

Abstract—Industry data centers often need to sync data changes

reliably and instantly from a large-scale of heterogeneous autonomous
relational databases accessed via the not-so-reliable Internet, for which
a practical generic sync middleware of low maintenance and operation
costs is most wanted. To this demand, this paper presented a generic
sync middleware system (GSMS), which has been developed, applied
and optimized since 2006, holding the principles or advantages that it
must be SyncML-compliant and transparent to data application layer
logic without referring to implementation details of databases synced,
does not rely on host computer operating systems deployed, and its
construction is light weighted and hence of low cost. Regarding these
hard commitments of developing GSMS, in this paper we stressed the
significant optimization breakthrough of GSMS sync delay being well
below a fraction of millisecond per record sync. A series of ultimate
tests with GSMS sync performance were conducted for a persuasive
example, in which the source relational database underwent a broad
range of write loads (from one thousand to one million intensive writes
within a few minutes). All these tests showed that the performance of
GSMS is competent and smooth even under ultimate write loads.

Keywords—Heterogeneous massive data, instantly sync intensive
writes, Internet generic middleware design, optimization.

I. INTRODUCTION

INCE 2006, we have been developing GSMS, a generic
sync middleware system [1] to sync massive heterogeneous

data between autonomous MISs (Management Information
Systems) over TCP/IP networks. And since 2011, we have been
applying and improving GSMS to sync the housing registration
system databases from 23 cities and counties in Guangdong
Province, China. In 2018, we applied for a PCT patent for the
GSMS under the title “universal multi-source heterogeneous
large-scale data synchronization system”, which was granted
Hong Kong standard patent on 23 April 2021 [2].

GSMS was built compatible with SQL standards’ trigger
specification (a core feature since SQL-92 standard) [3] and
OMA DS & DM (Open Mobile Alliance Data Synchronization
and Device Management) protocols that were inherited from
the early SyncML protocol [4]. SyncML was a unique open
industry specification for universal data synchronization (we
prefer the short term sync instead) of remote data and personal
information across multiple networks, platforms and devices,
which was initiated and sponsored by a group of leading
companies including Ericsson, IBM, Lotus, Motorola, Nokia,
Palm Inc., Psion, and Starfish Software as early as 2000.

H. Yang*, Z. Ruan, F. Xu, and L. Xia are with the Guangdong Construction

Information Center, Guangzhou 510055 China (*corresponding author, phone:
+8620-87251236; fax: +8620-87251025; e-mail: yanght@gdcic.net).

This research was funded by the Science and Technology Program of
Guangdong Province, China, in Grant No.2015B010131012.

GSMS has been oriented to heterogeneous data sync since its
beginning [1], [5]. Heterogeneity related to data is reflected in
various aspects, e.g., the differences of computer architectures,
operation systems, storage mechanisms (physical and logical),
data logic models, etc., and also embodied in different RDBMS
(Relational Database Management System) products, such as
Oracle, SQL Server, Sybase, MySQL, KingbaseES, DM8, or
different file types, such as TXT, CSV, XLS etc., where the
duplicates of data were kept.

To the best of our practical knowledge, SyncML-compliant
implementation of Internet heterogeneous massive data sync is
prone to problems of low throughput and transmission failure.
Towards this challenge, we positioned GSMS as a reliable,
efficient, monitorable and schedulable practical product that
can sync both large scale mobile data and massive relational
data. In particular, on the premise that GSMS is generic to
various databases products and their versions, we aimed to
make GSMS ensure the absolute correction of data sync
temporal order, zero omission of data change capture, high
reliability of transactions, and robustness to unexpected failures
from networks and nodes. But this is easier said than done.

II. GENERIC SYNC MIDDLEWARE SYSTEM DESIGN

A. GSMS Architecture and How It Works

The basic function units of GSMS include sync node config,
install & deployment, block & pipelining, unilateral sync,
bilateral sync, and correctness guarantee, as shown in Fig. 1.
The unilateral sync unit is the core routine mechanism –
combining two reverse unilateral syncs can form a sequentially
bilateral sync; the sync node config unit provides a facility for
setting parameters of sync network nodes, e.g., database
account, URL address, and node name etc.; the install &
deployment unit is for client installation and sync mapping
configuration, while the block & pipelining unit is for block
setting and pipelining control of sync transmission, the
correctness guarantee unit is for transmission verification,
operation log and monitoring, respectively.

