Search results for: mechanical loads
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1638

Search results for: mechanical loads

1458 A Generic Middleware to Instantly Sync Intensive Writes of Heterogeneous Massive Data via Internet

Authors: Haitao Yang, Zhenjiang Ruan, Fei Xu, Lanting Xia

Abstract:

Industry data centers often need to sync data changes reliably and instantly from a large-scale of heterogeneous autonomous relational databases accessed via the not-so-reliable Internet, for which a practical generic sync middleware of low maintenance and operation costs is most wanted. To this demand, this paper presented a generic sync middleware system (GSMS), which has been developed, applied and optimized since 2006, holding the principles or advantages that it must be SyncML-compliant and transparent to data application layer logic without referring to implementation details of databases synced, does not rely on host computer operating systems deployed, and its construction is light weighted and hence of low cost. Regarding these hard commitments of developing GSMS, in this paper we stressed the significant optimization breakthrough of GSMS sync delay being well below a fraction of millisecond per record sync. A series of ultimate tests with GSMS sync performance were conducted for a persuasive example, in which the source relational database underwent a broad range of write loads (from one thousand to one million intensive writes within a few minutes). All these tests showed that the performance of GSMS is competent and smooth even under ultimate write loads.

Keywords: Heterogeneous massive data, instantly sync intensive writes, Internet generic middleware design, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 389
1457 Analysis of Mechanical Properties for AP/HTPB Solid Propellant under Different Loading Conditions

Authors: Walid M. Adel, Liang Guo-Zhu

Abstract:

To investigate the characterization of the mechanical properties of composite solid propellant (CSP) based on hydroxyl-terminated polybutadiene (HTPB) at different temperatures and strain rates, uniaxial tensile tests were conducted over a range of temperatures -60 °C to +76 °C and strain rates 0.000164 to 0.328084 s-1 using a conventional universal testing machine. From the experimental data, it can be noted that the mechanical properties of AP/HTPB propellant are mainly dependent on the applied strain rate and the temperature condition. The stress-strain responses exhibited an initial yielding followed by the viscoelastic phase, which was strongly affected by the strain rate and temperature. It was found that the mechanical properties increased with both increasing strain rate and decreasing temperature. Based on the experimental tests, the master curves of the tensile properties are drawn using predetermined shift factor and the results were discussed. This work is a first step in preliminary investigation the nonlinear viscoelasticity behavior of CSP.

Keywords: AP/HTPB composite solid propellant, mechanical behavior, nonlinear viscoelastic, tensile test, master curves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
1456 Mathieu Stability of Offshore Buoyant Leg Storage and Regasification Platform

Authors: S. Chandrasekaran, P. A. Kiran

Abstract:

Increasing demand for large-sized Floating, Storage and Regasification Units (FSRUs) for oil and gas industries led to the development of novel geometric form of Buoyant Leg Storage and Regasification Platform (BLSRP). BLSRP consists of a circular deck supported by six buoyant legs placed symmetrically with respect to wave direction. Circular deck is connected to buoyant legs using hinged joints, which restrain transfer of rotational response from the legs to deck and vice-versa. Buoyant legs are connected to seabed using taut moored system with high initial pretension, enabling rigid body motion in vertical plane. Encountered environmental loads induce dynamic tether tension variations, which in turn affect stability of the platform. The present study investigates Mathieu stability of BLSRP under the postulated tether pullout cases by inducing additional tension in the tethers. From the numerical studies carried out, it is seen that postulated tether pullout on any one of the buoyant legs does not result in Mathieu type instability even under excessive tether tension. This is due to the presence of hinged joints, which are capable of dissipating the unbalanced loads to other legs. However, under tether pullout of consecutive buoyant legs, Mathieu-type instability is observed.

Keywords: Offshore platforms, stability, postulated failure, dynamic tether tension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857
1455 Mechanical Properties of Hybrid Cement Based Mortars Containing Two Biopolymers

Authors: Z. Abdollahnejad, M. Kheradmand, F. Pacheco-Torgal

Abstract:

The use of bio-based admixtures on construction materials is a recent trend that is gaining momentum. However, to our knowledge, no studies have been reported concerning the use of biopolymers on hybrid cement based mortars. This paper reports experimental results regarding the study of the influence of mix design of 43 hybrid cement mortars containing two different biopolymers on its mechanical performance. The results show that the use of the biopolymer carrageenan is much more effective than the biopolymer xanthan concerning the increase in compressive strength. An optimum biopolymer content was found.

