Search results for: SI engine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 361

Search results for: SI engine

361 Study of Dual Fuel Engine as Environmentally Friendly Engine

Authors: Nilam S. Octaviani, Semin

Abstract:

The diesel engine is an internal combustion engine that uses compressed air to combust. The diesel engines are widely used in the world because it has the most excellent combustion efficiency than other types of internal combustion engine.  However, the exhaust emissions of it produce pollutants that are harmful to human health and the environment. Therefore, natural gas used as an alternative fuel using on compression ignition engine to respond those environment issues. This paper aims to discuss the comparison of the technical characteristics and exhaust gases emission from conventional diesel engine and dual fuel diesel engine. According to the study, the dual fuel engine applications have a lower compression pressure and has longer ignition delay compared with normal diesel mode. The engine power is decreased at dual fuel mode. However, the exhaust gases emission on dual fuel engine significantly reduce the nitrogen oxide (NOx), carbon dioxide (CO2) and particular metter (PM) emissions.

Keywords: Diesel engine, dual fuel engine, emissions, technical characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894
360 Calculation and Comparison of a Turbofan Engine Performance Parameters with Various Definitions

Authors: O. Onal, O. Turan

Abstract:

In this paper, some performance parameters of a selected turbofan engine (JT9D) are analyzed. The engine is a high bypass turbofan engine which powers a wide-body aircraft and it produces 206 kN thrust force (thrust/weight ratio is 5.4). The objective parameters for the engine include calculation of power, specific fuel consumption, specific thrust, engine propulsive, thermal and overall efficiencies according to the various definitions given in the literature. Furthermore, in the case study, wasted energy from the exhaust is calculated at the maximum power setting (i.e. take off phase) for the engine.

Keywords: Turbofan, power, efficiency, trust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3988
359 An Experimental Study on the Effects of Bioethanol-Unleaded Gasoline Blends on Engine Performance in a Spark Ignition Engine

Authors: A. Engin Özçelik, Hasan Aydoğan, Mustafa Acaroğlu

Abstract:

In the present study, the effects of bioethanol-unleaded gasoline blends on engine performance were investigated in a spark ignition engine. Fuel containing 100% ethanol (E100), fuel blend containing 40% bioethanol by volume (E40) and 100% unleaded gasoline (E0) were tested and the test results were compared. As the result of the study, it was found that the use of unleaded gasoline and bioethanol-unleaded gasoline blends as fuel did not cause a significant change in engine performance. The results of the engine tests showed that the use of unleaded gasoline-bioethanol blends as fuel caused a decrease in engine torque and engine power depending on the increase in the ratio of bioethanol in the fuel blend. As the result of these decreases, increases of up to 30% were observed in the specific fuel consumption of the engine.

Keywords: Bioetanol, engine performance, unleaded gasoline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
358 Hybrid RANS-LES Simulation of In-Cylinder Air Flow for Different Engine Speeds at Fixed Intake Flow Pressure

Authors: L. V. Fui, A. Ulugbek, S. S. Dol

Abstract:

The in-cylinder flow and mixture formations are significant in view of today’s increasing concern on environmental issues and stringent emission regulations. In this paper, the numerical simulations of a SI engine at different engine speeds (2000-5000 rpm) at fixed intake flow pressure of 1 bar are studied using the AVL FIRE software. The simulation results show that when the engine speed at fixed intake flow pressure is increased, the volumetric efficiency of the engine decreases. This is due to a richer fuel conditions near the engine cylinder wall when engine speed is increased. Significant effects of impingement are also noted on the upper and side walls of the engine cylinder. These variations in mixture formation before ignition could affect the thermodynamics efficiency and specific fuel consumption that would lead to a reduced engine performance.

Keywords: AVL FIRE, fuel mass, IC engine, LES, RANS, turbulent intensity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
357 Lubrication Performance of Multi-Level Gear Oil in a Gasoline Engine

Authors: Feng-Tsai Weng, Dong- Syuan Cai, Tsochu-Lin

Abstract:

A vehicle gasoline engine converts gasoline into power so that the car can move, and lubricants are important for engines and also gear boxes. Manufacturers have produced numbers of engine oils, and gear oils for engines and gear boxes to SAE International Standards. Some products not only can improve the lubrication of both the engine and gear box but also can raise power of vehicle this can be easily seen in the advertisement declared by the manufacturers. To observe the lubrication performance, a multi-leveled (heavy duty) gear oil was added to a gasoline engine as the oil in the vehicle. The oil was checked at about every 10,000 kilometers. The engine was detailed disassembled, cleaned, and parts were measured. The wear of components of the engine parts were checked and recorded finally. Based on the experiment results, some gear oil seems possible to be used as engine oil in particular vehicles. Vehicle owners should change oil periodically in about every 6,000 miles (or 10,000 kilometers). Used car owners may change engine oil in even longer distance.