Fig. 1 GSMS function units’ structure

The GSMS operation mechanism is depicted as in Fig. 2 for
RDBMS sync (the main application field of massive data sync)
from the perspective of the client side, where GSMS parts are

Haitao Yang, Zhenjiang Ruan, Fei Xu, Lanting Xia

A Generic Middleware to Instantly Sync Intensive
Writes of Heterogeneous Massive Data via Internet

S

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:3, 2022

42International Scholarly and Scientific Research & Innovation 16(3) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
3,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
42

2.
pd

f

highlighted, which includes the database triggers, stand-alone
external programs (GSMS Kernel), the change log and other
configurations, as well as their remote counterparts. The client
side core task of GSMS is to capture any local data changes and
propagate them to the target remote counterparts (in a server
role to renew their replica there). The sync data objects at the
client side and their counterparts at the server side are
correlated in pairs of attributes through a mapping table
maintained at the sync server side, see Fig. 3.

Fig. 2 Sync operation illustrations for RDBMS applications

Fig. 3 Data mapping between a pair of sync client and server

Fig. 4 GSMS usage concept graph

B. Usage Concepts with Speed Tackling

As a generic solution for massive heterogeneous data sync
applications through the Internet, GSMS is granted with many
usage settings for a variety of applications. To illustrate GSMS
comprehensive configurability, we present an outline of main
GSMS usage concepts as in Fig. 4 where, there are several
usage concepts related directly to sync speed.

At first, for real-time sync applications, the incremental sync
mode is the routine working mode while the total sync mode is
mainly just used for initialization of each round sync only. In
the incremental sync mode, the actually-synced content is those
data records that underwent a change after the last successful
sync, whereas in the total sync mode, all content of the source
data will be transferred [5].

Secondly, the optimistic or cautious policies introduce an

option of speed or quality privilege. In the optimistic option, the
client and the server sides do not need to calculate and verify
the HASH value for any sync data parcel’s digest, which is used
in situations of good communication and for fast response.
With the cautious selection, the GSMS client shall make an
additional sync parcel digest calculation when a sending sync
message, and afterwards, the GSMS server side will verify such
digest with the recalculated one from the received sync parcel.
If the check fails, it will require a retransmission from the client
(the retry times are configurable).

Thirdly, the setting of compression and encryption is about
lowering the sync transport load and protecting transport
privacy further. For faster sync, we shall adopt a higher ratio
compression algorithm for the bigger sync parcel, and turn off
the encryption (and corresponding decryption) function.

C. Client Main Routine Process Logic

For the real-time sync requirement, the main routine sync
process at the client side should be a daemon process as in Unix
or Linux operation system, or an equivalent service process for
Microsoft Windows’, such that it stays in the memory and
keeps running there. For high reliability, the sync client main
process logic as follows is used: it must keep its sync process
alive and repeat its local sync polling in a configurable instant
time gap; as soon as it detects a data change by the local change
log it will launch a new sync request to the server, see Fig. 5
where, parameters TP and TR provide more flexible adjustment
for timing or real-time sync requirements.

Fig. 5 Illustration of client main process logic

III. TIME AND EFFICIENCY OPTIMIZATIONS

A. Block Lock-Step and Segment Pipelining for Transmission

Internet massive data sync often has high possibilities of
malfunction or abort due to poor communication and uncertain
situations of remote nodes and network paths. To deal with
unexpected sync faults, we adopt a lock-step mechanism of
“sendwait response (lock)next send” for sync transmission
reliability [6]. Fine-grained lock-step sync mode, however,
might depress throughput of sync transmission due to frequent
pauses for response return after each sync parcel sending, and
each round sync session will be lagged by repetitive expenses
of starting and ending every single parcel transmission.
Regarding that pipelining is a good paradigm to raise serial
process throughput, we thus devised a block mechanism that

