WASET
	%0 Journal Article
	%A Vijay Shankar
	%D 2012
	%J International Journal of Agricultural and Biosystems Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 72, 2012
	%T Effect of Shallow Groundwater Table on the Moisture Depletion Pattern in Crop Root Zone
	%U https://publications.waset.org/pdf/11135
	%V 72
	%X Different techniques for estimating seasonal water
use from soil profile water depletion frequently do not account for
flux below the root zone. Shallow water table contribution to supply
crop water use may be important in arid and semi-arid regions.
Development of predictive root uptake models, under influence of
shallow water table makes it possible for planners to incorporate
interaction between water table and root zone into design of irrigation
projects. A model for obtaining soil moisture depletion from root
zone and water movement below it is discussed with the objective to
determine impact of shallow water table on seasonal moisture
depletion patterns under water table depth variation, up to the bottom
of root zone. The role of different boundary conditions has also been
considered. Three crops: Wheat (Triticum aestivum), Corn (Zea
mays) and Potato (Solanum tuberosum), common in arid & semi-arid
regions, are chosen for the study. Using experimentally obtained soil
moisture depletion values for potential soil moisture conditions,
moisture depletion patterns using a non linear root uptake model have
been obtained for different water table depths. Comparative analysis
of the moisture depletion patterns under these conditions show a wide
difference in percent depletion from different layers of root zone
particularly top and bottom layers with middle layers showing
insignificant variation in moisture depletion values. Moisture
depletion in top layer, when the water table rises to root zone
increases by 19.7%, 22.9% & 28.2%, whereas decrease in bottom
layer is 68.8%, 61.6% & 64.9% in case of wheat, corn & potato
respectively. The paper also discusses the causes and consequences
of increase in moisture depletion from top layers and exceptionally
high reduction in bottom layer, and the possible remedies for the
same. The numerical model developed for the study can be used to
help formulating irrigation strategies for areas where shallow
groundwater of questionable quality is an option for crop production.
	%P 1096 - 1101