Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2044

Search results for: predictive distribution

2044 On the Parameter of the Burr Type X under Bayesian Principles

Authors: T. N. Sindhu, M. Aslam

Abstract:

A comprehensive Bayesian analysis has been carried out in the context of informative and non-informative priors for the shape parameter of the Burr type X distribution under different symmetric and asymmetric loss functions. Elicitation of hyperparameter through prior predictive approach is also discussed. Also we derive the expression for posterior predictive distributions, predictive intervals and the credible Intervals. As an illustration, comparisons of these estimators are made through simulation study.

Keywords: Credible Intervals, Loss Functions, Posterior Predictive Distributions, Predictive Intervals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1260
2043 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: Predictive analysis, big data, predictive analysis algorithms. CART algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587
2042 Multivariable Predictive PID Control for Quadruple Tank

Authors: Qamar Saeed, Vali Uddin, Reza Katebi

Abstract:

In this paper multivariable predictive PID controller has been implemented on a multi-inputs multi-outputs control problem i.e., quadruple tank system, in comparison with a simple multiloop PI controller. One of the salient feature of this system is an adjustable transmission zero which can be adjust to operate in both minimum and non-minimum phase configuration, through the flow distribution to upper and lower tanks in quadruple tank system. Stability and performance analysis has also been carried out for this highly interactive two input two output system, both in minimum and non-minimum phases. Simulations of control system revealed that better performance are obtained in predictive PID design.

Keywords: Proportional-integral-derivative Control, GeneralizedPredictive Control, Predictive PID Control, Multivariable Systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2968
2041 Design of Smith-like Predictive Controller with Communication Delay Adaptation

Authors: Jasmin Velagic

Abstract:

This paper addresses the design of predictive networked controller with adaptation of a communication delay. The networked control system contains random delays from sensor to controller and from controller to actuator. The proposed predictive controller includes an adaptation loop which decreases the influence of communication delay on the control performance. Also, the predictive controller contains a filter which improves the robustness of the control system. The performance of the proposed adaptive predictive controller is demonstrated by simulation results in comparison with PI controller and predictive controller with constant delay.

Keywords: Predictive control, adaptation, communication delay, communication network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
2040 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objectives

Authors: Mingyu Xie, Mietek Brdys

Abstract:

The paper develops a Non-Linear Model Predictive Control (NMPC) of water quality in Drinking Water Distribution Systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.

Keywords: Model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
2039 Solving the Flexible Job Shop Scheduling Problem with Uniform Processing Time Uncertainty

Authors: Nasr Al-Hinai, Tarek Y. ElMekkawy

Abstract:

The performance of schedules released to a shop floor may greatly be affected by unexpected disruptions. Thus, this paper considers the flexible job shop scheduling problem when processing times of some operations are represented by a uniform distribution with given lower and upper bounds. The objective is to find a predictive schedule that can deal with this uncertainty. The paper compares two genetic approaches to obtain predictive schedule. To determine the performance of the predictive schedules obtained by both approaches, an experimental study is conducted on a number of benchmark problems.

Keywords: Genetic algorithm, met-heuristic, robust scheduling, uncertainty of processing times

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2455
2038 Forecasting for Financial Stock Returns Using a Quantile Function Model

Authors: Yuzhi Cai

Abstract:

In this talk, we introduce a newly developed quantile function model that can be used for estimating conditional distributions of financial returns and for obtaining multi-step ahead out-of-sample predictive distributions of financial returns. Since we forecast the whole conditional distributions, any predictive quantity of interest about the future financial returns can be obtained simply as a by-product of the method. We also show an application of the model to the daily closing prices of Dow Jones Industrial Average (DJIA) series over the period from 2 January 2004 - 8 October 2010. We obtained the predictive distributions up to 15 days ahead for the DJIA returns, which were further compared with the actually observed returns and those predicted from an AR-GARCH model. The results show that the new model can capture the main features of financial returns and provide a better fitted model together with improved mean forecasts compared with conventional methods. We hope this talk will help audience to see that this new model has the potential to be very useful in practice.