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:3, 2022

43International Scholarly and Scientific Research & Innovation 16(3) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
3,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
42

2.
pd

f

bundles a number of sync data records into a sync block, and
applied an underlying pipelining of records transport within a
sync block [6]: all sync records within the same sync block will
be sent in pipelining mode as a flow of TCP/IP packets – one
following another without pause. The size of sync block can be
adjusted for a suitable granularity, i.e., on the amount of sync
records included. With this adjustment we can leverage GSMS
for a better balance between speed and success ratio. And
further a lock-step mechanism is assumed on sync block level,
so that GSMS can resume any abort sync at the block where the
sync process aborted, which is extremely important to achieve
an ever-progress of sync transaction on block granularity.

B. Adjusting for Steadiness and Simplicity

1. No Hash Addressing Data Objects

We abandoned the conventional monolithic Hash(primary
key) table that was used for addressing synced data objects at
the server side, regarding that a growing Hash table is apt to
overflow memory. Further, we adopted a memory data stack to
quickly cache the coming sync data from the client side, from
which the synced data will be flushed directly into the sync
target database later. These measures can reclaim in time the
stack memory that are no long used and avoid the server’s
frequent Hash computations for massive-data cases.

2. Pure Log Maintenance

The “triggeredinsert” procedure is assumed for GSMS
trigger script logic to record data change events in the change
log, since insert operations in RDBMS SQL takes the least time
than update or delete type does.

3. Faster Encoding Sync Parcel

For quicker encoding and decoding, we replaced algorithm
ZIP with LZ4,which can gain several times faster compression
and decompression, and assumed the optimistic transmission
option of omitting GSMS encryption procedure, which leaves
the privacy protection task to network infrastructures such as
VPN or Secure Socket Layer.

C. Accelerated Initialization for Incremental Sync

Faster total sync means quicker initialization of incremental
sync and less data changes incurred during the initialization
(fewer records logged for subsequent sync). In the total sync
mode, all existing data records of all tables involved will be
synced regardless of the change log. Thus, concurrent sync
threads at the client side should be used to increase sync
efficiency, which results statistically in parallel utilization of
resources: concurrently, different threads might use different
resources, such as CPU, network I/O, data bus or memory
paging, RDBMS connection, etc.

D. Paralleling Optimization for Incremental Sync

1. Original Sync Procedures is a Serial Chain

Previously, a routine of sync process formed a long chain of
serial steps from the client and server sides as well as their
communication, see steps numbered 1 to 8 as in Fig. 6. In such a
long chain, any choke or failure at an arbitrary step could block

or abort the entire sync process. To tackle these deficiencies,
we tried to split some bottleneck parts out of this long chain so
that they could work in parallel or asynchronously.

Fig. 6 Original Serial Chain of Sync Routine

2. Paralleling Communication and Database Renewal

At first, we located such steps that might most possibly be a
choke point and that could be asynchronously dealt with, and
then set them aside from the main chain into a sub-procedure,
and provided multi-routes processing to such sub-procedure for
better throughput.

Fig. 7 Paralleling Rearrangement for GSMS sync

To avoid sophisticate scheduling and to guarantee temporal

order of sync, we should not split the client-side part of the
original long chain. Instead, we split the chain at the server side
since it serves multiple clients simultaneously and most likely
incurs bottlenecks of throughput. Finally, the paralleling
rearrangement for the GSMS sync procedure is outlined as in
Fig. 7 where, we noticed that the most time-consuming step is
the “process sync parcel”, for which we embedded an MQ
(Message Queue) mechanism into the GSMS server process to
provide multi-routes asynchronous disposal. Each sync client is
assigned a different MQ which is responsible for processing all
the sync parcels received from that client during sync period.
Therefore, all sync parcels received from different clients are
immediately delivered into different MQs respectively without
waiting, the sync communication routine is speeded up and the
sync data renewal process at the server side becomes robust.

3. Message Queue Implementation

For low-cost MQ embedded implementation, intuitively two
approaches are preferred: introduce a third-party open source
MQ product, or do it yourself.

