Search results for: Plasma chemistry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 342

Search results for: Plasma chemistry

282 Shadow Imaging Study of Z-Pinch Dynamic Hohlraum

Authors: Chen Faxin, Feng Jinghua, Yang Jianlun, Li Linbo, Zhou Lin

Abstract:

In order to obtaining the dynamic evolution image of Tungsten array for foam padding, and to research the form of interaction between Tungsten plasma and foam column, a shadow imaging system of four-frame ultraviolet probe laser (266nm)has been designed on 1MA pulse power device. The time resolution of the system is 2.5ns, and static space resolution is superior to 70μm. The radial shadowgraphy image reveals the whole process from the melting and expansion of solid wire to the interaction of the precursor plasma and the foam, from the pinch to rebound inflation. The image shows the continuous interaction of Tungsten plasma and foam in a form of “Raining" within a time of about 50ns, the plasma shell structure has not been found in the whole period of pinch. The quantitative analysis indicates the minimum pinching speed of the foam column is 1.0×106cm/s, and maximum pinching speed is 6.0×106cm/s, and the axial stagnation diameter is approx 1mm.

Keywords: Dynamic hohlraum, Shadowgraphy image, Foam evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
281 Experimental Design and Performance Analysis in Plasma Arc Surface Hardening

Authors: M.I.S. Ismail, Z. Taha

Abstract:

In this paper, the experimental design of using the Taguchi method is employed to optimize the processing parameters in the plasma arc surface hardening process. The processing parameters evaluated are arc current, scanning velocity and carbon content of steel. In addition, other significant effects such as the relation between processing parameters are also investigated. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to investigate the effects of these processing parameters. Through this study, not only the hardened depth increased and surface roughness improved, but also the parameters that significantly affect the hardening performance are identified. Experimental results are provided to verify the effectiveness of this approach.

Keywords: Plasma arc, hardened depth, surface roughness, Taguchi method, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2307
280 Magnetoplasmadynamic Thruster Design and Characteristics

Authors: A. Almuwallad

Abstract:

The magnetoplasmadynamic (MPD) thruster is classified as an electric propulsion system and consists of two metal electrodes separated by an insulator. A high-current electric arc is driven between electrodes to ionize the injected propellant between electrodes for plasma creation. At the same time, a magnetic field is generated by the electric current returning to the power supply. This magnetic field interacts with the electric current flowing through the plasma to produce thrust. This paper compares the performance of MPD thrusters when using three different propellants (methane, nitrogen, and propane) at varying input mass flow rates. Methane provided the best performance, and nitrogen performed better than propane. In addition, when using the same parameters, the thruster with a divergent nozzle performed better than the thruster with a constant nozzle.

Keywords: Magnetoplasmadynamic thruster, electric propulsion, propellant, plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162
279 Characterization of Electrohydrodynamic Force on Dielectric-Barrier-Discharge Plasma Actuator Using Fluid Simulation

Authors: Hiroyuki Nishida, Taku Nonomura, Takashi Abe

Abstract:

Wall-surface jet induced by the dielectric barrier discharge (DBD) has been proposed as an actuator for active flow control in aerodynamic applications. Discharge plasma evolution of the DBD plasma actuator was simulated based on a simple fluid model, in which the electron, one type of positive ion and negative ion were taken into account. Two-dimensional simulation was conducted, and the results are in agreement with the insights obtained from experimental studies. The simulation results indicate that the discharge mode changes depending on applied voltage slope; when the applied voltage is positive-going with high applied voltage slope, the corona-type discharge mode turns into the streamer-type discharge mode and the threshold voltage slope is around 300 kV/ms in this simulation. The characteristics of the electrohydrodynamic (EHD) force, which is the source of the wall-surface jet, also change depending on the discharge mode; the tentative peak value of the EHD force during the positive-going voltage phase is saturated by the periodical formation of the streamer-type discharge.

Keywords: Dielectric barrier discharge, Plasma actuator, Fluid simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410
278 Synthesis of Copper Sulfide Nanoparticles by Pulsed Plasma in Liquid Method

Authors: Zhypargul Abdullaeva, Emil Omurzak, Tsutomu Mashimo

Abstract:

Copper sulfide nanoparticles (CuS) were successfully synthesized by the pulsed plasma in liquid method, using two copper rod electrodes submerged in molten sulfur. Low electrical energy and no high temperature were applied for synthesis. Obtained CuS nanoparticles were then analyzed by means of X-ray diffraction, Low and High Resolution Transmission Electron Microscopy, Electron Diffraction, X-ray Photoelectron, Raman Spectroscopies and Field Emission Scanning Electron Microscopy. XRD analysis revealed peaks for CuS with hexagonal phase composition. TEM and HRTEM studies showed that sizes of CuS nanoparticles ranged between 10-60 nm, with the average size of about 20 nm. Copper sulfide nanoparticles have short nanorod-like structure. Raman spectroscopy found peak for CuS at 474.2cm-1of Raman region.