Keywords: Waste reuse, fly ash, waste glass, hybrid cement, biopolymers, mechanical strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970
1454 Study of the Effect of Seismic Behavior of Twin Tunnels Position on Each Other

Authors: M. Azadi, M. Kalhor

Abstract:

Excavation of shallow tunnels such as subways in urban areas plays a significant role as a life line and investigation of the soil behavior against tunnel construction is one of the vital subjects studied in the geotechnical scope. Nowadays, urban tunnels are mostly drilled by T.B.Ms and changing the applied forces to tunnel lining is one of the most risky matters while drilling tunnels by these machines. Variation of soil cementation can change the behavior of these forces in the tunnel lining. Therefore, this article is designed to assess the impact of tunnel excavation in different soils and several amounts of cementation on applied loads to tunnel lining under static and dynamic loads. According to the obtained results, changing the cementation of soil will affect the applied loadings to the tunnel envelope significantly. It can be determined that axial force in tunnel lining decreases considerably when soil cementation increases. Also, bending moment and shear force in tunnel lining decreases as the soil cementation increases and causes bending and shear behavior of the segments to improve. Based on the dynamic analyses, as cohesion factor in soil increases, bending moment, axial and shear forces of segments decrease but lining behavior of the tunnel is the same as static state. The results show that decreasing the overburden applied to lining caused by cementation is different in two static and dynamic states.

Keywords: Tunnel, Soil cementation, Static, Dynamic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
1453 Effect of Blast Furnace Iron Slag on the Mechanical Performance of Hot Mix Asphalt (HMA)

Authors: Ayman M. Othman, Hassan Y. Ahmed

Abstract:

This paper discusses the effect of using blast furnace iron slag as a part of fine aggregate on the mechanical performance of hot mix asphalt (HMA). The mechanical performance was evaluated based on various mechanical properties that include; Marshall/stiffness, indirect tensile strength and unconfined compressive strength. The effect of iron slag content on the mechanical properties of the mixtures was also investigated. Four HMA with various iron slag contents, namely; 0%, 5%, 10% and 15% by weight of total mixture were studied. Laboratory testing has revealed an enhancement in the compressive strength of HMA when iron slag was used. Within the tested range of iron slag content, a considerable increase in the compressive strength of the mixtures was observed with the increase of slag content. No significant improvement on Marshall/stiffness and indirect tensile strength of the mixtures was observed when slag was used. Even so, blast furnace iron slag can still be used in asphalt paving for environmental advantages.

Keywords: Blast furnace iron slag, HMA, Marshall/stiffness, indirect tensile strength, compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
1452 The Effect of Reducing Superimposed Dead Load on the Lateral Seismic Deformations of Structures

Authors: H. Alnajajra, A. Touqan, M. Dwaikat

Abstract:

The vast majority of the Middle East countries are prone to earthquakes. Despite that and from a seismic hazard point of view, the higher values of the superimposed dead load intensity of partitions and wearing materials of the constructed reinforced concrete slabs in these countries can increase the earthquake vulnerability of the structures. The primary objective of this paper is to investigate the effect of reducing superimposed dead load on the lateral seismic deformations of structures, the inter-story drifts and the seismic pounding damages. The study utilizes a group of three reinforced concrete structures at three different site conditions. These structures are assumed to be constructed in Nablus city of Palestine, and having superimposed dead load value as 1 kN/m2, 3 kN/m2, and 5 kN/m2, respectively. SAP2000 program, Version 18.1.1, is used to perform the response spectrum analysis to obtain the potential lateral seismic deformations of the studied models. Amazingly, the study points that, at the same site, superimposed dead load has a minor effect on the lateral deflections of the models. This, however, promotes the hypothesis that buildings failed during earthquakes mainly because they were not designed appropriately against gravity loads.

Keywords: Gravity loads, inter-story drifts, lateral seismic deformations, reinforced concrete slabs, response spectrum method, SAP2000, seismic design, seismic pounding, superimposed dead load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
1451 Improvement in Mechanical Behavior of Expulsion with Heat treated Thermite Welded Rail Steel

Authors: S.Rajanna, H.K.Shivanand, Akash Deep B.N

Abstract:

Thermite welding is mainly used in world. The reasons why the thermite welding method is widely used are that the equipment has good mobility and total working time of that is shorter than that of the enclosed arc welding method on site. Moreover, the operating skill, which required for thermite welding, is less than that of for enclosed arc welding. In the present research work, heat treatment and combined 'expulsion and heat treatment' techniques were used improve the mechanical properties and weldment structure. The specimens were cut in the transverse direction from expulsion with Heat treated and heat treated Thermite Welded rails. Specimens were prepared according to AWS standard and subjected to tensile test, Impact test and hardness and their results were tabulated. Microstructural analysis was carried out with the help of SEM. Then analyze to effect of heat treated and 'expulsion with heat treated' with the properties of their thermite welded rails. Compare the mechanical and microstructural properties of thermite welded rails between heat expulsion with heat treated and heat treated. Mechanical and microstructural response expulsion with heat treated thermite welded rail is higher value as compared to heat treatment.