Via a series of experiments with ActiveMQ, a popular open
source MQ product [7], [8], however, we found it hard to tune

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:3, 2022

44International Scholarly and Scientific Research & Innovation 16(3) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
3,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
42

2.
pd

f

up a third party MQ product to absolutely avoid loss of message
before being permanently stored. This is because no transaction
mechanism can cover a process across different software
products. Instead, we used database tables to simulate MQs:
assigning a relational data table as an MQ data structure for
each sync connection, and maintaining them by the rule of “tail

in and head out”, see Fig. 8, where the database built-in
transaction mechanism can guarantee the reliability of
completely processing data received, and a memory cache pool
assigned for dedicated MQ data tables would help improve
MQs high throughput.

Fig. 8 MQ Implementation Paradigm

E. Odds to Speed up Sync Client

1. Using Database Connection Pool

In real-time syncs, the client sync process should cyclically
access its change log as frequently as possible. By means of a
database connection pool instead of conventional JDBC (Java
DataBase Connectivity) implementation, the client sync
process could hold its access connection to the change log open
during its whole life cycle, and thus avoid the extra expense of
frequently opening and closing the database connection.

2. Optimizing Sync Mapping Configuration Access

For convenience and consistency of management, the sync
mapping configuration (in short sync config) for each pair of
RDBMS nodes synced was generated and stored centrally in
the server node. Each time a client started a round of sync, the
sync config was downloaded from the remote server, which was
heavily time-consuming since it involved an Internet remote
database query. Besides, it intensified competition in database
access at the server. Thus, we optimized the original procedure
by reducing the sync config download frequency and assuming
the local replica of downloaded sync config as often as possible.

Because alterations to the sync config are uncommon, we can
code the sync client process using a global static data object,
say V, to store the sync config, and program a thread dedicated
to poll the server side periodically for any change in the sync
config to renew the local value of V in a much larger interval.

IV. TESTING GSMS TIME EFFECTS

To be a persuasive sync middleware, GSMS must withstand
ultimate performance tests as in scenarios of extremely high
frequency of writes upon source data (GSMS has no trigger on
read operation). Thus, we devised and conducted a series of
GSMS sync tests for an example of typical write combination
in a simple source relational database undergoing a broad range
of write loads under very intensive writes. Basically, there are

two key GSMS time effects indicating its performance: 1) to
what extent a GSMS deployment might delay completion of
write operations on the host RDBMS due to the added GSMS
triggers; 2) how fast a GSMS will sync the data changes at the
source node to the target node.

Important notice: The sync procedure logic of GSMS is to
map heterogeneous database data formats into the universal
Java data format first, and then use the sync mapping table to
map the data fields pair from the source to the target, so the
sync time of GSMS is independent of the specific database type.
So, for the sake of simplicity, we can use the same database
product e.g., Oracle, both for the sync client and the server
RDBMS for a general sync performance test.

A. Test Example of Database and Write Mode

Oracle Database 11g was taken as the RDBMS example. The
test specification was outlined as follows:
 A source data table assumed with the record size of 100

bytes and 10 attributes.
 Tests were carried out each time in a batch of DML (Data

Manipulation Language) write requests which is called a
DML amount. The list of tested DML amount was {1 K, 2
K, 3 K, 4 K, 5 K, 6 K, 7 K, 8 K, 9 K, 10 K, 20 K, 30 K, 40
K, 50 K, 60 K, 70 K, 80 K, 90 K, 0.1 M, 0.2 M, 0.3 M, 0.4
M, 0.5 M, 0.6 M, 0.7 M, 0.8 M, 0.9M, 1M}, where K=103
and M=106.

 Percentages of Insert, Update, and Delete requests in a
DML amount were 75%, 20%, and 5% respectively. This
is one of the most common combination of database write
request scenarios for many MISs.

B. Impact on RDBMS Write Operations

To evaluate this impact, we only needed to measure the write
performance of the GSMS deployed database relative to the test
benchmarks. For easy observation, database writes were tried
each time in a DML amount, i.e. a batch of DML-defined
insert, update and delete requests, and evaluated in average

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:3, 2022

45International Scholarly and Scientific Research & Innovation 16(3) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
3,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
42

2.
pd

f

execution time per DML request, in short, named the average
DML time. Two test benchmarks were chosen: Benchmark A –
average DML time on RDBMS clear of sync setting;
Benchmark B – average DML time on RDBMS with the
built-in sync function that is only for isomorphic database
replication, the data mirror.