Keywords: Copper sulfide, Nanoparticles, Pulsed plasma, Synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4339
277 Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition

Authors: D. Geringswald, B. Hintze

Abstract:

The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H2:N2). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios.

Keywords: ALD, high aspect ratio, PE-MOCVD, TiN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
276 Dust Acoustic Shock Waves in Coupled Dusty Plasmas with Kappa-Distributed Ions

Authors: Hamid Reza Pakzad

Abstract:

We have considered an unmagnetized dusty plasma system consisting of ions obeying superthermal distribution and strongly coupled negatively charged dust. We have used reductive perturbation method and derived the Kordeweg-de Vries-Burgers (KdV-Burgers) equation. The behavior of the shock waves in the plasma has been investigated.

Keywords: Shock, Soliton, Coupling, Superthermal ions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862
275 Numerical Analysis and Sensitivity Study of Non-Premixed Combustion Using LES

Authors: J. Dumrongsak, A. M. Savill

Abstract:

Non-premixed turbulent combustion Computational Fluid Dynamics (CFD) has been carried out in a simplified methanefuelled coaxial jet combustor employing Large Eddy Simulation (LES). The objective of this study is to evaluate the performance of LES in modelling non-premixed combustion using a commercial software, FLUENT, and investigate the effects of the grid density and chemistry models employed on the accuracy of the simulation results. A comparison has also been made between LES and Reynolds Averaged Navier-Stokes (RANS) predictions. For LES grid sensitivity test, 2.3 and 6.2 million cell grids are employed with the equilibrium model. The chemistry model sensitivity analysis is achieved by comparing the simulation results from the equilibrium chemistry and steady flamelet models. The predictions of the mixture fraction, axial velocity, species mass fraction and temperature by LES are in good agreement with the experimental data. The LES results are similar for the two chemistry models but influenced considerably by the grid resolution in the inner flame and near-wall regions.

Keywords: Coaxial jet, reacting LES, non-premixed combustion, turbulent flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2805
274 A Virtual Reality Laboratory for Distance Education in Chemistry

Authors: J. Georgiou, K. Dimitropoulos, A. Manitsaris

Abstract:

Simulations play a major role in education not only because they provide realistic models with which students can interact to acquire real world experiences, but also because they constitute safe environments in which students can repeat processes without any risk in order to perceive easier concepts and theories. Virtual reality is widely recognized as a significant technological advance that can facilitate learning process through the development of highly realistic 3D simulations supporting immersive and interactive features. The objective of this paper is to analyze the influence of virtual reality-s use in chemistry instruction as well as to present an integrated web-based learning environment for the simulation of chemical experiments. The proposed application constitutes a cost-effective solution for both schools and universities without appropriate infrastructure and a valuable tool for distance learning and life-long education in chemistry. Its educational objectives are the familiarization of students with the equipment of a real chemical laboratory and the execution of virtual volumetric analysis experiments with the active participation of students.

Keywords: Chemistry, simulations, experiments, virtual reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2755
273 Effect of Cold Plasma-Surface Modification on Surface Wettability and Initial Cell Attachment

Authors: Masao Yoshinari, Jianhua Wei, Kenichi Matsuzaka, Takashi Inoue

Abstract:

A thin coating of hexamethyldisiloxane and subsequent O2-plasma treatment was performed on mirror-polished titanium in order to regulate the wide range of wettability including 106 and almost 0 degrees of contact angles. The adsorption behavior of fibronectin and albumin in both individual and competitive mode, and initial attachment of fibroblasts and osteoblasts were investigated. Individually, fibronectin adsorption showed a biphasic inclination, whereas albumin showed greater adsorption to hydrophobic surfaces. In competitive mode, in solution containing both fibronectin and albumin, fibronectin showed greater adsorption on hydrophilic surfaces, whereas Alb predominantly adsorbed on hydrophobic surfaces. Initial attachment of both cells increased with increase in surface wettability, in particular, on super-hydrophilic surface, which correlated well with fibronectin adsorption in competitive mode. These results suggest that a cold plasma-surface modification enabled to regulate the surface wettability, and fibronectin adsorption may be responsible for increasing cell adhesion on hydrophilic surfaces in a body fluid

Keywords: cold plasma-surface modification, wettability, protein adsorption, initial cell attachment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2427
272 Quantum Ion Acoustic Solitary and Shock Waves in Dissipative Warm Plasma with Fermi Electron and Positron

Authors: Hamid Reza Pakzad

Abstract:

Ion-acoustic solitary and shock waves in dense quantum plasmas whose constituents are electrons, positrons, and positive ions are investigated. We assume that ion velocity is weakly relativistic and also the effects of kinematic viscosity among the plasma constituents is considered. By using the reductive perturbation method, the Korteweg–deVries–Burger (KdV-B) equation is derived.

Keywords: Ion acoustic shock waves; Quantum plasmas

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
271 Influence of Argon Gas Concentration in N2-Ar Plasma for the Nitridation of Si in Abnormal Glow Discharge

Authors: K. Abbas, R. Ahmad, I. A. Khan, S. Saleem, U. Ikhlaq

Abstract:

Nitriding of p-type Si samples by pulsed DC glow discharge is carried out for different Ar concentrations (30% to 90%) in nitrogen-argon plasma whereas the other parameters like pressure (2 mbar), treatment time (4 hr) and power (175 W) are kept constant. The phase identification, crystal structure, crystallinity, chemical composition, surface morphology and topography of the nitrided layer are studied using X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) respectively. The XRD patterns reveal the development of different diffraction planes of Si3N4 confirming the formation of polycrystalline layer. FTIR spectrum confirms the formation of bond between Si and N. Results reveal that addition of Ar into N2 plasma plays an important role to enhance the production of active species which facilitate the nitrogen diffusion.

Keywords: Crystallinity, glow discharge, nitriding, sputtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
270 Microwave Plasma Dry Reforming of Methane at High CO2/CH4 Feed Ratio

Authors: Nabil Majd Alawi, Gia Hung Pham, Ahmed Barifcani

Abstract:

Dry reforming of methane that converts two greenhouses gases (CH4 and CO2) to synthesis gas (a mixture of H2 and CO) was studied in a commercial bench scale microwave (MW) plasma reactor system at atmospheric pressure. The CO2, CH4 and N2 conversions; H2, CO selectivities and yields, and syngas ratio (H2/CO) were investigated in a wide range of total feed flow rate (0.45 – 2.1 L/min), MW power (700 – 1200 watt) and CO2/CH4 molar ratio (2 – 5). At the feed flow rates of CH4, CO2 and N2 of 0.2, 0.4 and 1.5 L/min respectively, and the MWs input power of 700 W, the highest conversions of CH4 and CO2, selectivity and yield of H2, CO and H2/CO ratio of 79.35%, 44.82%, 50.12, 58.42, 39.77%, 32.89%, and 0.86, respectively, were achieved. The results of this work show that the product ratio increases slightly with the increasing total feed flow rate, but it decreases significantly with the increasing MW power and feeds CO2/CH4 ratio.

Keywords: Atmospheric pressure, methane dry reforming, microwave plasma, synthesis gas production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 904
269 Retarding Potential Analyzer Design and Result Analysis for Ion Energy Distribution Measurement of the Thruster Plume in the Laboratory

Authors: Ma Ya-li, Tang Fu-jun, Xue Yu-xiong, Chen Yi-feng, Gao Xin, Wang Yi, Tian Kai, Yan Ze-dong

Abstract:

Plasma plume will be produced and arrive at spacecraft when the electric thruster operates on orbit. It-s important to characterize the thruster plasma parameters because the plume has significant effects or hazards on spacecraft sub-systems and parts. Through the ground test data of the desired parameters, the major characteristics of the thruster plume will be achieved. Also it is very important for optimizing design of Ion thruster. Retarding Potential Analyzer (RPA) is an effective instrument for plasma ion energy per unit charge distribution measurement. Special RPA should be designed according to certain plume plasma parameters range and feature. In this paper, major principles usable for good RPA design are discussed carefully. Conform to these principles, a four-grid planar electrostatic energy analyzer RPA was designed to avoid false data, and details were discussed including construction, materials, aperture diameter and so on. At the same time, it was designed more suitable for credible and long-duration measurements in the laboratory. In the end, RPA measurement results in the laboratory were given and discussed.