Keywords: Expulsion, Heat treatment, Mechanical, Weldment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2899
1450 Comparative Study of Sedimentation in Hydraulic Structures using Sharc and Ssiim Soft Wares - A Case of the Dez and Hamidieh Intake Structures in Iran

Authors: A.H. Sajedipoor, N. Hedayat , M. Mashal, R. Nazarzadeh

Abstract:

Sedimentation formation is a complex hydraulic phenomenon that has emerged as a major operational and maintenance consideration in modern hydraulic engineering in general and river engineering in particular. Sediments accumulation along the river course and their eventual storage in a form of islands affect water intake in the canal systems that are fed by the storage reservoirs. Without proper management, sediment transport can lead to major operational challenges in water distribution system of arid regions like the Dez and Hamidieh command areas. The paper aims to investigate sedimentation in the Western Canal of Dez Diversion Weir using the SHARC model and compare the results with the two intake structures of the Hamidieh dam in Iran using SSIIM model. The objective was to identify the factors which influence the process, check reliability of outcome and provide ways in which to mitigate the implications on operation and maintenance of the structures. Results estimated sand and silt bed loads concentrations to be 193 ppm and 827ppm respectively. This followed ,ore or less similar pattern in Hamidieh where the sediment formation impeded water intake in the canal system. Given the available data on average annual bed loads and average suspended sediment loads of 165ppm and 837ppm in the Dez, there was a significant statistical difference (16%) between the sand grains, whereas no significant difference (1.2%) was find in the silt grain sizes. One explanation for such finding being that along the 6 Km river course there was considerable meandering effects which explains recent shift in the hydraulic behavior along the stream course under investigation. The sand concentration in downstream relative to present state of the canal showed a steep descending curve. Sediment trapping on the other hand indicated a steep ascending curve. These occurred because the diversion weir was not considered in the simulation model. The comparative study showed very close similarities in the results which explains the fact that both software can be used as accurate and reliable analytical tools for simulation of the sedimentation in hydraulic engineering.

Keywords: SHARC, SSIIM, sedimentation, Dez diversion weir, Hamidieh dam, Intake structures

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
1449 Characterization of Metallurgical and Mechanical Properties of the Welded AISI 304L Using Pulsed and Non-Pulsed Current TIG Welding

Authors: A. A. Ugla

Abstract:

The present paper aims to investigate the effects of the welding process parameters and cooling state on the weld bead geometry, mechanical properties and microstructure characteristics for weldments of AISI 304L stainless steel. The welding process was carried out using TIG welding with pulsed/non-pulsed current techniques. The cooling state was introduced as an input parameter to investigate the main effects on the structure morphology and thereby the mechanical property. This paper clarifies microstructure- mechanical property relationship of the welded specimens. In this work, the selected pulse frequency levels were 5-500 Hz in order to study the effect of low and high frequencies on the weldment characteristics using filler metal of ER 308LSi. The key findings of this work clarified that the pulse frequency has a significant effect on the breaking of the dendrite arms during the welding process and so strongly influences on the tensile strength and microhardness. The cooling state also significantly affects on the microstructure texture and thereby, the mechanical properties. The most important factor affects the bead geometry and aspect ratio is the travel speed and pulse frequency.

Keywords: Microstructure, mechanical properties, pulse frequency, high pulse frequency, austenitic stainless steel, TIG welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
1448 Optimal Simultaneous Sizing and Siting of DGs and Smart Meters Considering Voltage Profile Improvement in Active Distribution Networks

Authors: T. Sattarpour, D. Nazarpour

Abstract:

This paper investigates the effect of simultaneous placement of DGs and smart meters (SMs), on voltage profile improvement in active distribution networks (ADNs). A substantial center of attention has recently been on responsive loads initiated in power system problem studies such as distributed generations (DGs). Existence of responsive loads in active distribution networks (ADNs) would have undeniable effect on sizing and siting of DGs. For this reason, an optimal framework is proposed for sizing and siting of DGs and SMs in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Looking for voltage profile improvement, the optimization procedure is solved by genetic algorithm (GA) and tested on IEEE 33-bus distribution test system. Different scenarios with variations in the number of DG units, individual or simultaneous placing of DGs and SMs, and adaptive power factor (APF) mode for DGs to support reactive power have been established. The obtained results confirm the significant effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the improvement of voltage profile as well.