In Oracle, benchmark B was implemented by creating a
material view of the sample data table synced. The average
DML time under GSMS deployment was plotted relative to
(minus by) benchmark A and benchmark B as the DML lag in
Fig. 9. The corresponding ultimate DML (write) frequencies
were recorded as in Fig. 10, where the horizontal axis stood for
the relative DML amount (the amount of DMLs/106) in each
test. Fig. 9 has showed something significant as follows: 1)
Relative to benchmark A, the DML lag due to GSMS was
positive but insignificant or trivial (0.25 milliseconds below),
and had a smooth trend as the total load of DML write task
increased towards 1 million times of write. 2) Relative to
benchmark B, the DML lag due to GSMS was negative, i.e.,
less side effects on the host database thought it went up and
down in a rather limit range.

‐0.20

‐0.15

‐0.10

‐0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0
.0
01

0
.0
02

0
.0
03

0
.0
04

0
.0
05

0
.0
06

0
.0
07

0
.0
08

0
.0
09

0.
0
1

0.
0
2

0.
0
3

0.
0
4

0.
0
5

0.
0
6

0.
0
7

0.
0
8

0.
0
9

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

M
ill

is
ec

on
d

DML amount / 106

the DML lag to Benchmark A

the DML lag to Benchmark B

Fig. 9 Average DML time relative to benchmarks’

0

1000

2000

3000

4000

5000

6000

7000

8000

0
.0
0
1

0
.0
0
2

0
.0
0
3

0
.0
0
4

0
.0
0
5

0
.0
0
6

0
.0
0
7

0
.0
0
8

0
.0
0
9

0
.0
1

0
.0
2

0
.0
3

0
.0
4

0
.0
5

0
.0
6

0
.0
7

0
.0
8

0
.0
9

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

D
M
Ls
 p
e
r
Sc
o
n
d

DML amount / 106

ultimate DML frequency

Fig. 10 Ultimate DML frequencies under GSMS

In Fig. 10, we noticed that the line chart of ultimate DML

(operation) frequency achieved in tests had a slight and smooth
decline as the DML amount increased to 1 million, which
implied that the host database performance was only slightly
and smoothly affected by the GSMS regardless of very heavy
write load.

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

D
M

L
 F

re
qu

en
cy

(T
im

es
/S

ec
on

d)

Sy
nc

 T
im

e
(M

il
li

se
co

nd
)

DML Amount / 106

Average Sync Time Per Record
DML Frequency On Source Data

Fig. 11 GSMS average sync time tests

C. Performance for Instant Sync

To verify if the above GSMS optimizations to instantly sync
heterogeneous massive data via the not-so-reliable Internet is
workable, we continued to experiment with the test example
introduced in Section IV A to conduct GSMS performance tests
for ultimate frequency write scenarios. DML writes were run in
frequencies as high as possible, and all sync tests were carried
out in a real Internet-wide area network. With the variable TR
(the waiting gap whenever the client sync thread detected no
data changes waiting to sync) as declared in Fig. 5, was set at
0.5 seconds, we got the following test results as in Fig 11: 1)
The ultimate DML frequencies ranged from 1803 to 6878
DMLs per second were recorded when a series of pressure tasks
with 103 to 106 DMLs writes into the source data were tried.
The relative large fluctuation of the ultimate DML frequency
line chart was accompanied by corresponding lower sync
amount tasks – because the availability of computing resources
(of hosts and database systems) takes on some degree of
randomness, and tasks with a lower sync amount shall have a
shorter completion time that in quantity might be dominated by
a minor random variation of the availability of computing
resources, then the result will show greater fluctuations. 2) The
average sync time per record ranged from 0.0891 to 0.2159
milliseconds, and it increased in a rough linear trend but was
confined under a vertex as the sync task becomes very heavy.
This sync velocity decrease phenomenon probably is due to the
accumulated memory consumption and unreleased computing
source at the source database node. (Remark: experiments had
showed different values of TR had little impact on the above test
results). Furthermore, according to the logic of GSMS client
threads scheduling, for cases of intensive data changes at
source node, the GSMS client keeps repeatedly syncing without
pause, and then the above presented tests show that GSMS has
achieved an instant sync of well below the millisecond level. As
for other cases when it detects no data changes to be synced, the
GSMS client sync thread pauses for a fraction of moment only.

