subjected to proximate analysis to determine the nutritional and antinutritional component as well as heavy metal concentration. Data collected was analyzed using SPSS software and Randomized complete Block Design means were compared. The result shows that the treatments do not devoid the concentrations of any nutritional components while the anti-nutritional analysis proved that NPK had higher oxalate content than control and organic treats. The concentration of lead and cadmium are within safe permissible level while the mercury level exceeded the FAO/WHO maximum permissible limit for the entire treatments depicts the need for urgent intervention to minimize mercury levels in soil and manure in order to mitigate its toxic effect. Thus, eco-agriculture should be widely accepted and promoted by the stakeholders for soil amendment, higher yield, strategies for sustainable environmental protection, food security, poverty eradication, attainment of sustainable development and healthy livelihood.

Keywords: Anti-nutritional, healthy livelihood, nutritional waste, organic waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
565 Soil Improvement using Cement Dust Mixture

Authors: Mohie Eldin Mohamed Afifiy Elmashad

Abstract:

Day by day technology increases and problems associated with this technology also increase. Several researches were carried out to investigate the deployment of such material safely in geotechnical engineering in particular and civil engineering in general. However, different types of waste material have such as cement duct, fly ash and slag been proven to be suitable in several applications. In this research cement dust mixed with different percentages of sand will be used in some civil engineering application as will be explained later in this paper throughout filed and laboratory test. The used mixer (waste material with sand) prove high performance, durability to environmental condition, low cost and high benefits. At higher cement dust ratio, small cement ratio is valuable for compressive strength and permeability. Also at small cement dust ratio higher cement ratio is valuable for compressive strength.

Keywords: cement dust, cement, soil improvement, permeability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2870
564 Conservation Techniques for Soil Erosion Control in Tobacco-Based Farming System at Steep Land Areas of Progo Hulu Subwatershed, Central Java, Indonesia

Authors: Jaka Suyana, Komariah, Masateru Senge

Abstract:

This research was aimed at determining the impact of conservation techniques including bench terrace, stone terrace, mulching, grass strip and intercropping on soil erosion at tobacco-based farming system at Progo Hulu subwatershed, Central Java, Indonesia. Research was conducted from September 2007 to September 2009, located at Progo Hulu subwatershed, Central Java, Indonesia. Research site divided into 27 land units, and experimental fields were grouped based on the soil type and slope, ie: 30%, 45% and 70%, with the following treatments: 1) ST0= stone terrace (control); 2) ST1= stone terrace + Setaria spacelata grass strip on a 5 cm height dike at terrace lips + tobacco stem mulch with dose of 50% (7 ton/ ha); 3) ST2= stone terrace + Setaria spacelata grass strip on a 5 cm height dike at terrace lips + tobacco stem mulch with dose of 100% (14 ton/ ha); 4) ST3= stone terrace + tobacco and red bean intercropping + tobacco stem mulch with dose of 50% (7 ton/ ha). 5) BT0= bench terrace (control); 6) BT1= bench terrace + Setaria spacelata grass strip at terrace lips + tobacco stem mulch with dose of 50% (7 ton/ ha); 7) BT2= bench terrace + Setaria spacelata grass strip at terrace lips + tobacco stem mulch with dose of 100% (14 ton/ ha); 8) BT3= bench terrace + tobacco and red bean intercropping + tobacco stem mulch with dose of 50% (7 ton/ ha). The results showed that the actual erosion rates of research site were higher than that of tolerance erosion with mean value 89.08 ton/ha/year and 33.40 ton/ha/year, respectively. These resulted in 69% of total research site (5,119.15 ha) highly degraded. Conservation technique of ST2 was the most effective in suppressing soil erosion, by 42.87%, following with BT2 as much 30.63%. Others suppressed erosion only less than 21%.

Keywords: Steep land, subwatershed, conservation terrace, tolerance erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130