Keywords: Active distribution network (ADN), distributed generations (DGs), smart meters (SMs), demand response programs (DRPs), adaptive power factor (APF).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
1447 Recycling of Aggregates from Construction Demolition Wastes in Concrete: Study of Physical and Mechanical Properties

Authors: M. Saidi, F. Ait-Medjber, B. Safi, M. Samar

Abstract:

This work is focused on the study of valuation of recycled concrete aggregates, by measuring certain properties of concrete in the fresh and hardened state. In this study, rheological tests and physic-mechanical characterization on concretes and mortars were conducted with recycled concrete whose geometric properties were identified aggregates. Mortars were elaborated with recycled fine aggregate (0/5mm) and concretes were manufactured using recycled coarse aggregates (5/12.5 mm and 12.5/20 mm). First, a study of the mortars was conducted to determine the effectiveness of polycarboxylate superplasticizer on the workability of these and their action deflocculating of the recycled sand. The rheological behavior of mortars based on fine aggregate recycled was characterized. The results confirm that the mortars composed of different fractions of recycled sand (0 /5) have a better mechanical properties (compressive and flexural strength) compared to normal mortar. Also, the mechanical strengths of concretes made with recycled aggregates (5/12.5 mm and 12.5/20 mm), are comparable to those of conventional concrete with conventional aggregates, provided that the implementation can be improved by the addition of a superplasticizer.

Keywords: Demolition wastes, recycled coarse aggregate, concrete, workability, mechanical strength, porosity/water absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3343
1446 Finite Element Modelling of a 3D Woven Composite for Automotive Applications

Authors: Ahmad R. Zamani, Luigi Sanguigno, Angelo R. Maligno

Abstract:

A 3D woven composite, designed for automotive applications, is studied using Abaqus Finite Element (FE) software suite. Python scripts were developed to build FE models of the woven composite in Complete Abaqus Environment (CAE). They can read TexGen or WiseTex files and automatically generate consistent meshes of the fabric and the matrix. A user menu is provided to help define parameters for the FE models, such as type and size of the elements in fabric and matrix as well as the type of matrix-fabric interaction. Node-to-node constraints were imposed to guarantee periodicity of the deformed shapes at the boundaries of the representative volume element of the composite. Tensile loads in three axes and biaxial loads in x-y directions have been applied at different Fibre Volume Fractions (FVFs). A simple damage model was implemented via an Abaqus user material (UMAT) subroutine. Existing tools for homogenization were also used, including voxel mesh generation from TexGen as well as Abaqus Micromechanics plugin. Linear relations between homogenised elastic properties and the FVFs are given. The FE models of composite exhibited balanced behaviour with respect to warp and weft directions in terms of both stiffness and strength.

Keywords: 3D woven composite, meso-scale finite element modelling, homogenisation of elastic material properties, Abaqus Python scripting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855
1445 Application of Mapping and Superimposing Rule for Solution of Parabolic PDE in Porous Medium under Cyclic Loading

Authors: Mohammad M. Toufigh, Ahad Ouria

Abstract:

This paper presents an analytical method to solve governing consolidation parabolic partial differential equation (PDE) for inelastic porous Medium (soil) with consideration of variation of equation coefficient under cyclic loading. Since under cyclic loads, soil skeleton parameters change, this would introduce variable coefficient of parabolic PDE. Classical theory would not rationalize consolidation phenomenon in such condition. In this research, a method based on time space mapping to a virtual time space along with superimposing rule is employed to solve consolidation of inelastic soils in cyclic condition. Changes of consolidation coefficient applied in solution by modification of loading and unloading duration by introducing virtual time. Mapping function is calculated based on consolidation partial differential equation results. Based on superimposing rule a set of continuous static loads in specified times used instead of cyclic load. A set of laboratory consolidation tests under cyclic load along with numerical calculations were performed in order to verify the presented method. Numerical solution and laboratory tests results showed accuracy of presented method.

Keywords: Mapping, Consolidation, Inelastic porous medium, Cyclic loading, Superimposing rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
1444 Seismic Assessment of an Existing Dual System RC Buildings in Madinah City

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

A 15-storey RC building, studied in this paper, is representative of modern building type constructed in Madina City in Saudi Arabia before 10 years ago. These buildings are almost consisting of reinforced concrete skeleton i.e. columns, beams and flat slab as well as shear walls in the stairs and elevator areas arranged in the way to have a resistance system for lateral loads (wind – earthquake loads). In this study, the dynamic properties of the 15-storey RC building were identified using ambient motions recorded at several, spatially-distributed locations within each building. Three dimensional pushover analysis (Nonlinear static analysis) was carried out using SAP2000 software incorporating inelastic material properties for concrete, infill and steel. The effect of modeling the building with and without infill walls, on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madina area has been investigated. ATC- 40 capacity and demand spectra are utilized to get the modification factor (R) for the studied building. The purpose of this analysis is to evaluate the expected performance of structural systems by estimating, strength and deformation demands in design, and comparing these demands to available capacities at the performance levels of interest. The results are summarized and discussed.