Keywords: DJIA, Financial returns, predictive distribution, quantile function model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1066
2037 The Performance of Predictive Classification Using Empirical Bayes

Authors: N. Deetae, S. Sukparungsee, Y. Areepong, K. Jampachaisri

Abstract:

This research is aimed to compare the percentages of correct classification of Empirical Bayes method (EB) to Classical method when data are constructed as near normal, short-tailed and long-tailed symmetric, short-tailed and long-tailed asymmetric. The study is performed using conjugate prior, normal distribution with known mean and unknown variance. The estimated hyper-parameters obtained from EB method are replaced in the posterior predictive probability and used to predict new observations. Data are generated, consisting of training set and test set with the sample sizes 100, 200 and 500 for the binary classification. The results showed that EB method exhibited an improved performance over Classical method in all situations under study.

Keywords: Classification, Empirical Bayes, Posterior predictive probability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375
2036 Slip Suppression of Electric Vehicles using Model Predictive PID Controller

Authors: Tohru Kawabe

Abstract:

In this paper, a new model predictive PID controller design method for the slip suppression control of EVs (electric vehicles) is proposed. The proposed method aims to improve the maneuverability and the stability of EVs by controlling the wheel slip ratio. The optimal control gains of PID framework are derived by the model predictive control (MPC) algorithm. There also include numerical simulation results to demonstrate the effectiveness of the method.

Keywords: Model Predictive Control, PID controller, Electric Vehicle, Slip suppression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137
2035 On Bayesian Analysis of Failure Rate under Topp Leone Distribution using Complete and Censored Samples

Authors: N. Feroze, M. Aslam

Abstract:

The article is concerned with analysis of failure rate (shape parameter) under the Topp Leone distribution using a Bayesian framework. Different loss functions and a couple of noninformative priors have been assumed for posterior estimation. The posterior predictive distributions have also been derived. A simulation study has been carried to compare the performance of different estimators. A real life example has been used to illustrate the applicability of the results obtained. The findings of the study suggest  that the precautionary loss function based on Jeffreys prior and singly type II censored samples can effectively be employed to obtain the Bayes estimate of the failure rate under Topp Leone distribution.

Keywords: loss functions, type II censoring, posterior distribution, Bayes estimators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2252
2034 Metabolic Predictive Model for PMV Control Based on Deep Learning

Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon

Abstract:

In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.

Keywords: Deep learning, indoor quality, metabolism, predictive model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 555
2033 Neural Network Based Predictive DTC Algorithm for Induction Motors

Authors: N.Vahdatifar, Ss.Mortazavi, R.Kianinezhad

Abstract:

In this paper, a Neural Network based predictive DTC algorithm is proposed .This approach is used as an alternative to classical approaches .An appropriate riate Feed - forward network is chosen and based on its value of derivative electromagnetic torque ; optimal stator voltage vector is determined to be applied to the induction motor (by inverter). Moreover, an appropriate torque and flux observer is proposed.

Keywords: Neural Networks, Predictive DTC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140
2032 Application of Fractional Model Predictive Control to Thermal System

Authors: Aymen Rhouma, Khaled Hcheichi, Sami Hafsi

Abstract:

The article presents an application of Fractional Model Predictive Control (FMPC) to a fractional order thermal system using Controlled Auto Regressive Integrated Moving Average (CARIMA) model obtained by discretization of a continuous fractional differential equation. Moreover, the output deviation approach is exploited to design the K -step ahead output predictor, and the corresponding control law is obtained by solving a quadratic cost function. Experiment results onto a thermal system are presented to emphasize the performances and the effectiveness of the proposed predictive controller.

