Computational Simulations on Stability of Model Predictive Control for Linear Discrete-time Stochastic Systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Computational Simulations on Stability of Model Predictive Control for Linear Discrete-time Stochastic Systems

Authors: Tomoaki Hashimoto

Abstract:

Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the effectiveness of the obtained stability condition.

Keywords: Computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1107507

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846

References:


[1] D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Scokaert, Constrained Model Predictive Control: Stability and Optimality, Automatica, Vol. 36, 2000, pp.789-814.
[2] T. Hashimoto, Y. Yoshioka, T. Ohtsuka, Receding Horizon Control with Numerical Solution for Thermal Fluid Systems, Proceedings of SICE Annual Conference, 2012, pp.1298-1303.
[3] T. Hashimoto, Y. Yoshioka, T. Ohtsuka, Receding Horizon Control with Numerical Solution for Spatiotemporal Dynamic Systems, Proceedings of IEEE Conference on Decision and Control, 2013, pp.2920-2925.
[4] T. Hashimoto, Y. Yoshioka and T. Ohtsuka, Receding Horizon Control for Hot Strip Mill Cooling Systems, IEEE/ASME Transactions on Mechatronics, vol. 18, 2013, pp. 998-1005.
[5] T. Hashimoto, Y. Yoshioka and T. Ohtsuka, Receding Horizon Control With Numerical Solution for Nonlinear Parabolic Partial Differential Equations, IEEE Transactions on Automatic Control, Vol. 58, 2013, pp. 725-730.
[6] T. Hashimoto, Y. Takiguchi and T. Ohtsuka, Receding Horizon Control for High-Dimensional Burgers ’ Equations with Boundary Control Inputs, Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 56, 2013, pp. 137-144.
[7] T. Hashimoto, Y. Takiguchi and T. Ohtsuka, Output Feedback Receding Horizon Control for Spatiotemporal Dynamic Systems, Proceedings of Asian Control Conference, 2013.
[8] R. Satoh, T. Hashimoto and T. Ohtsuka, Receding Horizon Control for Mass Transport Phenomena in Thermal Fluid Systems, Proceedings of Australian Control Conference, 2014, pp.273-278.
[9] T. Hashimoto, Receding Horizon Control for a Class of Discrete-time Nonlinear Implicit Systems, Proceedings of IEEE Conference on Decision and Control, 2014, pp.5089-5094.
[10] M. V. Kothare, V. Balakrishnan and M. Morari, Robust Constrained Model Predictive Control Using Linear Matrix Inequalities, Automatica, Vol. 32, 1996, pp.1361-1379.
[11] P. Scokaert and D. Mayne, Min-max Feedback Model Predictive Control for Constrained Linear Systems, IEEE Trans. Automat. Contr., Vol. 43, 1998, pp.1136-1142.
[12] A. Bemporad, F. Borrelli and M. Morari, Min-max Control of Constrained Uncertain Discrete-time Linear Systems, IEEE Trans. Automat. Contr., Vol. 48, 2003, pp.1600-1606.
[13] T. Alamo, D. Pe˜na, D. Limon and E. Camacho, Constrained Min-max Predictive Control: Modifications of the Objective Function Leading to Polynomial Complexity, IEEE Trans. Automat. Contr., Vol. 50, 2005, pp.710-714.
[14] D. Pe˜na, T. Alamo, A. Bemporad and E. Camacho, A Decomposition Algorithm for Feedback Min-max Model Predictive Control, IEEE Trans. Automat. Contr., Vol. 51, 2006, pp.1688-1692.
[15] D. Bertsimas and D. B. Brown, Constrained Stochastic LQC: A Tractable Approach, IEEE Trans. Automat. Contr., Vol. 52, 2007, pp.1826-1841.
[16] P. Hokayema, E. Cinquemani, D. Chatterjee, F Ramponid and J. Lygeros, Stochastic Receding Horizon Control with Output Feedback and Bounded Controls, Automatica, Vol. 48, 2012, pp.77-88.
[17] M. Cannon, B. Kouvaritakis and X. Wu, Probabilistic Constrained MPC for Multiplicative and Additive Stochastic Uncertainty, IEEE Trans. Automat. Contr., Vol. 54, 2009, pp.1626-1632.
[18] E. Cinquemani, M. Agarwal, D. Chatterjee and J. Lygeros, Convexity and Convex Approximations of Discrete-time Stochastic Control Problems with Constraints, Automatica, Vol. 47, 2011, pp.2082-2087.
[19] J. Matuˇsko and F. Borrelli, Scenario-Based Approach to Stochastic Linear Predictive Control, Proceedings of the 51st IEEE Conference on Decision and Control, 2012, pp.5194-5199.
[20] Z. Zhou and R. Cogill, An Algorithm for State Constrained Stochastic Linear-Quadratic Control, Proceedings of American Control Conference, 2011, pp.1476-1481.
[21] T. Hashimoto, I. Yoshimoto, T. Ohtsuka, Probabilistic Constrained Model Predictive Control for Schr¨odinger Equation with Finite Approximation, Proceedings of SICE Annual Conference, 2012, pp.1613-1618.
[22] T. Hashimoto, Probabilistic Constrained Model Predictive Control for Linear Discrete-time Systems with Additive Stochastic Disturbances, Proceedings of IEEE Conference on Decision and Control, 2013, pp.6434-6439.
[23] B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Springer, 6th edition, 2010.
[24] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and Design, Nob Hill Publishing, 2009.
[25] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operation Research and Financial Engineering, Springer, 2006.
[26] L. E. Ghaoui and S. I. Niculescu, Advances in Linear Matrix Inequality Methods in Control, Society for Industrial and Applied Mathematics, 1987.