Keywords: Seismic assessment, pushover analysis, ambient vibration, modal update.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
1443 Dynamic Analysis of a Moderately Thick Plate on Pasternak Type Foundation under Impact and Moving Loads

Authors: Neslihan Genckal, Reha Gursoy, Vedat Z. Dogan

Abstract:

In this study, dynamic responses of composite plates on elastic foundations subjected to impact and moving loads are investigated. The first order shear deformation (FSDT) theory is used for moderately thick plates. Pasternak-type (two-parameter) elastic foundation is assumed. Elastic foundation effects are integrated into the governing equations. It is assumed that plate is first hit by a mass as an impact type loading then the mass continues to move on the composite plate as a distributed moving loading, which resembles the aircraft landing on airport pavements. Impact and moving loadings are modeled by a mass-spring-damper system with a wheel. The wheel is assumed to be continuously in contact with the plate after impact. The governing partial differential equations of motion for displacements are converted into the ordinary differential equations in the time domain by using Galerkin’s method. Then, these sets of equations are solved by using the Runge-Kutta method. Several parameters such as vertical and horizontal velocities of the aircraft, volume fractions of the steel rebar in the reinforced concrete layer, and the different touchdown locations of the aircraft tire on the runway are considered in the numerical simulation. The results are compared with those of the ABAQUS, which is a commercial finite element code.

Keywords: Elastic foundation, impact, moving load, thick plate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
1442 Electrospinning and Characterization of Silk Fibroin/Gelatin Nanofibre Mats

Authors: S. Mohammadzadehmoghadam, Y. Dong

Abstract:

In this study, Bombyx mori silk fibroin/gelatin (SF/GT) nanocomposite with different GT ratio (SF/GT 100/0, 90/10 and 70/30) were prepared by electrospinning process and crosslinked with glutaraldehyde (GA) vapor. Properties of crosslinked SF/GT nanocomposites were investigated by scanning electron microscopy (SEM), mechanical test, water uptake capacity (WUC) and porosity. From SEM images, it was found that fiber diameter increased as GT content increased. The results of mechanical test indicated that the SF/GT 70/30 nanocomposites had both the highest Young’s modulus of 342 MPa and the highest tensile strength of about 14 MPa. However, porosity and WUC decreased from 62% and 405% for pristine SF to 47% and 232% for SF/GT 70/30, respectively. This behavior can be related to higher degree of crosslinking as GT ratio increased which altered the structure and physical properties of scaffolds. This study showed that incorporation of GT into SF nanofibers can enhance mechanical properties of resultant nanocomposite, but the GA treatment should be optimized to control and fine-tune other properties to warrant their biomedical application.

Keywords: Electrospinning, gelatin, mechanical properties, nanocomposites, silk fibroin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 841
1441 Homogeneity of Microstructure and Mechanical Properties in Horizontal Continuous Cast Billet

Authors: V. Arbabi , I. Ebrahimzadeh, H. Ghanbari, M.M. Kaykha

Abstract:

Horizontal continuous casting is widely used to produce semi-finished non-Ferrous products. Homogeneity in the metallurgical characteristics and mechanical properties for this product is vital for industrial application. In the present work, the microstructure and mechanical properties of a horizontal continuous cast two-phase brass billet have been studied. Impact strength and hardness variations were examined and the phase composition and porosity studied with image analysis software. Distinct differences in mechanical properties were observed between the upper, middle and lower parts of the billet, which are explained in terms of the morphology and size of the phase in the microstructure. Hardness variation in the length of billet is higher in upper area but impact strength is higher in lower areas.

Keywords: Horizontal Continuous Casting, Two-phase brasses, CuZn40Al1 alloy, Microstructure, Impact Strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
1440 Sensitivity of the SHARC Model to Variations of Manning Coefficient and Effect of ā€œnā€œ on the Sediment Materials Entry into the Eastern Water intake- A Case in the Dez Diversion Weir in Iran

Authors: M.R.Mansoujian, A.Rohani, N.Hedayat , M.Qamari, M. Osroosh

Abstract:

Permanent rivers are the main sources of renewable water supply for the croplands under the irrigation and drainage schemes. They are also the major source of sediment loads transport into the storage reservoirs of the hydro-electrical dams, diversion weirs and regulating dams. Sedimentation process results from soil erosion which is related to poor watershed management and human intervention ion in the hydraulic regime of the rivers. These could change the hydraulic behavior and as such, leads to riverbed and river bank scouring, the consequences of which would be sediment load transport into the dams and therefore reducing the flow discharge in water intakes. The present paper investigate sedimentation process by varying the Manning coefficient "n" by using the SHARC software along the watercourse in the Dez River. Results indicated that the optimum "n" within that river range is 0.0315 at which quantity minimum sediment loads are transported into the Eastern intake. Comparison of the model results with those obtained by those from the SSIIM software within the same river reach showed a very close proximity between them. This suggests a relative accuracy with which the model can simulate the hydraulic flow characteristics and therefore its suitability as a powerful analytical tool for project feasibility studies and project implementation.