Keywords: Multi-level gear oil, engine oil, viscosity, abrasion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1068
356 Experimental Investigation on Effect of the Zirconium + Magnesium Coating of the Piston and Valve of the Single-Cylinder Diesel Engine to the Engine Performance and Emission

Authors: Erdinç Vural, Bülent Özdalyan, Serkan Özel

Abstract:

The four-stroke single cylinder diesel engine has been used in this study, the pistons and valves of the engine have been stabilized, the aluminum oxide (Al2O3) in different ratios has been added in the power of zirconium (ZrO2) magnesium oxide (MgO), and has been coated with the plasma spray method. The pistons and valves of the combustion chamber of the engine are coated with 5 different (ZrO2 + MgO), (ZrO2 + MgO + 25% Al2O3), (ZrO2 + MgO + 50% Al2O3), (ZrO2 + MgO + 75% Al2O3), (Al2O3) sample. The material tests have been made for each of the coated engine parts with the scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) using Cu Kα radiation surface analysis methods. The engine tests have been repeated for each sample in any electric dynamometer in full power 1600 rpm, 2000 rpm, 2400 rpm and 2800 rpm engine speeds. The material analysis and engine tests have shown that the best performance has been performed with (ZrO2 + MgO + 50% Al2O3). Thus, there is no significant change in HC and Smoke emissions, but NOx emission is increased, as the engine improves power, torque, specific fuel consumption and CO emissions in the tests made with sample A3.

Keywords: Ceramic coating, material characterization, engine performance, exhaust emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
355 Engine Power Effects on Support Interference

Authors: B.J.C. Horsten, L.L.M. Veldhuis

Abstract:

Renewed interest in propeller propulsion on aircraft configurations combined with higher propeller loads lead to the question how the effects of the propulsion on model support disturbances should be accounted for. In this paper, the determination of engine power effects on support interference of sting-mounted models is demonstrated by a measurement on a four-engine turboprop aircraft. CFD results on a more generic model are presented in order to clarify the possible mechanism behind engine power effects on support interference. The engine slipstream induces a local change in angle of sideslip at the model sting thereby influencing the sting near-field and far-field effects. Whether or not the net result of these changes in the disturbance pattern leads to a significant engine power effect depends on the configuration of the wind tunnel model and the test setup.

Keywords: CFD, engine power effects, measurements, support interference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
354 A Computational Comparison between Revetec Engine and Conventional Internal Combustion Engines on the Indicated Torque

Authors: Maisara Mohyeldin Gasim, A. K. Amirruddin, A. Shahrani

Abstract:

This paper investigates the effect of replacing crankshaft with cam on the indicated torque during compression and power strokes in internal combustion engines. A Cycloidal cam profile was used in Revetec engine to calculate and compare the torque to a conventional engine, using a computational method. Firstly, the cylinder pressure was calculated using Ferguson equation, and then the torque calculated depending on cylinder pressure values in every crank angle. the results showed that by using Cycloidal cam profile in Revetec engine the torque can increased by 14% compared with conventional engines, which means an increase in engine efficiency.

Keywords: Revetec engine, indicated torque, cam profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
353 Optimal Diesel Engine Technology Analysis Matching the Platform of the Helicopter

Authors: M. Wendeker, K. Siadkowska, P. Magryta, Z. Czyz, K. Skiba

Abstract:

In the paper environmental impact analysis the optimal Diesel engine for a light helicopter was performed. The paper consist an answer to the question of what the optimal Diesel engine for a light helicopter is, taking into consideration its expected performance and design capacity. The use of turbocharged engine with self-ignition and an electronic control system can substantially reduce the negative impact on the environment by decreasing toxic substance emission, fuel consumption and therefore carbon dioxide emission. In order to establish the environmental benefits of the diesel engine technologies, mathematical models were created, providing additional insight on the environmental impact and performance of a classic turboshaft and an advanced diesel engine light helicopter, incorporating technology developments.

