Search results for: non charring material ablation
1954 Numerical Analysis of Thermal Conductivity of Non-Charring Material Ablation Carbon-Carbon and Graphite with Considering Chemical Reaction Effects, Mass Transfer and Surface Heat Transfer
Authors: H. Mohammadiun, A. Kianifar, A. Kargar
Abstract:
Nowadays, there is little information, concerning the heat shield systems, and this information is not completely reliable to use in so many cases. for example, the precise calculation cannot be done for various materials. In addition, the real scale test has two disadvantages: high cost and low flexibility, and for each case we must perform a new test. Hence, using numerical modeling program that calculates the surface recession rate and interior temperature distribution is necessary. Also, numerical solution of governing equation for non-charring material ablation is presented in order to anticipate the recession rate and the heat response of non-charring heat shields. the governing equation is nonlinear and the Newton- Rafson method along with TDMA algorithm is used to solve this nonlinear equation system. Using Newton- Rafson method for solving the governing equation is one of the advantages of the solving method because this method is simple and it can be easily generalized to more difficult problems. The obtained results compared with reliable sources in order to examine the accuracy of compiling code.Keywords: Ablation rate, surface recession, interior temperaturedistribution, non charring material ablation, Newton Rafson method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18971953 An Experimental Study on Autoignition of Wood
Authors: Tri Poespowati
Abstract:
Experiments were conducted to characterize fire properties of wood exposed to the certain external heat flux and under variety of wood moisture content. Six kinds of Indonesian wood: keruing, sono, cemara, kamper, pinus, and mahoni were exposed to radiant heat from a conical heater, result in appearance of a stable flame on the wood surface caused by spontaneous ignition. A thermocouple K-type was used to measure the wood surface temperature. Temperature histories were recorded throughout each experiment at 1 s intervals using a TC-08. Data of first ignition time and temperature, end ignition time and temperature, and charring rate have been successfully collected. It was found that the ignition temperature and charring rate depend on moisture content of wood.Keywords: Fire properties, moisture content, wood, charring rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20601952 A Tubular Electrode for Radiofrequency Ablation Therapy
Authors: Carlos L. Antunes, Tony R. Almeida, Nélia Raposeiro, Belarmino Gonçalves, Paulo Almeida, André Antunes
Abstract:
In the last two decades radiofrequency ablation (RFA) has been considered a promising medical procedure for the treatment of primary and secondary malignancies. However, the needle-based electrodes so far developed for this kind of treatment are not suitable for the thermal ablation of tumors located in hollow organs like esophagus, colon or bile duct. In this work a tubular electrode solution is presented. Numerical and experimental analyses were performed to characterize the volume of the lesion induced. Results show that this kind of electrode is a feasible solution and numerical simulation might provide a tool for planning RFA procedure with some accuracy.Keywords: 3D modeling, cancer, medical therapy, radiofrequency ablation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18741951 Ablation, Mechanical and Thermal Properties of Fiber/Phenolic Matrix Composites
Authors: N. Winya, S. Chankapoe, C. Kiriratnikom
Abstract:
In this study, an ablation, mechanical and thermal properties of a rocket motor insulation from phenolic/ fiber matrix composites forming a laminate with different fiber between fiberglass and locally available synthetic fibers. The phenolic/ fiber matrix composites was mechanics and thermal properties by means of tensile strength, ablation, TGA and DSC. The design of thermal insulation involves several factors.Determined the mechanical properties according to MIL-I-24768: Density >1.3 g/cm3, Tensile strength >103 MPa and Ablation <0.14 mm/s to optimization formulation of phenolic binder, fiber glass reinforcement and other ingredients were conducted after that the insulation prototype was formed and cured. It was found that the density of phenolic/fiberglass composites and phenolic/ synthetic fiber composite was 1.66 and 1.41 g/cm3 respectively. The ablative of phenolic/fiberglass composites and phenolic/ synthetic fiber composite was 0.13 and 0.06 mm/s respectively.