Keywords: Sediment transport, Manning coefficient, Eastern Intake, SHARC, Dez River.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
1439 Finite Element Analysis of Raft Foundation on Various Soil Types under Earthquake Loading

Authors: Qassun S. Mohammed Shafiqu, Murtadha A. Abdulrasool

Abstract:

The design of shallow foundations to withstand different dynamic loads has given considerable attention in recent years. Dynamic loads may be due to the earthquakes, pile driving, blasting, water waves, and machine vibrations. But, predicting the behavior of shallow foundations during earthquakes remains a difficult task for geotechnical engineers. A database for dynamic and static parameters for different soils in seismic active zones in Iraq is prepared which has been collected from geophysical and geotechnical investigation works. Then, analysis of a typical 3-D soil-raft foundation system under earthquake loading is carried out using the database. And a parametric study has been carried out taking into consideration the influence of some parameters on the dynamic behavior of the raft foundation, such as raft stiffness, damping ratio as well as the influence of the earthquake acceleration-time records. The results of the parametric study show that the settlement caused by the earthquake can be decreased by about 72% with increasing the thickness from 0.5 m to 1.5 m. But, it has been noticed that reduction in the maximum bending moment by about 82% was predicted by decreasing the raft thickness from 1.5 m to 0.5 m in all sites model. Also, it has been observed that the maximum lateral displacement, the maximum vertical settlement and the maximum bending moment for damping ratio 0% is about 14%, 20%, and 18% higher than that for damping ratio 7.5%, respectively for all sites model.

Keywords: Shallow foundation, seismic behavior, raft thickness, damping ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 891
1438 Local Dynamic Mechanical Properties of Native Porcine Endplate

Authors: J. Sepitka, J. Lukes, J. Reznicek

Abstract:

Hysitron TriboIndenterTM TI 950 system has been used for studying the local viscoelastic properties of porcine intervertebral disc end plate by means of nanoscale mechanical dynamic analysis. The specimen of an endplate was cut from fresh porcine vertebra dissected from 16 month animal. The lumbar spine motion segments were dissected and 5 millimeter thick plates of vertebral body, endplate and annulus fibrosus were prepared for nanoindentation. The surface of the sample was kept in physiological solution during nanoindentation experiment. We obtained mechanical characteristics of different areas of native endplate (endplate middle and vertebra and annulus fibrosus boundary).

Keywords: nanoindentation, DMA, endplate, cartilage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
1437 Development of AA2024 Matrix Composites Reinforced with Micro Yttrium through Cold Compaction with Superior Mechanical Properties

Authors: C. H. S. Vidyasagar, D. B. Karunakar

Abstract:

In this present work, five different composite samples with AA2024 as matrix and varying amounts of yttrium (0.1-0.5 wt.%) as reinforcement are developed through cold compaction. The microstructures of the developed composite samples revealed that the yttrium reinforcement caused grain refinement up to 0.3 wt.% and beyond which the refinement is not effective. The microstructure revealed Al2Cu precipitation which strengthened the composite up to 0.3 wt.% yttrium reinforcement. Upon further increase in yttrium reinforcement, the intermetallics and the precipitation coarsen and their corresponding strengthening effect decreases. The mechanical characterization revealed that the composite sample reinforced with 0.3 wt.% yttrium showed highest mechanical properties like 82 HV of hardness, 276 MPa Ultimate Tensile Strength (UTS), 229 MPa Yield Strength (YS) and an elongation (EL) of 18.9% respectively. However, the relative density of the developed composites decreased with the increase in yttrium reinforcement.

Keywords: Mechanical properties, AA 2024 matrix, yttrium reinforcement, cold compaction, precipitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 591
1436 Experimental Investigation on Mechanical Properties of Rice Husk Filled Jute Reinforced Composites

Authors: Priyankar Pratim Deka, Sutanu Samanta

Abstract:

This paper describes the development of new class of epoxy based rice husk filled jute reinforced composites. Rice husk flour is added in 0%, 1%, 3%, 5% by weight. Epoxy resin and triethylenetetramine (T.E.T.A) is used as matrix and hardener respectively. It investigates the mechanical properties of the composites and a comparison is done for monolithic jute composite and the filled ones. The specimens are prepared according to the ASTM standards and experimentation is carried out using INSTRON 8801. The result shows that with the increase of filler percentage the tensile properties increases but compressive and flexural properties decreases.

Keywords: Jute, mechanical characterization, natural fiber, rice husk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
1435 Study of Characteristics of Multi-Layer Piezoelectric Transformers by using 3-D Finite Element Method

Authors: C. Panya-Isara, T. Kulworawanichpong, P. Pao-La-Or

Abstract:

Piezoelectric transformers are electronic devices made from piezoelectric materials. The piezoelectric transformers as the name implied are used for changing voltage signals from one level to another. Electrical energy carried with signals is transferred by means of mechanical vibration. Characterizing in both electrical and mechanical properties leads to extensively use and efficiency enhancement of piezoelectric transformers in various applications. In this paper, study and analysis of electrical and mechanical properties of multi-layer piezoelectric transformers in forms of potential and displacement distribution throughout the volume, respectively. This paper proposes a set of quasi-static mathematical model of electromechanical coupling for piezoelectric transformer by using a set of partial differential equations. Computer-based simulation utilizing the three-dimensional finite element method (3-D FEM) is exploited as a tool for visualizing potentials and displacements distribution within the multi-layer piezoelectric transformer. This simulation was conducted by varying a number of layers. In this paper 3, 5 and 7 of the circular ring type were used. The computer simulation based on the use of the FEM has been developed in MATLAB programming environment.

Keywords: Multi-layer Piezoelectric Transformer, 3-D Finite Element Method (3-D FEM), Electro-mechanical Coupling, Mechanical Vibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
1434 Municipal Solid Waste: Pre-Treatment Options and Benefits on Landfill Emissions

Authors: Bakare Babatunde Femi

Abstract:

Municipal solid waste (MSW) comprises of a wide range of heterogeneous materials generated by individual, household or organization and may include food waste, garden wastes, papers, textiles, rubbers, plastics, glass, ceramics, metals, wood wastes, construction wastes but it is not limited to the above mentioned fractions. The most common Municipal Solid Waste pretreatment method in use is thermal pretreatment (incineration) and Mechanical Biological pretreatment. This paper presents an overview of these two pretreatment methods describing their benefits and laboratory scale reactors that simulate landfill conditions were constructed in order to compare emissions in terms of biogas production and leachate contamination between untreated Municipal Solid Waste and Mechanical Biological Pretreated waste. The findings of this study showed that Mechanical Biological pretreatment of waste reduces the emission level of waste and the benefit over the landfilling of untreated waste is significant.

Keywords: emissions, mechanical biological pretreatment, MSW, thermal pretreatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2867
1433 Ignition Delay Correlation for a Direct Injection Diesel Engine Fuelled with Automotive Diesel and Water Diesel Emulsion

Authors: K.Alkhulaifi, M. Hamdalla

Abstract:

Most of ignition delay correlations studies have been developed in a constant volume bombs which cannot capture the dynamic variation in pressure and temperature during the ignition delay as in real engines. Watson, Assanis et. al. and Hardenberg and Hase correlations have been developed based on experimental data of diesel engines. However, they showed limited predictive ability of ignition delay when compared to experimental results. The objective of the study was to investigate the dependency of ignition delay time on engine brake power. An experimental investigation of the effect of automotive diesel and water diesel emulsion fuels on ignition delay under steady state conditions of a direct injection diesel engine was conducted. A four cylinder, direct injection naturally aspirated diesel engine was used in this experiment over a wide range of engine speeds and two engine loads. The ignition delay experimental data were compared with predictions of Assanis et. al. and Watson ignition delay correlations. The results of the experimental investigation were then used to develop a new ignition delay correlation. The newly developed ignition delay correlation has shown a better agreement with the experimental data than Assanis et. al. and Watson when using automotive diesel and water diesel emulsion fuels especially at low to medium engine speeds at both loads. In addition, the second derivative of cylinder pressure which is the most widely used method in determining the start of combustion was investigated.

Keywords: gnition delay correlation, water diesel emulsion, direct injection diesel engine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5762
1432 Water Quality Trading with Equitable Total Maximum Daily Loads

Authors: S. Jamshidi, E. Feizi Ashtiani, M. Ardestani

Abstract:

Waste Load Allocation (WLA) strategies usually intend to find economic policies for water resource management. Water quality trading (WQT) is an approach that uses discharge permit market to reduce total environmental protection costs. This primarily requires assigning discharge limits known as total maximum daily loads (TMDLs). These are determined by monitoring organizations with respect to the receiving water quality and remediation capabilities. The purpose of this study is to compare two approaches of TMDL assignment for WQT policy in small catchment area of Haraz River, in north of Iran. At first, TMDLs are assigned uniformly for the whole point sources to keep the concentrations of BOD and dissolved oxygen (DO) at the standard level at checkpoint (terminus point). This was simply simulated and controlled by Qual2kw software. In the second scenario, TMDLs are assigned using multi objective particle swarm optimization (MOPSO) method in which the environmental violation at river basin and total treatment costs are minimized simultaneously. In both scenarios, the equity index and the WLA based on trading discharge permits (TDP) are calculated. The comparative results showed that using economically optimized TMDLs (2nd scenario) has slightly more cost savings rather than uniform TMDL approach (1st scenario). The former annually costs about 1 M$ while the latter is 1.15 M$. WQT can decrease these annual costs to 0.9 and 1.1 M$, respectively. In other word, these approaches may save 35 and 45% economically in comparison with command and control policy. It means that using multi objective decision support systems (DSS) may find more economical WLA, however its outcome is not necessarily significant in comparison with uniform TMDLs. This may be due to the similar impact factors of dischargers in small catchments. Conversely, using uniform TMDLs for WQT brings more equity that makes stakeholders not feel that much envious of difference between TMDL and WQT allocation. In addition, for this case, determination of TMDLs uniformly would be much easier for monitoring. Consequently, uniform TMDL for TDP market is recommended as a sustainable approach. However, economical TMDLs can be used for larger watersheds.