Keywords: Fractional model predictive control, fractional order systems, thermal system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779
2031 A Model Predictive Control and Time Series Forecasting Framework for Supply Chain Management

Authors: Philip Doganis, Eleni Aggelogiannaki, Haralambos Sarimveis

Abstract:

Model Predictive Control has been previously applied to supply chain problems with promising results; however hitherto proposed systems possessed no information on future demand. A forecasting methodology will surely promote the efficiency of control actions by providing insight on the future. A complete supply chain management framework that is based on Model Predictive Control (MPC) and Time Series Forecasting will be presented in this paper. The proposed framework will be tested on industrial data in order to assess the efficiency of the method and the impact of forecast accuracy on overall control performance of the supply chain. To this end, forecasting methodologies with different characteristics will be implemented on test data to generate forecasts that will serve as input to the Model Predictive Control module.

Keywords: Forecasting, Model predictive control, production planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
2030 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-time Stochastic Systems

Authors: Tomoaki Hashimoto

Abstract:

Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the effectiveness of the obtained stability condition.

Keywords: Computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
2029 Nonlinear Model Predictive Swing-Up and Stabilizing Sliding Mode Controllers

Authors: S. Kahvecioglu, A. Karamancioglu, A. Yazici

Abstract:

In this paper, a nonlinear model predictive swing-up and stabilizing sliding controller is proposed for an inverted pendulum-cart system. In the swing up phase, the nonlinear model predictive control is formulated as a nonlinear programming problem with energy based objective function. By solving this problem at each sampling instant, a sequence of control inputs that optimize the nonlinear objective function subject to various constraints over a finite horizon are obtained. Then, this control drives the pendulum to a predefined neighborhood of the upper equilibrium point, at where sliding mode based model predictive control is used to stabilize the systems with the specified constraints. It is shown by the simulations that, due to the way of formulating the problem, short horizon lengths are sufficient for attaining the swing up goal.

Keywords: Inverted pendulum, model predictive control, swingup, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
2028 Are Economic Crises and Government Changes Related? A Descriptive Statistic Analysis

Authors: Şakir Görmüş, Ali Kabasakal

Abstract:

The main purpose of this study is to provide a detailed statistical overview of the time and regional distribution, relative timing occurrence of economic crises and government changes in 51 economies over the 1990–2007 periods. At the same time, the predictive power of the economic crises on set government changes will be examined using “signal approach". The result showed that the percentage of government changes is highest in transition economies (86 percent of observations) and lowest in Latin American economies (39 percent of observations). The percentages of government changes are same in both developed and developing countries (43 percent of observations). However, average crises per year (frequency of crises) are higher (lower) in developing (developed) countries than developed (developing) countries. Also, the predictive power of economic crises about the onset of a government change is highest in Transition economies (81 percent) and lowest in Latin American countries (30 percent). The predictive power of economic crises in developing countries (43 percent) is lower than developed countries (55 percent).

Keywords: Economic crises, Government Changes, PoliticalEconomy, Signal Approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
2027 A Predictive control based on Neural Network for Proton Exchange Membrane Fuel Cell

Authors: M. Sedighizadeh, M. Rezaei, V. Najmi

Abstract:

The Proton Exchange Membrane Fuel Cell (PEMFC) control system has an important effect on operation of cell. Traditional controllers couldn-t lead to acceptable responses because of time- change, long- hysteresis, uncertainty, strong- coupling and nonlinear characteristics of PEMFCs, so an intelligent or adaptive controller is needed. In this paper a neural network predictive controller have been designed to control the voltage of at the presence of fluctuations of temperature. The results of implementation of this designed NN Predictive controller on a dynamic electrochemical model of a small size 5 KW, PEM fuel cell have been simulated by MATLAB/SIMULINK.

Keywords: PEMFC, Neural Network, Predictive Control..

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
2026 Sampled-Data Model Predictive Tracking Control for Mobile Robot

Authors: Wookyong Kwon, Sangmoon Lee

Abstract:

In this paper, a sampled-data model predictive tracking control method is presented for mobile robots which is modeled as constrained continuous-time linear parameter varying (LPV) systems. The presented sampled-data predictive controller is designed by linear matrix inequality approach. Based on the input delay approach, a controller design condition is derived by constructing a new Lyapunov function. Finally, a numerical example is given to demonstrate the effectiveness of the presented method.