V. CONCLUSION

A series of ultimate performance tests in this research have
verified that GSMS is capable of a real-time sync infrastructure
for heavy Internet data sync applications, with respect to GSMS
excellent performance in intensive data write scenarios and its
low side effects on the host databases. This is very significant

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:3, 2022

46International Scholarly and Scientific Research & Innovation 16(3) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
3,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
42

2.
pd

f

as some commercial product of instant sync middleware for
heterogeneous database, e.g., Oracle GoldenGate [9], has been
dominant in the market for years. Further, we can easily extend
the list of GSMS applicable database products (Oracle, SQL
Server, Sybase, MySQL, KingbaseES, DM8, etc.) to include
more products whether they are commercial or of open source.

REFERENCES
[1] Haitao Yang, Peng Yang, Pingjing Lu, and Zhenghua Wang, “A SyncML

Middleware-Based Solution for Pervasive Relational Data
Synchronization,” IFIP Int’l Conf. on Network and Parallel Computing
(NPC 2008), Shanghai, China, Oct 18-20, 2008. J. Cao et al. (Eds.):
Springer, LNCS 5245, pp.308–319, 2008.

[2] Haitao Yang, Fei Xu, Zhenjiang Ruan, “Universal Multi-Source
Heterogeneous Large-Scale Data Synchronization System,” Patents
Registry, the Hong Kong Special Administrative Region. Patent Type:
Standard Patent, Patent No.: HK1246878. Date of publication of grant of
patent: 23-04-2021, Date of publication of application: 14-09-2018.

[3] ANSI X3.135-1992, ISO/IEC 9075:1992, SQL-92 (SQL2)
[4] OASIS, The SyncML Initiative, technology reports, last modified on:

April 29, 2003. http://xml.coverpages.org/syncML.html
[5] Haitao Yang, Practice and Research Notes in Relational Database

Applications. New York: Nova Science Publishers, Inc., 2010. ISBN:
978-1-61668-850-9

[6] Jerome Saltzer, and M. Kaashoek, RES.6-004 Principles of Computer
System Design: An Introduction. Chapter 7, “The Network as a System
and as a System Component.” Spring 2009. Massachusetts Institute of
Technology: MIT OpenCourseWare, https://ocw.mit.edu.

[7] Andrei F. Klein, Mihai Stefanescu, Alan Saied, and Kurt Swakhoven,
“An experimental comparison of ActiveMQ and Open MQ brokers in
asynchronous cloud environment,” 2015 Fifth Int’l Conf. on Digital
Information Processing and Communications (ICDIPC). IEEE, 2015,
pp.24-30.

[8] Apache Software Foundation, ActiveMQ, http://activemq.apache.org/
[9] Ravinder Gupta, Introduction to Oracle GoldenGate (OGG). Mastering

Oracle GoldenGate. Apress, 2016.

Haitao Yang received his Bachelor of Engineering degree in mechanics in
1983, Master of Science degree in computational mathematics in 1989, PhD
degree in computer software and theory in 2008, from the National University
of Defense Technology, Sun Yat-sen University, and Computing Technology
Institute of Chinese Academy of Sciences, China, respectively.

He has been working in computer-related fields over three decades. His
early career was primarily as designer and analyst of database, information
system and computing platform. In recent years, his main interest has focused
on big data, Internet distributed system, and Web business development.

Prof. Yang was awarded with "Best Presentation Award" by the Program
Committee as per the Conference Awards Scheme of ICSCTB 2017: 19th Int’l
Conf. on Smart City, Transportation and Buildings, World Academy of
Science, Engineering and Technology.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:3, 2022

47International Scholarly and Scientific Research & Innovation 16(3) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
3,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
42

2.
pd

f