Keywords: Phenolic Resin, Ablation, Rocket Motor, Insulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43881950 The Fire Performance of Exposed Timber Panels
Authors: Bernice V. Y. Wong, Kong Fah Tee
Abstract:
Cross-laminated timber is increasingly being used in the construction of high-rise buildings due to its simple manufacturing system. In term of fire resistance, cross-laminated timber panels are promoted as having excellent fire resistance, comparable to that of non-combustible materials and to heavy timber construction, due to the ability of thick wood assemblies to char slowly at a predictable rate while maintaining most of their strength during the fire exposure. This paper presents an overview of fire performance of cross-laminated timber and evaluation of its resistance to elevated temperature in comparison to homogeneous timber panels. Charring rates for cross-laminated timber panels of those obtained experimentally were compared with those provided by Eurocode simplified calculation methods.
Keywords: Timber structure, cross-laminated timber, charring rate, timber fire resistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33821949 Numerical Simulation of Heating Characteristics in a Microwave T-Prong Antenna for Cancer Therapy
Authors: M. Chaichanyut, S. Tungjitkusolmun
Abstract:
This research is presented with microwave (MW) ablation by using the T-Prong monopole antennas. In the study, three-dimensional (3D) finite-element methods (FEM) were utilized to analyse: the tissue heat flux, temperature distributions (heating pattern) and volume destruction during MW ablation in liver cancer tissue. The configurations of T-Prong monopole antennas were considered: Three T-prong antenna, Expand T-Prong antenna and Arrow T-Prong antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The microwave power deliveries were 10 W; the duration of ablation in all cases was 300s. Our numerical result, heat flux and the hotspot occurred at the tip of the T-prong antenna for all cases. The temperature distribution pattern of all antennas was teardrop. The Arrow T-Prong antenna can induce the highest temperature within cancer tissue. The microwave ablation was successful when the region where the temperatures exceed 50°C (i.e. complete destruction). The Expand T-Prong antenna could complete destruction the liver cancer tissue was maximized (6.05 cm3). The ablation pattern or axial ratio (Widest/length) of Expand T-Prong antenna and Arrow T-Prong antenna was 1, but the axial ratio of Three T-prong antenna of about 1.15.Keywords: Liver cancer, T-Prong antenna, Finite element, Microwave ablation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14291948 Coaxial Helix Antenna for Microwave Coagulation Therapy in Liver Tissue Simulations
Authors: M. Chaichanyut, S. Tungjitkusolmun
Abstract:
This paper is concerned with microwave (MW) ablation for a liver cancer tissue by using helix antenna. The antenna structure supports the propagation of microwave energy at 2.45 GHz. A 1½ turn spiral catheter-based microwave antenna applicator has been developed. We utilize the three-dimensional finite element method (3D FEM) simulation to analyze where the tissue heat flux, lesion pattern and volume destruction during MW ablation. The configurations of helix antenna where Helix air-core antenna and Helix Dielectric-core antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The simulation protocol was power control (10 W, 300s). Our simulation result, both helix antennas have heat flux occurred around the helix antenna and that can be induced the temperature distribution similar (teardrop). The region where the temperature exceeds 50°C the microwave ablation was successful (i.e. complete destruction). The Helix air-core antenna and Helix Dielectric-core antenna, ablation zone or axial ratios (Widest/length) were respectively 0.82 and 0.85; the complete destructions were respectively 4.18 cm3 and 5.64 cm3Keywords: Liver cancer, Helix antenna, Finite element, Microwave ablation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19581947 The Effect of Choke on the Efficiency of Coaxial Antenna for Percutaneous Microwave Coagulation Therapy for Hepatic Tumor
Authors: Surita Maini
Abstract:
