Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Anti-nutritional

2 Levels of Some Antinutritional Factors in Tempeh Produced From Some Legumes and Jojobas Seeds

Authors: Ferial M. Abu-Salem, Rasha K. Mohamed, Ahmed Y. Gibriel, Nagwa M. H. Rasmy

Abstract:

Three legumes i.e. soybean, kidney bean and mung bean, and jojoba seed as an oil seed were processed into tempeh, a fermented food. Changes in phytic acid, total phenols and trypsin inhibitor were monitored during the pretreatments (soaking, soaking– dehulling, washing and cooking) and fermentation with Rhizopus oligosporus. Soaking was found to reduce total phenol and trypsin inhibitor levels in soybean, kidney bean and mung bean. However, phytic acid was reduced by soaking in kidney bean and mung bean. Cooking was the most effective in reducing the activity of trypsin inhibitor. During fermentation, a slight increase in the level of trypsin inhibitor was noticed in soybean. Phytic acid and total phenols were decreased during fermentation in soybean, kidney bean but mung bean faild to form tempeh because the antifungal activity of herein a protein in mung bean, which exerts both chitinase activity and antifungal activity against a variety of fungal species. On the other hand, solid- state fermentation of jojoba seeds was not effective in reducing their content from cyanogenic glycosides (simmondsin).

Keywords: Antinutritional factors, cyanogenic glycosides (Simmondsin), tempeh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1 Chemical and Biological Properties of Local Cowpea Seed Protein Grown in Gizan Region

Authors: Abdelatief S. H. El-Jasser

Abstract:

The aim of the present study was to investigate the chemical and biological properties of local cowpea seed protein cultivated in Gizan region. The results showed that the cowpea and its products contain high level of protein (22.9-77.6%), high carbohydrates (9.4-64.3%) and low fats (0.1-0.3%). The trypsin and chymotrypsin activities were found to be 32.2 and 15.2 units, respectively. These activities were not affected in both defatted and protein concentrate whereas they were significantly reduced in isolated protein and cooked samples. The phytate content of cooked and concentrated cowpea samples varied from 0.25% -0.32%, respectively. Tannin content was found to be 0.4% and 0.23% for cooked and raw samples, respectively. The in vitro protein digestibility was very high in cowpea seeds (75.04-78.76%). The biological evaluation using rats showed that the group fed with animal feed containing casein gain more weight than those fed with that containing cowpea. However, the group fed with cooked cowpea gain more weight than those fed with uncooked cowpea. On the other hand, in vivo digestion showed high value (98.33%) among the group consumed casein compared to other groups those consumed cowpea contains feed. This could be attributed to low antinutritional factors in casein contains feed compared to those of cowpea contains feed because cooking significantly increased the digestion rate (80.8% to 83.5%) of cowpea contains feed. Furthermore, the biological evaluation was high (91.67%) of casein containing feed compared to that of cowpea containing feed (80.83%-87.5%). The net protein utilization (NPU) was higher (89.67%) in the group fed with casein containing feed than that of cowpea containing feed (56.33%-69.67%).

Keywords: Biological properties, Cowpea seed protein, Antinutritional factors, In vitro digestibility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF