
  
Abstract—In the paper environmental impact analysis the 

optimal Diesel engine for a light helicopter was performed. The paper 
consist an answer to the question of what the optimal Diesel engine 
for a light helicopter is, taking into consideration its expected 
performance and design capacity. The use of turbocharged engine 
with self-ignition and an electronic control system can substantially 
reduce the negative impact on the environment by decreasing toxic 
substance emission, fuel consumption and therefore carbon dioxide 
emission. In order to establish the environmental benefits of the 
diesel engine technologies, mathematical models were created, 
providing additional insight on the environmental impact and 
performance of a classic turboshaft and an advanced diesel engine 
light helicopter, incorporating technology developments. 
 

Keywords—Diesel engine, helicopter, simulation, environmental 
impact. 

I. INTRODUCTION 
HE turboshaft engine provides more power to the 
helicopter with a lower weight penalty than piston 

engines, with their heavy engine blocks and auxiliary 
components. The improvements in fuels and turboshaft 
engines during the first half of the 20th century were a critical 
factor in helicopter development. The availability of 
lightweight turboshaft engines in the second half of the 20th 
century led to the development of higher-performance 
helicopters. Turboshaft engines stayed the preferred 
powerplant for helicopters. In the middle of the 20th century 
turboshaft engines gradually substituted reciprocating engines 
having fundamental advantages in terms of engine weight, 
complexity, reliability, and fuel commonality. 

However, turbine engines used in helicopters lose efficiency 
rapidly as the altitude increases. Because of the power loss at 
altitude, helicopter operators that often fly in the mountains 
use helicopters with more powerful engines to compensate it. 
In most helicopters turboshaft engine incorporates a simple 
gearbox turning an output shaft at about 6000rpm. The main 
rotor gearbox of the helicopter reduces this speed to about 
350-450rpm, so that a massive construction is needed 
downstream. Turboshaft engines tend to be expensive and are 
characterized by both high fuel consumption and carbon 
dioxide emissions [1], [3]. 

Higher engine price and poor fuel efficiency for small 
turbines are considered essential for the light helicopter class. 
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The soaring oil price, high operating costs and growing public 
concern for environment protection are provided to reduce the 
environmental impact of rotorcraft operation. There is a 
substantial potential for pollutant emission and fuel 
consumption to be reduced by powering light single-engine 
helicopters with advanced reciprocating engines instead of 
conventional small turboshaft engines [5], [6]. 

Ecological reasons have forced the automotive engine 
technology to adapt to reduced emissions. Automotive engine 
emissions have become ecology friendly. Automotive industry 
has developed advanced reciprocating engines, in particular 
diesel engines for automobiles and trucks featuring low fuel 
consumption and gas emission. High compression ratio with 
turbocharging and intercooling, high pressure direct injection 
with a common rail, pilot injection with a digital control unit 
are essential to the technologies implemented to obtain such 
excellent performance improvements. For example, an 
electronically controlled, common-rail fuel system is used in 
the GM 4.5L diesel V8′s engine and enables injecting fuel five 
times per combustion, reducing noise and emissions while 
enhancing fuel economy. 

The next positive repercussion of diesel engine installation 
on global helicopter design, in comparison to the turboshaft 
engine, is the interest in lower output speed, which reduces the 
helicopter MGB (Main Gear Box) reduction ratio, enabling a 
simpler design and better reliability. The weight saving 
resulting from the probable elimination of one reduction stage 
in the gear box in an optimized design will partially 
compensate the exceedance of diesel engine weight. 

II. AIRCRAFT DIESEL ENGINE PERFORMANCE REQUIREMENTS 
The indispensable diesel engine performance for an ideal 

helicopter platform has been established to satisfy the 
requirements. The maximum power as a function of height is 
given below (Fig. 1). 
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effect of the engine on operating costs. The results were then 
compared with the corresponding data for current production 
type turboshaft engine powered light rotorcraft. With an 
increasing focus on reducing fossil fuel use to minimize 
climate change authors performed calculations using not only 
usual diesel fuel, but also bio-diesel fuel. The calculation 
results demonstrated a significant reduction in fuel 
consumption and reduction of the carbon compounds 
emission. 
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