There are many perceived advantages of microwave ablation have driven researchers to develop innovative antennas to effectively treat deep-seated, non-resectable hepatic tumors. In this paper a coaxial antenna with a miniaturized sleeve choke has been discussed for microwave interstitial ablation therapy, in order to reduce backward heating effects irrespective of the insertion depth into the tissue. Two dimensional Finite Element Method (FEM) is used to simulate and measure the results of miniaturized sleeve choke antenna. This paper emphasizes the importance of factors that can affect simulation accuracy, which include mesh resolution, surface heating and reflection coefficient. Quarter wavelength choke effectiveness has been discussed by comparing it with the unchoked antenna with same dimensions.Keywords: Microwave ablation, tumor, Finite Element Method, Coaxial slot antenna, Coaxial dipole antenna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26091946 Creation of GaxCo1-xZnSe0.4 (x = 0.1, 0.3, 0.5) Nanoparticles Using Pulse Laser Ablation Method
Authors: Yong Pan, Li Wang, Xue Qiong Su, Dong Wen Gao
Abstract:
To date, nanomaterials have received extensive attention over the years because of their wide application. Various nanomaterials such as nanoparticles, nanowire, nanoring, nanostars and other nanostructures have begun to be systematically studied. The preparation of these materials by chemical methods is not only costly, but also has a long cycle and high toxicity. At the same time, preparation of nanoparticles of multi-doped composites has been limited due to the special structure of the materials. In order to prepare multi-doped composites with the same structure as macro-materials and simplify the preparation method, the GaxCo1-xZnSe0.4 (x = 0.1, 0.3, 0.5) nanoparticles are prepared by Pulse Laser Ablation (PLA) method. The particle component and structure are systematically investigated by X-ray diffraction (XRD) and Raman spectra, which show that the success of our preparation and the same concentration between nanoparticles (NPs) and target. Morphology of the NPs characterized by Transmission Electron Microscopy (TEM) indicates the circular-shaped particles in preparation. Fluorescence properties are reflected by PL spectra, which demonstrate the best performance in concentration of Ga0.3Co0.3ZnSe0.4. Therefore, all the results suggest that PLA is promising to prepare the multi-NPs since it can modulate performance of NPs.
Keywords: PLA, physics, nanoparticles, multi-doped.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8081945 Interaction between Unsteady Supersonic Jet and Vortex Rings
Authors: Kazumasa Kitazono, Hiroshi Fukuoka, Nao Kuniyoshi, Minoru Yaga, Eri Ueno, Naoaki Fukuda, Toshio Takiya
Abstract:
The unsteady supersonic jet formed by a shock tube with a small high-pressure chamber was used as a simple alternative model for pulsed laser ablation. Understanding the vortex ring formed by the shock wave is crucial in clarifying the behavior of unsteady supersonic jet discharged from an elliptical cell. Therefore, this study investigated the behavior of vortex rings and a jet. The experiment and numerical calculation were conducted using the schlieren method and by solving the axisymmetric two-dimensional compressible Navier–Stokes equations, respectively. In both, the calculation and the experiment, laser ablation is conducted for a certain duration, followed by discharge through the exit. Moreover, a parametric study was performed to demonstrate the effect of pressure ratio on the interaction among vortex rings and the supersonic jet. The interaction between the supersonic jet and the vortex rings increased the velocity of the supersonic jet up to the magnitude of the velocity at the center of the vortex rings. The interaction between the vortex rings increased the velocity at the center of the vortex ring.Keywords: Computational fluid dynamics, shock wave, unsteady jet, vortex ring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13821944 Ultrasound Therapy: Amplitude Modulation Technique for Tissue Ablation by Acoustic Cavitation
Authors: Fares A. Mayia, Mahmoud A. Yamany, Mushabbab A. Asiri
Abstract:
In recent years, non-invasive Focused Ultrasound (FU) has been utilized for generating bubbles (cavities) to ablate target tissue by mechanical fractionation. Intensities >10 kW/cm2 are required to generate the inertial cavities. The generation, rapid growth, and collapse of these inertial cavities cause tissue fractionation and the process is called Histotripsy. The ability to fractionate tissue from outside the body has many clinical applications including the destruction of the tumor mass. The process of tissue fractionation leaves a void at the treated site, where all the affected tissue is liquefied to particles at sub-micron size. The liquefied tissue will eventually be absorbed by the body. Histotripsy is a promising non-invasive treatment modality. This paper presents a technique for generating inertial cavities at lower intensities (< 1 kW/cm2). The technique (patent pending) is based on amplitude modulation (AM), whereby a low frequency signal modulates the amplitude of a higher frequency FU wave. Cavitation threshold is lower at low frequencies; the intensity required to generate cavitation in water at 10 kHz is two orders of magnitude lower than the intensity at 1 MHz. The Amplitude Modulation technique can operate in both continuous wave (CW) and pulse wave (PW) modes, and the percentage modulation (modulation index) can be varied from 0 % (thermal effect) to 100 % (cavitation effect), thus allowing a range of ablating effects from Hyperthermia to Histotripsy. Furthermore, changing the frequency of the modulating signal allows controlling the size of the generated cavities. Results from in vitro work demonstrate the efficacy of the new technique in fractionating soft tissue and solid calcium carbonate (Chalk) material. The technique, when combined with MR or Ultrasound imaging, will present a precise treatment modality for ablating diseased tissue without affecting the surrounding healthy tissue.Keywords: Focused ultrasound therapy, Histotripsy, generation of inertial cavitation, mechanical tissue ablation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19731943 Investigation of Multiple Material Gate Impact on Short Channel Effects and Reliability of Nanoscale SOI MOSFETs
Authors: Paniz Tafakori, Ali A. Orouji
Abstract:
In this paper the features of multiple material gate silicon-on-insulator MOSFETs are presented and compared with single material gate silicon-on-insulator MOSFET structures. The results indicate that the multiple material gate structures reduce short channel effects such as drain induce barrier lowering, hot electron effect and better current characteristics in comparison with single material structuresKeywords: Short-channel effects (SCEs), Dual material gate (DMG), Triple material gate (TMG), Pentamerous material gate (PMG).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20061942 Submicron Laser-Induced Dot, Ripple and Wrinkle Structures and Their Applications
Authors: P. Slepicka, N. Slepickova Kasalkova, I. Michaljanicova, O. Nedela, Z. Kolska, V. Svorcik
Abstract:
Polymers exposed to laser or plasma treatment or modified with different wet methods which enable the introduction of nanoparticles or biologically active species, such as amino-acids, may find many applications both as biocompatible or anti-bacterial materials or on the contrary, can be applied for a decrease in the number of cells on the treated surface which opens application in single cell units. For the experiments, two types of materials were chosen, a representative of non-biodegradable polymers, polyethersulphone (PES) and polyhydroxybutyrate (PHB) as biodegradable material. Exposure of solid substrate to laser well below the ablation threshold can lead to formation of various surface structures. The ripples have a period roughly comparable to the wavelength of the incident laser radiation, and their dimensions depend on many factors, such as chemical composition of the polymer substrate, laser wavelength and the angle of incidence. On the contrary, biopolymers may significantly change their surface roughness and thus influence cell compatibility. The focus was on the surface treatment of PES and PHB by pulse excimer KrF laser with wavelength of 248 nm. The changes of physicochemical properties, surface morphology, surface chemistry and ablation of exposed polymers were studied both for PES and PHB. Several analytical methods involving atomic force microscopy, gravimetry, scanning electron microscopy and others were used for the analysis of the treated surface. It was found that the combination of certain input parameters leads not only to the formation of optimal narrow pattern, but to the combination of a ripple and a wrinkle-like structure, which could be an optimal candidate for cell attachment. The interaction of different types of cells and their interactions with the laser exposed surface were studied. It was found that laser treatment contributes as a major factor for wettability/contact angle change. The combination of optimal laser energy and pulse number was used for the construction of a surface with an anti-cellular response. Due to the simple laser treatment, we were able to prepare a biopolymer surface with higher roughness and thus significantly influence the area of growth of different types of cells (U-2 OS cells).