Keywords: Model predictive control, sampled-data control, linear parameter varying systems, LPV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905
2025 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.

Keywords: Model predictive control, unscented Kalman filter, nonlinear systems, implicit systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 511
2024 Neural Adaptive Switching Control of Robotic Systems

Authors: A. Denker, U. Akıncıoğlu

Abstract:

In this paper a neural adaptive control method has been developed and applied to robot control. Simulation results are presented to verify the effectiveness of the controller. These results show that the performance by using this controller is better than those which just use either direct inverse control or predictive control. In addition, they show that the resulting is a useful method which combines the advantages of both direct inverse control and predictive control.

Keywords: Neural networks, robotics, direct inverse control, predictive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
2023 Model Predictive Control Using Thermal Inputs for Crystal Growth Dynamics

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

Recently, crystal growth technologies have made progress by the requirement for the high quality of crystal materials. To control the crystal growth dynamics actively by external forces is useuful for reducing composition non-uniformity. In this study, a control method based on model predictive control using thermal inputs is proposed for crystal growth dynamics of semiconductor materials. The control system of crystal growth dynamics considered here is governed by the continuity, momentum, energy, and mass transport equations. To establish the control method for such thermal fluid systems, we adopt model predictive control known as a kind of optimal feedback control in which the control performance over a finite future is optimized with a performance index that has a moving initial time and terminal time. The objective of this study is to establish a model predictive control method for crystal growth dynamics of semiconductor materials.

Keywords: Model predictive control, optimal control, crystal growth, process control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 475
2022 Predictive Fuzzy Logic Controller for Agile Micro-Satellite

Authors: A. Bellar, M.K. Fellah, A.M. Si Mohammed, M. Bensaada, L. Boukhris

Abstract:

This paper presents the use of the predictive fuzzy logic controller (PFLC) applied to attitude control system for agile micro-satellite. In order to reduce the effect of unpredictable time delays and large uncertainties, the algorithm employs predictive control to predict the attitude of the satellite. Comparison of the PFLC and conventional fuzzy logic controller (FLC) is presented to evaluate the performance of the control system during attitude maneuver. The two proposed models have been analyzed with the same level of noise and external disturbances. Simulation results demonstrated the feasibility and advantages of the PFLC on the attitude determination and control system (ADCS) of agile satellite.

Keywords: Agile micro-satellite, Attitude control, fuzzy logic, predictive control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
2021 Fuzzy Predictive Pursuit Guidance in the Homing Missiles

Authors: Mustafa Resa Becan, Ahmet Kuzucu

Abstract:

A fuzzy predictive pursuit guidance is proposed as an alternative to the conventional methods. The purpose of this scheme is to obtain a stable and fast guidance. The noise effects must be reduced in homing missile guidance to get an accurate control. An aerodynamic missile model is simulated first and a fuzzy predictive pursuit control algorithm is applied to reduce the noise effects. The performance of this algorithm is compared with the performance of the classical proportional derivative control. Stability analysis of the proposed guidance method is performed and compared with the stability properties of other guidance methods. Simulation results show that the proposed method provides the satisfying performance.

Keywords: Fuzzy, noise effect, predictive, pursuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
2020 Adaptive MPC Using a Recursive Learning Technique

Authors: Ahmed Abbas Helmy, M. R. M. Rizk, Mohamed El-Sayed

Abstract:

A model predictive controller based on recursive learning is proposed. In this SISO adaptive controller, a model is automatically updated using simple recursive equations. The identified models are then stored in the memory to be re-used in the future. The decision for model update is taken based on a new control performance index. The new controller allows the use of simple linear model predictive controllers in the control of nonlinear time varying processes.