Keywords: Diesel engine, helicopter, simulation, environmental impact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
352 Numerical Prediction of NOX in the Exhaust of a Compression Ignition Engine

Authors: A. A. Pawar, R. R. Kulkarni

Abstract:

For numerical prediction of the NOX in the exhaust of a compression ignition engine a model was developed by considering the parameter equivalence ratio. This model was validated by comparing the predicted results of NOX with experimental ones. The ultimate aim of the work was to access the applicability, robustness and performance of the improved NOX model against other NOX models.

Keywords: Biodiesel fueled engine, equivalence ratio, Compression ignition engine, exhausts gas temperature, NOX formation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
351 Experimental Study of Exhaust Muffler System for Direct-Injection Gasoline Engine

Authors: Abdallah F. Abd El-Mohsen, Ahmed A. Abdelsamee, Nouby M. Ghazaly

Abstract:

Engine exhaust noise is considered one of the largest sources of vehicle exterior noise. Further reduction of noise from the vehicle exhaust system will be required, as the vehicle exterior noise regulations become stricter. Therefore, the present study has been carried out to illustrate the role of engine operating parameters and exhaust system construction factors on exhaust noise emitted. The measurements carried out using different exhaust systems, which are mainly used in today’s vehicle. The effect of engine speed on the spectra level of exhaust noise is recorded at engine speeds of 900 rpm, 1800 rpm, 2700, rpm 3600 rpm and 4500 rpm. The results indicate that the increase of engine speed causes a significant increase in the spectrum level of exhaust noise. The increase in the number of the outlet of the expansion chamber also reduces the overall level of exhaust noise.

Keywords: Exhaust system, engine speed, expansion chamber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 621
350 Tuning for a Small Engine with a Supercharger

Authors: Shinji Kajiwara, Tadamasa Fukuoka

Abstract:

The formula project of Kinki University has been involved in the student Formula SAE of Japan (JSAE) since the second year the competition was held. The vehicle developed in the project uses a ZX-6R engine, which has been manufactured by Kawasaki Heavy Industries for the JSAE competition for the eighth time. The limited performance of the concept vehicle was improved through the development of a power train. The supercharger loading, engine dry sump, and engine cooling management of the vehicle were also enhanced. The supercharger loading enabled the vehicle to achieve a maximum output of 59.6 kW (80.6 PS)/9000 rpm and a maximum torque of 70.6 Nm (7.2 kgf m)/8000 rpm. We successfully achieved 90% of the engine’s torque band (4000–10000 rpm) with 50% of the revolutions in regular engine use (2000–12000 rpm). Using a dry sump system, we periodically managed hydraulic pressure during engine operation. A system that controls engine stoppage when hydraulic pressure falls was also constructed. Using the dry sump system at 80 mm reduced the required engine load and the vehicle’s center of gravity. Even when engine motion was suspended by the electromotive force exerted by the water pump, the circulation of cooling water was still possible. These findings enabled us to create a cooling system in accordance with the requirements of the competition.

Keywords: Engine, combustion, cooling system, dry sump system, numerical simulation, power, torque, mechanical supercharger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
349 An Experimental Comparative Study of SI Engine Performance and Emission Characteristics Fuelled with Various Gasoline-Alcohol Blends

Authors: M. Mourad, K. Abdelgawwad

Abstract:

This experimental investigation aimed to determine the influence of using different types of alcohol and gasoline blends such as ethanol - butanol - propanol on the performance of spark ignition engine. The experimental work studied the effect of various fuel blends such as ethanol – butanol/gasoline and propanol/gasoline with two rates of 15% and 20%, at different operating conditions (engine speed and loads), on engine performance emission characteristics. Laboratory experiments are carried out on a four-cylinder spark ignition (SI) engine. In this practical study, all considerations and precautions are taken into account to ensure the quality and accuracy of practical experiments and different measurements. The results show that the performance of the engine improved significantly in the case of ethanol/butanol-gasoline blends. The results also indicated that the engine emitted pollutants such as CO, hydrocarbon (HC) for alcohol fuel blends compared to base gasoline NOx emission increased for different fuel blends either ethanol/butanol-gasoline or propanol-gasoline fuel blend.