Keywords: Polymer treatment, laser, periodic pattern, cell response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7821941 The Optimal Design for Grip Force of Material Handling
Authors: V. Tawiwat, S. Sarawut
Abstract:
Applied a mouse-s roller with a gripper to increase the efficiency for a gripper can learn to a material handling without slipping. To apply a gripper, we use the optimize principle to develop material handling by use a signal for checking a roller mouse that rotate or not. In case of the roller rotates means that the material slips. A gripper will slide to material handling until the roller will not rotate. As this experiment has test material handling for comparing a grip force that uses to material handling of the 10-human with the applied gripper. We can summarize that human exert the material handling more than the applied gripper. Because of the gripper can exert more befit to material handling than human and may be a minimum force to lift a material without slipping.Keywords: Optimize, Gripper, Mouse's Roller, Minimum Force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15541940 Selection of Material for Gear Used in Fuel Pump Using Graph Theory and Matrix Approach
Authors: Sahil, Rajeev Saha, Sanjeev Kumar
Abstract:
Material selection is one of the key issues for the production of reliable and quality products in industries. A number of materials are available for a single product due to which material selection become a difficult task. The aim of this paper is to select appropriate material for gear used in fuel pump by using Graph Theory and Matrix Approach (GTMA). GTMA is a logical and systematic approach that can be used to model and analyze various engineering systems. In present work, four alternative material and their seven attributes are used to identify the best material for given product.
Keywords: Material, GTMA, MADM, digraph, decision making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10291939 Transfer Function of Piezoelectric Material
Authors: C. Worakitjaroenphon, A. Oonsivilai
Abstract:
The study of piezoelectric material in the past was in T-Domain form; however, no one has studied piezoelectric material in the S-Domain form. This paper will present the piezoelectric material in the transfer function or S-Domain model. S-Domain is a well known mathematical model, used for analyzing the stability of the material and determining the stability limits. By using S-Domain in testing stability of piezoelectric material, it will provide a new tool for the scientific world to study this material in various forms.Keywords: Piezoelectric, Stability, S-Domain, Transfer function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38661938 A Failure Analysis Tool for HDD Analysis
Authors: C. Kumjeera, T. Unchim, B. Marungsri, A. Oonsivilai
Abstract:
The study of piezoelectric material in the past was in T-Domain form; however, no one has studied piezoelectric material in the S-Domain form. This paper will present the piezoelectric material in the transfer function or S-Domain model. S-Domain is a well known mathematical model, used for analyzing the stability of the material and determining the stability limits. By using S-Domain in testing stability of piezoelectric material, it will provide a new tool for the scientific world to study this material in various forms.
Keywords: Hard disk drive, failure analysis, tool, time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27511937 Material Selection for Footwear Insole Using Analytical Hierarchal Process
Authors: Mohammed A. Almomani, Dina W. Al-Qudah
Abstract:
Product performance depends on the type and quality of its building material. Successful product must be made using high quality material, and using the right methods. Many foot problems took place as a result of using poor insole material. Therefore, selecting a proper insole material is crucial to eliminate these problems. In this study, the analytical hierarchy process (AHP) is used to provide a systematic procedure for choosing the best material adequate for this application among three material alternatives (polyurethane, poron, and plastzote). Several comparison criteria are used to build the AHP model including: density, stiffness, durability, energy absorption, and ease of fabrication. Poron was selected as the best choice. Inconsistency testing indicates that the model is reasonable, and the materials alternative ranking is effective.