Keywords: Waste load allocation (WLA), Water quality trading (WQT), Total maximum daily loads (TMDLs), Haraz River, Multi objective particle swarm optimization (MOPSO), Equity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
1431 Numerical Simulation of CNT Incorporated Cement

Authors: B. S. Sindu, Saptarshi Sasmal, Smitha Gopinath

Abstract:

Cement, the most widely used construction material is very brittle and characterized by low tensile strength and strain capacity. Macro to nano fibers are added to cement to provide tensile strength and ductility to it. Carbon Nanotube (CNT), one of the nanofibers, has proven to be a promising reinforcing material in the cement composites because of its outstanding mechanical properties and its ability to close cracks at the nano level. The experimental investigations for CNT reinforced cement is costly, time consuming and involves huge number of trials. Mathematical modeling of CNT reinforced cement can be done effectively and efficiently to arrive at the mechanical properties and to reduce the number of trials in the experiments. Hence, an attempt is made to numerically study the effective mechanical properties of CNT reinforced cement numerically using Representative Volume Element (RVE) method. The enhancement in its mechanical properties for different percentage of CNTs is studied in detail.

Keywords: Carbon Nanotubes, Cement composites, Representative Volume Element, Numerical simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273
1430 Effect of Cow bone and Groundnut Shell Reinforced in Epoxy Resin on the Mechanical Properties and Microstructure of the Composites

Authors: O. I. Rufai, G. I. Lawal, B. O. Bolasodun, S. I. Durowaye, J. O. Etoh

Abstract:

It is an established fact that polymers have several physical limitations such as low stiffness and low resistance to impact on loading. Hence, polymers do not usually have requisite mechanical strength for application in various fields. The reinforcement by high strength fibers provides the polymer substantially enhanced mechanical properties and makes them more suitable for a large number of diverse applications. This research evaluates the effects of particulate Cow bone and Groundnut shell additions on the mechanical properties and microstructure of cow bone and groundnut shell reinforced epoxy composite in order to assess the possibility of using it as a material for engineering applications. Cow bone and groundnut shell particles reinforced with epoxy (CBRPC and GSRPC) was prepared by varying the cow bone and groundnut shell particles from 0-25 wt% with 5 wt% intervals. A Hybrid of the Cow bone and Groundnut shell (HGSCB) reinforce with epoxy was also prepared. The mechanical properties of the developed composites were investigated. Optical microscopy was used to examine the microstructure of the composites. The results revealed that mechanical properties did not increase uniformly with additions in filler but exhibited maximum properties at specific percentages of filler additions. From the Microscopic evaluation, it was discovered that homogeneity decreases with increase in % filler, this could be due to poor interfacial bonding.

Keywords: Groundnut shell reinforced polymer composite (GSRPC), Cow bone reinforced polymer composite (CBRPC), Hybrid of ground nutshell and cowbone (HGSCB).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3020
1429 Combined Effect of Cold Rolling and Heat Treatment on the Mechanical Properties of Al-Ti Alloy

Authors: Adeosun S. Oluropo, Sekunowo O. Israel, Talabi S. Isaac

Abstract:

This study investigated the combined effect of cold rolling and heat treatment on the mechanical properties of Al-Ti alloy. Samples of the alloy are cast in metal mould to obtain 0.94-2.19wt% mixes of titanium. These samples are grouped into untreated (as-cast) and those that are cold rolled to fifty percent reduction, homogenized at 5000C and soaked for one hour. The cold rolled and heat treated samples are normalized (RTn) and quench-tempered (RTq-t) at 1000C. All these samples are subjected to tensile, micro-hardness and microstructural evaluation. Results show remarkable improvement in the mechanical properties of the cold rolled and heat treated samples compared to the as-cast. In particular, the RTq-t samples containing titanium in the range of 1.7-2.2% demonstrates improve tensile strength by 24.7%, yield strength, 28%, elastic modulus, 38.3% and micro-hardness, 20.5%. The Al3Ti phase being the most stable precipitate in the α-Al matrix appears to have been responsible for the significant improvement in the alloy’s mechanical properties. It is concluded that quench and temper heat treatment is an effective method of improving the strength-strain ratio of cold rolled Al-.0.9-2.2%Ti alloy.

Keywords: Aluminum-titanium alloy, heat treatment, mechanical properties, precipitate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2703