Keywords: Adaptive control, model predictive control, dynamic matrix control, online model identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
2019 A Fuzzy Predictive Filter for Sinusoidal Signals with Time-Varying Frequencies

Authors: X. Z. Gao, S. J. Ovaska, X. Wang

Abstract:

Prediction of sinusoidal signals with time-varying frequencies has been an important research topic in power electronics systems. To solve this problem, we propose a new fuzzy predictive filtering scheme, which is based on a Finite Impulse Response (FIR) filter bank. Fuzzy logic is introduced here to provide appropriate interpolation of individual filter outputs. Therefore, instead of regular 'hard' switching, our method has the advantageous 'soft' switching among different filters. Simulation comparisons between the fuzzy predictive filtering and conventional filter bank-based approach are made to demonstrate that the new scheme can achieve an enhanced prediction performance for slowly changing sinusoidal input signals.

Keywords: Predictive filtering, fuzzy logic, sinusoidal signals, time-varying frequencies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1214
2018 Loss Analysis by Loading Conditions of Distribution Transformers

Authors: A. Bozkurt, C. Kocatepe, R. Yumurtaci, İ. C. Tastan, G. Tulun

Abstract:

Efficient use of energy, the increase in demand of energy and also with the reduction of natural energy sources, has improved its importance in recent years. Most of the losses in the system from electricity produced until the point of consumption is mostly composed by the energy distribution system. In this study, analysis of the resulting loss in power distribution transformer and distribution power cable is realized which are most of the losses in the distribution system. Transformer losses in the real distribution system are analyzed by CYME Power Engineering Software program. These losses are disclosed for different voltage levels and different loading conditions.

Keywords: Distribution system, distribution transformer, power cable, technical losses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2272
2017 ATM Service Analysis Using Predictive Data Mining

Authors: S. Madhavi, S. Abirami, C. Bharathi, B. Ekambaram, T. Krishna Sankar, A. Nattudurai, N. Vijayarangan

Abstract:

The high utilization rate of Automated Teller Machine (ATM) has inevitably caused the phenomena of waiting for a long time in the queue. This in turn has increased the out of stock situations. The ATM utilization helps to determine the usage level and states the necessity of the ATM based on the utilization of the ATM system. The time in which the ATM used more frequently (peak time) and based on the predicted solution the necessary actions are taken by the bank management. The analysis can be done by using the concept of Data Mining and the major part are analyzed based on the predictive data mining. The results are predicted from the historical data (past data) and track the relevant solution which is required. Weka tool is used for the analysis of data based on predictive data mining.

Keywords: ATM, Bank Management, Data Mining, Historical data, Predictive Data Mining, Weka tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5374
2016 MPC of Single Phase Inverter for PV System

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents a model predictive control (MPC) of a utility interactive (UI) single phase inverter (SPI) for a photovoltaic (PV) system at residential/distribution level. The proposed model uses single-phase phase locked loop (PLL) to synchronize SPI with the grid and performs MPC control in a dq reference frame. SPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a full bridge (FB) voltage source inverter (VSI). No PI regulators to tune and carrier and modulating waves are required to produce switching sequence. Instead, the operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a three kW PV system at the input of UI-SPI in Matlab/Simulink. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.

Keywords: Matlab/Simulink, Model Predictive Control, Phase Locked Loop, Single Phase Inverter, Voltage Source Inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4260
2015 Reliability Evaluation of Distribution System Considering Distributed Generation

Authors: Raju Kaduru, Narsaiah Srinivas Gondlala

Abstract:

This paper presents an analytical approach for evaluating distribution system reliability indices in the presence of distributed generation. Modeling distributed generation and evaluation of distribution system reliability indices using the frequency duration technique. Using model implements and case studies are discussed. Results showed that location of DG and its effect in distribution reliability indices. In this respect, impact of DG on distribution system is investigated using the IEEE Roy Billinton test system (RBTS2) included feeder 1. Therefore, it will help to the distribution system planners in the DG resource placement.

Keywords: Distributed Generation, DG Location, Distribution System, Reliability Indices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863