Keywords: Materials selection, biomedical insole, footwear insole, AHP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23011936 Binary Programming for Manufacturing Material and Manufacturing Process Selection Using Genetic Algorithms
Authors: Saleem Z. Ramadan
Abstract:
The material selection problem is concerned with the determination of the right material for a certain product to optimize certain performance indices in that product such as mass, energy density, and power-to-weight ratio. This paper is concerned about optimizing the selection of the manufacturing process along with the material used in the product under performance indices and availability constraints. In this paper, the material selection problem is formulated using binary programming and solved by genetic algorithm. The objective function of the model is to minimize the total manufacturing cost under performance indices and material and manufacturing process availability constraints.Keywords: Optimization, Material selection, Process selection, Genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15971935 Experimental Study on Machinability of Laser- Sintered Material in Ball End Milling
Authors: Abdullah Yassin, Takashi Ueda, Syed Tarmizi Syed Shazali
Abstract:
This paper presents an experimental investigation on the machinability of laser-sintered material using small ball end mill focusing on wear mechanisms. Laser-sintered material was produced by irradiating a laser beam on a layer of loose fine SCM-Ni-Cu powder. Bulk carbon steel JIS S55C was selected as a reference steel. The effects of powder consolidation mechanisms and unsintered powder on the tool life and wear mechanisms were carried out. Results indicated that tool life in cutting laser-sintered material is lower than that in cutting JIS S55C. Adhesion of the work material and chipping were the main wear mechanisms of the ball end mill in cutting laser-sintered material. Cutting with the unsintered powder surrounding the tool and laser-sintered material had caused major fracture on the cutting edge.Keywords: Laser-sintered material, tool life, wear mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18881934 Elastic Stress Analysis of Annular Bi-Material Discs with Variable Thickness under Mechanical and Thermomechanical Loads
Authors: E. Çetin, A. Kurşun, Ş. Aksoy, M. Tunay Çetin
Abstract:
The closed form study deals with elastic stress analysis of annular bi-material discs with variable thickness subjected to the mechanical and thermomechanical loads. Those discs have many applications in the aerospace industry, such as gas turbines and gears. Those discs normally work under thermal and mechanical loads. Their life cycle can increase when stress components are minimized. Each material property is assumed to be isotropic. The results show that material combinations and thickness of profiles play an important role in determining the responses of bi-material discs and an optimal design of those structures. Stress distribution is investigated and results are shown as graphs.
Keywords: Bi-material discs, elastic stress analysis, mechanical loads, rotating discs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24291933 Calculation of the Ceramics Weibull Parameters
Abstract:
The paper deals with calculation of the parameters of ceramic material from a set of destruction tests of ceramic heads of total hip joint endoprosthesis. The standard way of calculation of the material parameters consists in carrying out a set of 3 or 4 point bending tests of specimens cut out from parts of the ceramic material to be analysed. In case of ceramic heads, it is not possible to cut out specimens of required dimensions because the heads are too small (if the cut out specimens were smaller than the normalised ones, the material parameters derived from them would exhibit higher strength values than those which the given ceramic material really has). On that score, a special testing jig was made, in which 40 heads were destructed. From the measured values of circumferential strains of the head-s external spherical surface under destruction, the state of stress in the head under destruction was established using the final elements method (FEM). From the values obtained, the sought for parameters of the ceramic material were calculated using Weibull-s weakest-link theory.Keywords: Hip joint endoprosthesis, ceramic head, FEM analysis, Weibull's weakest-link theory, failure probability, material parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26371932 Using Recyclable Steel Material in Tall Buildings
Abstract:
Recycling steel building components is key to the sustainability of a structure’s end-of-life, as it is the most economical solution. In this paper the effects of usage of recycled steel material in tall buildings aspects are investigated.
Keywords: Building, recycled material, steel, structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32881931 Material Saving Strategies, Technologies and Effects on Return on Sales
Authors: Jasna Prester, Najla Podrug, Davor Filipović
Abstract:
Manufacturing companies invest a significant amount of sales into material resources for production. In our sample, 58% of sales is used for manufacturing inputs, while only 24% of sales is used for salaries. This means that if a company is looking to reduce costs, the greater potential is in reduction of material costs than downsizing. This research shows that manufacturing companies in Croatia did realize material savings in last three years. It is also shown by which technologies they achieved materials cost savings. Through literature research, we found research gap as to which technologies reduce material consumption. As methodology of research four regression analyses are used to prove our findings.
Keywords: Croatia, materials savings strategies, technologies, return on sales.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14501930 Investigation of Stability of Functionally Graded Material when Encountering Periodic Loading
Authors: M. Amiri
Abstract:
In this work, functionally graded materials (FGMs), subjected to loading, which varies with time has been studied. The material properties of FGM are changing through the thickness of material as power law distribution. The conical shells have been chosen for this study so in the first step capability equations for FGM have been obtained. With Galerkin method, these equations have been replaced with time dependant differential equations with variable coefficient. These equations have solved for different initial conditions with variation methods. Important parameters in loading conditions are semi-vertex angle, external pressure and material properties. Results validation has been done by comparison between with those in previous studies of other researchers.