Keywords: Gasoline engine performance, emissions, alcohol blends.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830
348 Model Predictive Control of Turbocharged Diesel Engine with Exhaust Gas Recirculation

Authors: U. Yavas, M. Gokasan

Abstract:

Control of diesel engine’s air path has drawn a lot of attention due to its multi input-multi output, closed coupled, non-linear relation. Today, precise control of amount of air to be combusted is a must in order to meet with tight emission limits and performance targets. In this study, passenger car size diesel engine is modeled by AVL Boost RT, and then simulated with standard, industry level PID controllers. Finally, linear model predictive control is designed and simulated. This study shows the importance of modeling and control of diesel engines with flexible algorithm development in computer based systems.

Keywords: Predictive control, engine control, engine modeling, PID control, feedforward compensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
347 Simulation on Fuel Metering Unit Used for TurboShaft Engine Model

Authors: Bin Wang, Hengyu Ji, Zhifeng Ye

Abstract:

Fuel Metering Unit (FMU) in fuel system of an aeroengine sometimes has direct influence on the engine performance, which is neglected for the sake of easy access to mathematical model of the engine in most cases. In order to verify the influence of FMU on an engine model, this paper presents a co-simulation of a stepping motor driven FMU (digital FMU) in a turboshaft aeroengine, using AMESim and MATLAB to obtain the steady and dynamic characteristics of the FMU. For this method, mechanical and hydraulic section of the unit is modeled through AMESim, while the stepping motor is mathematically modeled through MATLAB/Simulink. Combining these two sub-models yields an AMESim/MATLAB co-model of the FMU. A simplified component level model for the turboshaft engine is established and connected with the FMU model. Simulation results on the full model show that the engine model considering FMU characteristics describes the engine more precisely especially in its transition state. An FMU dynamics will cut down the rotation speed of the high pressure shaft and the inlet pressure of the combustor during the step response. The work in this paper reveals the impact of FMU on engine operation characteristics and provides a reference to an engine model for ground tests.

Keywords: Fuel metering unit, stepping motor, AMESim/MATLAB, full digital simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
346 In Search of Excellence – Google vs Baidu

Authors: Linda, Sau-ling LAI

Abstract:

This paper compares the search engine marketing strategies adopted in China and the Western countries through two illustrative cases, namely, Google and Baidu. Marketers in the West use search engine optimization (SEO) to rank their sites higher for queries in Google. Baidu, however, offers paid search placement, or the selling of engine results for particular keywords to the higher bidders. Whereas Google has been providing innovative services ranging from Google Map to Google Blog, Baidu remains focused on search services – the one that it does best. The challenges and opportunities of the Chinese Internet market offered to global entrepreneurs are also discussed in the paper

Keywords: Search Engine, Web analytics, Google, Baidu

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2455
345 Dimethyl Ether as an Ignition Improver for Hydrous Methanol Fuelled Homogeneous Charge Compression Ignition (HCCI) Engine

Authors: M. Venkatesan, N. Shenbaga Vinayaga Moorthi, R. Karthikeyan, A. Manivannan

Abstract:

Homogeneous Charge Compression (HCCI) Ignition technology has been around for a long time, but has recently received renewed attention and enthusiasm. This paper deals with experimental investigations of HCCI engine using hydrous methanol as a primary fuel and Dimethyl Ether (DME) as an ignition improver. A regular diesel engine has been modified to work as HCCI engine for this investigation. The hydrous methanol is inducted and DME is injected into a single cylinder engine. Hence, hydrous methanol is used with 15% water content in HCCI engine and its performance and emission behavior is documented. The auto-ignition of Methanol is enabled by DME. The quantity of DME varies with respect to the load. In this study, the experiments are conducted independently and the effect of the hydrous methanol on the engine operating limit, heat release rate and exhaust emissions at different load conditions are investigated. The investigation also proves that the Hydrous Methanol with DME operation reduces the oxides of Nitrogen and smoke to an extreme low level which is not possible by the direct injection CI engine. Therefore, it is beneficial to use hydrous methanol-DME HCCI mode while using hydrous methanol in internal Combustion Engines.

Keywords: Hydrous Methanol, Dimethyl ether, Performance, Emission and Combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2504
344 Conversion of Mechanical Water Pump to Electric Water Pump for a CI Engine

Authors: K. Arunachalam, P. Mannar Jawahar

Abstract:

Presently, engine cooling pump is driven by toothed belt. Therefore, the pump speed is dependent on engine speed which varies their output. At normal engine operating conditions (Higher RPM and low load, Higher RPM and high load), mechanical water pumps in existing engines are inevitably oversized and so the use of an electric water pump together with state-of-the-art thermal management of the combustion engine has measurable advantages. Demand-driven cooling, particularly in the cold-start phase, saves fuel (approx 3 percent) and leads to a corresponding reduction in emissions. The lack of dependence on a mechanical drive also results in considerable flexibility in component packaging within the engine compartment. This paper describes the testing and comparison of existing mechanical water pump with that of the electric water pump. When the existing mechanical water pump is replaced with the new electric water pump the percentage gain in system efficiency is also discussed.

Keywords: Cooling system, Electric water pump, Mechanical water pump.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5619
343 Experimental Investigations on the Use of Preheated Neat Karanja Oil as Fuel in a Compression Ignition Engine

Authors: Sagar Pramodrao Kadu, Rajendra H. Sarda

Abstract:

The concerns about clean environment and high oil prices driving forces for the research on alternative fuels. The research efforts directed towards improving the performance of C.I engines using vegetable oil as fuel. The paper deals results of performance of a four stroke, single cylinder C.I. engine by preheated neat Karanja oil is done from 30 o C to 100 o C. The performance of the engine was studied for a speed range between 1500 to 4000 rpm, with the engine operated under full load conditions. The performance parameters considered for comparing are brake specific fuel consumption, thermal efficiency, brake power, Nox emission of the engine. The engine offers lower thermal efficiency when it is powered by preheated neat Karanja oil at higher speed. The power developed and Nox emission increase with the increase in the fuel inlet temperature and the specific fuel consumption is higher than diesel fuel operation at all elevated fuel inlet temperature.

Keywords: Alternative fuel, Compression ignition engine, neatKaranja oil, preheating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210
342 Experimental Investigations on the Influence of Properties of Jatropha Biodiesel on Performance, Combustion, and Emission Characteristics of a DI-CI Engine

Authors: P. V. Rao

Abstract:

The aim of the present research work is to investigate the influence of Jatropha biodiesel properties on various characteristics of a direct injection compression ignition engine. The experiments were performed at different engine operating regimes with the injection timing prescribed by the engine manufacturer for diesel fuel. The engine characteristics with Jatropha biodiesel were compared against those obtained using diesel fuel. From the results, it is observed that the biodiesel performance and emissions are lower than that of diesel fuel. However, the NOx emission of Jatropha biodiesel is more than that of diesel fuel. These high NOx emissions are due to the presence of unsaturated fatty acids and the advanced injection caused by the higher bulk modulus (or density) of Jatropha biodiesel Furthermore, the possibility for reduction of NOx emissions without expensive engine modifications (hardware) was investigated. Keeping this in mind, the Jatropha biodiesel was preheated. The experimental results show that the retarded injection timing is necessary when using Jatropha biodiesel in order to reduce NOx emission without worsening other engine characteristics. Results also indicate improved performance with the application of preheated biodiesel. The only penalty for using preheated biodiesel is the increase of smoke (soot).

Keywords: chemical properties, combustion, exhaust emissions, Jatropha biodiesel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3337
341 Hardware Prototyping of an Efficient Encryption Engine

Authors: Muhammad I. Ibrahimy, Mamun B.I. Reaz, Khandaker Asaduzzaman, Sazzad Hussain

Abstract:

An approach to develop the FPGA of a flexible key RSA encryption engine that can be used as a standard device in the secured communication system is presented. The VHDL modeling of this RSA encryption engine has the unique characteristics of supporting multiple key sizes, thus can easily be fit into the systems that require different levels of security. A simple nested loop addition and subtraction have been used in order to implement the RSA operation. This has made the processing time faster and used comparatively smaller amount of space in the FPGA. The hardware design is targeted on Altera STRATIX II device and determined that the flexible key RSA encryption engine can be best suited in the device named EP2S30F484C3. The RSA encryption implementation has made use of 13,779 units of logic elements and achieved a clock frequency of 17.77MHz. It has been verified that this RSA encryption engine can perform 32-bit, 256-bit and 1024-bit encryption operation in less than 41.585us, 531.515us and 790.61us respectively.

Keywords: RSA, FPGA, Communication, Security, VHDL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
340 State Feedback Speed Controller for Turbocharged Diesel Engine and Its Robustness

Authors: Dileep Malkhede, Bhartendu Seth

Abstract:

In this paper, the full state feedback controllers capable of regulating and tracking the speed trajectory are presented. A fourth order nonlinear mean value model of a 448 kW turbocharged diesel engine published earlier is used for the purpose. For designing controllers, the nonlinear model is linearized and represented in state-space form. Full state feedback controllers capable of meeting varying speed demands of drivers are presented. Main focus here is to investigate sensitivity of the controller to the perturbations in the parameters of the original nonlinear model. Suggested controller is shown to be highly insensitive to the parameter variations. This indicates that the controller is likely perform with same accuracy even after significant wear and tear of engine due to its use for years.

Keywords: Diesel engine model, Engine speed control, State feedback controller, Controller robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
339 Development of Motor and Controller for VVA Module of Gasoline Vehicle

Authors: Joon Sung Park, Jun-Hyuk Choi, Jin-Hong Kim, In-Soung Jung

Abstract:

Due to environmental concerns, the recent regulation on automobile fuel economy has been strengthened. The market demand for efficient vehicles is growing and automakers to improve engine fuel efficiency in the industry have been paying a lot of effort. To improve the fuel efficiency, it is necessary to reduce losses or to improve combustion efficiency of the engine. VVA (Variable Valve Actuation) technology enhances the engine's intake air flow, reduce pumping losses and mechanical friction losses. And also, VVA technology is the engine's low speed and high speed operation to implement each of appropriate valve lift. It improves the performance of engine in the entire operating range. This paper presents a design procedure of DC motor and drive for VVA system and shows the validity of the design result by experimental result with prototype.

Keywords: DC motor, Inverter, VVA, Electric Drive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
338 Theoretical Modeling and Experimental Study of Combustion and Performance Characteristics of Biodiesel in Turbocharged Low Heat Rejection D.I Diesel Engine

Authors: B.Rajendra Prasath, P.Tamilporai, Mohd.F.Shabir

Abstract:

An effort has been taken to simulate the combustion and performance characteristics of biodiesel fuel in direct injection (D.I) low heat rejection (LHR) diesel engine. Comprehensive analyses on combustion characteristics such as cylinder pressure, peak cylinder pressure, heat release and performance characteristics such as specific fuel consumption and brake thermal efficiency are carried out. Compression ignition (C.I) engine cycle simulation was developed and modified in to LHR engine for both diesel and biodiesel fuel. On the basis of first law of thermodynamics the properties at each degree crank angle was calculated. Preparation and reaction rate model was used to calculate the instantaneous heat release rate. A gas-wall heat transfer calculations are based on the ANNAND-s combined heat transfer model with instantaneous wall temperature to analyze the effect of coating on heat transfer. The simulated results are validated by conducting the experiments on the test engine under identical operating condition on a turbocharged D.I diesel engine. In this analysis 20% of biodiesel (derived from Jatropha oil) blended with diesel and used in both conventional and LHR engine. The simulated combustion and performance characteristics results are found satisfactory with the experimental value.

Keywords: Biodiesel, Direct injection, Low heat rejection, Turbocharged engine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2775
337 CFD Investigation of the Effects of Re-Entrant Combustion Chamber Geometry in a HSDI Diesel Engine

Authors: Raouf Mobasheri, Zhijun Peng

Abstract:

A CFD simulation has applied to explore the effects of combustion chamber geometry on engine performance and pollutant emissions in a HSDI diesel engine. Three ITs (Injection Timing) at 2.65 CA BTDC, 0.65 CA BTDC and 1.35 CA ATDC, all with 30 crank angle pilot separations has firstly considered to identify the optimum IT for achieving the minimum amount of pollutant emissions. In order to investigate the effect of combustion chamber, thirteen different piston bowl configurations have been designed and analyzed. For all the studied cases, compression ratio, squish bowl volume and the amount of injected fuel were kept constant to assure that variation in the engine performance were only caused by geometric parameters. The results showed that by changing the geometric parameters on piston bowl, the amount of emission pollutants can be decreased while the other performance parameters of engine remain constant.

