Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30840
Multivariable Predictive PID Control for Quadruple Tank

Authors: Qamar Saeed, Vali Uddin, Reza Katebi


In this paper multivariable predictive PID controller has been implemented on a multi-inputs multi-outputs control problem i.e., quadruple tank system, in comparison with a simple multiloop PI controller. One of the salient feature of this system is an adjustable transmission zero which can be adjust to operate in both minimum and non-minimum phase configuration, through the flow distribution to upper and lower tanks in quadruple tank system. Stability and performance analysis has also been carried out for this highly interactive two input two output system, both in minimum and non-minimum phases. Simulations of control system revealed that better performance are obtained in predictive PID design.

Keywords: Proportional-Integral-Derivative Control, GeneralizedPredictive Control, Predictive PID Control, Multivariable Systems

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2886


[1] Kristiansson, B. and B. Lennartson, Robust Tuning of PI and PID Controllers - Using Derivative Action Despite Sensor Noise, IEEE Control System Magazine, 26(1), (2006), 55-68
[2] Cominos, P., and N. Munro, PID Controllers: recent tuning methods and design to specification, IEEE Control System Magazine, 149(1), (2002), 46-53.
[3] Miller. R.M., S.L. Shah, R.K. Wood and E.K. Kwok, Predictive PID, ISA Transaction, (1999), 38, 11-23.
[4] Rivera, D.E., S. Skogestad and M. Morari, Internal Model Control 4. PID Controller Design. Ind. Eng Chem. Proc. Design and Development, 25, (1986), 252-265.
[5] Chein, I.L., IMC-PID Controller Design-An Extension, IFAC Proceeding Series, 6, (1988), 147-152.
[6] Morari, M. and E. Zafiriou, Robust Process Control, Printice Hall, (1989).
[7] Wang, Q.G., C.C. Hang and X.P. Yang, Single Loop Controller Design Via IMC Principles, In Proceeding Asian Control Conference, Shanghai, P.R.China, (2000).
[8] Rusnak, I., Generalized PID Controllers, Proc. 7th IEEE Medit. Conference on Control & Automation, MED 99, Haifa, Israel, (1999).
[9] Grimble, M.J., H-infinity PID Controllers, Trans. IMC, 13(5), (1991), 112-120.
[10] Katebi, M.R. and M.H. Moradi, Predictive PID Controllers, IEE Proc. Control Theory Application, 148(6), (2001), 478-487.
[11] Moradi. M.H., M.R. Katebi, and M.A. Johnson, The MIMO Predictive PID Controller Design, Asian Journal of Control, 4(4), (2002), 452-463.
[12] Clarke. D.W., C. Mohtadi and P.S. Tuffs, Generalized Predictive Control- Part I. The Basic Algorithm, Automatica, 23(2), (1987), 137-148.
[13] Bordons, C., and Camacho, E.F., A Generalized Predictive Controller for a Wide Class of Industrial Processes, IEEE Transactions on Control Systems Technology, 6(3), (1998), 372-387.
[14] Tan, K.K., S.N. Huang, and T.H. Lee, Development of a GPC-based PID Controller for Unstable System with Dead Times, ISA Transaction , 39, (2000), 57-70.
[15] Tan, K.K., T.H. Lee, S.N. Huang, and F.M. Leu, PID Controller Design Based on a GPC Approach, Ind. Eng. Chem. Res., 41, (2002), 2013-2022.
[16] K. H. Johansson, The Quadruple-Tank Process: A Multivariable Laboratory Process with an Adjustable Zero, IEEE Transactions on Control Syatems Technology, 8(3), (2000), 456-465.
[17] Winston Garc'─▒-Gab'─▒n, Eduardo F. Camacho, Application of multivariable GPC to a four tank process with unstable transmission zeros", IEEE International Symposium on Cmputer Aided Control System Design Proceedings, Septemeber 18-20, (2002), 645-650