Keywords: Impulsive semi-vertex angle, loading, functionally graded materials, composite material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12031929 Scheduling a Project to Minimize Costs of Material Requirements
Authors: Amir Abbas Najafi, Nima Zoraghi, Fatemeh Azimi
Abstract:
Traditionally, project scheduling and material planning have been treated independently. In this research, a mixed integer programming model is presented to integrate project scheduling and materials ordering problems. The goal is to minimize the total material holding and ordering costs. In addition, an efficient metaheuristic algorithm is proposed to solve the model. The proposed algorithm is computationally tested, the results are analyzed, and conclusions are given.
Keywords: Project scheduling, metaheuristic, material ordering, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17031928 Development of a Quantitative Material Wastage Management Plan for Effective Waste Reduction in the Building Construction Industry
Authors: Kwok Tak Kit
Abstract:
Combating climate change is becoming a hot topic in various sectors. Building construction and infrastructure sectors contributed a significant proportion of waste and greenhouse gas (GHG) emissions in the environment of different countries and cities. However, there is little research on the micro-level of waste management, “building construction material wastage management,” and fewer reviews about regulatory control in the building construction sector. This paper focuses on the potentialities and importance of material wastage management and reviews the deficiencies of the current standard to take into account the reduction of material wastage in a systematic and quantitative approach.
Keywords: Quantitative measurement, material wastage management plan, waste management, uncalculated waste, circular economy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6891927 Reduce the Complexity of Material Requirement Planning on Excel by an Algorithm
Authors: Sumitra Nuanmeesri, Kanate Ploydanai
Abstract:
Many companies have excel, it is economy and well perform to use in material requirement planning (MRP) on excel. For several products, it, however, is complex problem to link the relationship between the tables of products because the relationship depends on bill of material (BOM). This paper presents algorithm to create MRP on excel, and links relationship between tables. The study reveals MRP that is created by the algorithm which is easier and faster than MRP that created by human. By this technique, MRP on excel might be good ways to improve a productivity of companies.
Keywords: Material requirement planning, Algorithm, Spreadsheet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32731926 Development of Composite Adsorbent for Waste Water Treatment Using Adsorption and Electrochemical Regeneration
Authors: H. M. A. Asghar, S. N. Hussain, E. P. L. Roberts, N. W. Brown, H. Sattar
Abstract:
A unique combination of adsorption and electrochemical regeneration with a proprietary adsorbent material called Nyex 100 was introduced at the University of Manchester for waste water treatment applications. Nyex 100 is based on graphite intercalation compound. It is non porous and electrically conducing adsorbent material. This material exhibited very small BET surface area i.e. 2.75 m2g-1, in consequence, small adsorptive capacities for the adsorption of various organic pollutants were obtained. This work aims to develop composite adsorbent material essentially capable of electrochemical regeneration coupled with improved adsorption characteristics. An organic dye, acid violet 17 was used as standard organic pollutant. The developed composite material was successfully electrochemically regenerated using a DC current of 1 A for 60 minutes. Regeneration efficiency was maintained at around 100% for five adsorption-regeneration cycles.Keywords: Adsorption, electrically conducting adsorbent material, electrochemical regeneration, waste water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32181925 Analysis of Rail Ends under Wheel Contact Loading
Authors: Nannan Zong, Manicka Dhanasekar
Abstract:
The effect of the discontinuity of the rail ends and the presence of lower modulus insulation material at the gap to the variations of stresses in the insulated rail joint (IRJ) is presented. A three-dimensional wheel – rail contact model in the finite element framework is used for the analysis. It is shown that the maximum stress occurs in the subsurface of the railhead when the wheel contact occurs far away from the rail end and migrates to the railhead surface as the wheel approaches the rail end; under this condition, the interface between the rail ends and the insulation material has suffered significantly increased levels of stress concentration. The ratio of the elastic modulus of the railhead and insulation material is found to alter the levels of stress concentration. Numerical result indicates that a higher elastic modulus insulating material can reduce the stress concentration in the railhead but will generate higher stresses in the insulation material, leading to earlier failure of the insulation materialKeywords: Rail end, material interface, wheel-rail contact, stress, finite element method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2427