Keywords: HSDI Diesel Engine, Combustion Chamber Geometry, Pilot Injection, Injection Timing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4186
336 A Theoretical Study of the SI Engine Performance Operating with Different Fuels

Authors: Osama H. Ghazal

Abstract:

The intension in this work is to investigate the effect of different fuels type on engine performance for different engine speed. Brake Power, Brake Torque, and specific fuel consumption were calculated and presented to show the effect of varying fuel type on them for all cases considered. A special program used to carry out the calculations. A simulation model for one-cylinder spark ignition engine has been built and calculated.

The analysis of the results shows that for methanol the power increases about 30% at 1000 rpm and 16% at 6000 rpm comparing with methane. For the same compared fuels the increment in fuel consumption is about 100% at 1000 rpm and 115% at 6000 rpm. The increment in brake thermal efficiency for gasoline is around 11% comparing with methane at 1000 rpm and 7% for methanol comparing with methane at 4000 rpm.

Keywords: Natural gas fuel, spark ignition engines, performance, engine simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3001
335 Effects of used Engine Oil in Reinforced Concrete Beams: The Structural Behaviour

Authors: S.C. Chin, N. Shafiq, M.F. Nuruddin

Abstract:

In the modern construction practices, industrial wastes or by-products are largely used as raw materials in cement and concrete. These impart many benefits to the environment and bringabout an economic impact because the cost of waste disposal is constantly increasing due to strict environmental regulations. It was reported in literature that the leakage of oil onto concrete element in older cement grinding unit resulted in concrete with greater resistance to freezing and thawing. This effect was thought to be similar to adding an air-entraining chemical admixture to concrete. This paper presents an investigation on the load deflection behaviour and crack patterns of reinforced concrete (RC) beams subjected to four point loading. Ten 120x260x1900 mm beams were cast with 100% ordinary Portland cement (OPC) concrete, 20% fly ash (FA) and 20% rice husk ash (RHA) blended cement concrete. 0.15% dosage of admixtures (used engine oil, new engine oil, and superplasticizer) was used throughout the experiment. Results show that OPC and OPC/RHA RC beams containing used engine oil and superplasticizer exhibit higher capacity, 18-26% than their corresponding control mix.

Keywords: by-products, RC beams, superplasticizer, used engine oil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3088
334 Security Engine Management of Router based on Security Policy

Authors: Su Hyung Jo, Ki Young Kim, Sang Ho Lee

Abstract:

Security management has changed from the management of security equipments and useful interface to manager. It analyzes the whole security conditions of network and preserves the network services from attacks. Secure router technology has security functions, such as intrusion detection, IPsec(IP Security) and access control, are applied to legacy router for secure networking. It controls an unauthorized router access and detects an illegal network intrusion. This paper relates to a security engine management of router based on a security policy, which is the definition of security function against a network intrusion. This paper explains the security policy and designs the structure of security engine management framework.

Keywords: Policy server, security engine, security management, security policy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
333 Reduction of Emissions of Nitrogen Oxides from Traffic

Authors: Frantisek Bozek, Jiri Dvorak, Jaromir Mares, Hana Malachova

Abstract:

The value of emission factor was calculated in the older type of Diesel engine operating on an engine testing bench and then compared with the parameters monitored under similar conditions when the EnviroxTM additive was applied. It has been found out that the additive based on CeO2 nanoparticles reduces emission of NOx. The dependencies of NOx emissions on reduced torque, engine power and revolutions have been observed as well.

Keywords: Additive, air, cerium dioxide, emission factor, emissions, nanoparticles, nitrogen oxides

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
332 Gas Flow into Rotary Valve Intake and Exhaust Mechanism in Internal Combustion Engine

Authors: R. Usubamatov, Z. A. Rashid

Abstract:

Simple design of a rotary valve system is capable of controlling intake and exhaust gases, which will eliminate the need of known complex mechanisms. The cost of material and production, maintenance, and noise level of the system can be further reduced. The new mechanism enables the elimination of the overlapping of valves work that reduces gas leakage. This paper examines theoretically the gas flow through the holes of a rotary valve design in a small engine. Preliminary results show that the new gas flow has many positive differences than a conventional poppet-valve system. New dependencies on the gas speed enable the finding of better solutions for the geometry of a rotary valve system that will result in a higher efficiency of an internal-combustion engine of the automotive industry.

Keywords: Gas arrangement, internal combustion engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3344