Keywords: Thruster plume ion energy distributions, retarding potential analyzer, ground test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3934
268 Collective Oscillations in a Magnetized Plasma Subjected to a Radiation Field

Authors: Daniel Santos, Bruno Ribeiro, Marco Amato, Antonio Fonseca

Abstract:

In this paper we discuss the behaviour of the longitudinal modes of a magnetized non collisional plasma subjected to an external electromagnetic field. We apply a semiclassical formalism, with the electrons being studied in a quantum mechanical viewpoint whereas the electromagnetic field in the classical context. We calculate the dielectric function in order to obtains the modes and found that, unlike the Bernstein modes, the presence of radiation induces oscillations around the cyclotron harmonics, which are smoothed as the energy stored in the radiation field becomes small compared to the thermal energy of the electrons. We analyze the influence of the number of photon involved in the electronic transitions between the Landau levels and how the parameters such as the external fields strength, plasma density and temperature affect the dispersion relation

Keywords: Collective oscillations, External fields, Dispersion relation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
267 Source Optimisation of Laser-Plasma Bremmstrahlung for Applications in Engineering Imaging

Authors: R.J. Clarke, D. Neely, S. Blake, D.C. Carroll, J.S. Green, R. Heathcote, M. Notley

Abstract:

High Power Lasers produce an intense burst of Bremmstrahlung radiation which has potential applications in broadband x-ray radiography. Since the radiation produced is through the interaction of accelerated electrons with the remaining laser target, these bursts are extremely short – in the region of a few ps. As a result, the laser-produced x-rays are capable of imaging complex dynamic objects with zero motion blur.

Keywords: Bremmstrahlung, Imaging, Laser, Plasma, Radiography, x-ray.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
266 Artificial Neural Networks and Multi-Class Support Vector Machines for Classifying Magnetic Measurements in Tokamak Reactors

Authors: A. Greco, N. Mammone, F.C. Morabito, M.Versaci

Abstract:

This paper is mainly concerned with the application of a novel technique of data interpretation for classifying measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artificial Neural Networks and Multi-Class Support Vector Machines have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compared with earlier methods.

Keywords: Tokamak, Classification, Artificial Neural Network, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1236
265 Rarefactive and Compressive Solitons in Warm Dusty Plasma with Electrons and Nonthermal Ions

Authors: Hamid Reza Pakzad

Abstract:

Dust acoustic solitary waves are studied in warm dusty plasma containing negatively charged dusts, nonthermal ions and Boltzmann distributed electrons. Sagdeev pseudopotential method is used in order to investigate solitary wave solutions in the plasmas. The existence of compressive and rarefractive solitons is studied.

Keywords: Nonthermal, Soliton, Dust, Sagdeev potential

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
264 Remedying Students’ Misconceptions in Learning of Chemical Bonding and Spontaneity through Intervention Discussion Learning Model (IDLM)

Authors: Ihuarulam Ambrose Ikenna

Abstract:

In the past few decades, the field of chemistry education has grown tremendously and researches indicated that after traditional chemistry instruction students often lacked deep conceptual understanding and failed to integrate their ideas into coherent conceptual framework. For several concepts in chemistry, students at all levels have demonstrated difficulty in changing their initial perceptions. Their perceptions are most often wrong and don't agree with correct scientific concepts. This study explored the effectiveness of intervention discussion sections for a college general chemistry course designed to apply research on students preconceptions, knowledge integration and student explanation. Three interventions discussions lasting three hours on bond energy and spontaneity were done tested and intervention (treatment) students’ performances were compared with that of control group which did not use the experimental pedagogy. Results indicated that this instruction which was capable of identifying students' misconceptions, initial conceptions and integrating those ideas into class discussion led to enhanced conceptual understanding and better achievement for the experimental group.

Keywords: Intervention Discussion Learning Model, Learning, Remedying, Students’ misconceptions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2495
263 Rarefactive and Compressive Solitary Waves in Warm Plasma with Positrons and Nonthermal Electrons

Authors: Hamid Reza Pakzad

Abstract:

Ion-acoustic solitary waves in a plasma with nonthermal electrons, thermal positrons and warm ions are investigated using Sagdeev-s pseudopotential technique. We study the effects of non-thermal electrons and ion temperature on solitons and show both negative and positive potential waves are possible.

Keywords: Ion acoustic waves, Solitons, Nonlinear phenomena, Sagdeev potential

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1082
262 Spark Plasma Sintering of Aluminum-Based Composites Reinforced by Nanocrystalline Carbon-Coated Intermetallic Particles

Authors: B. Z. Manuel, H. D. Esmeralda, H. S. Felipe, D. R. Héctor, D. de la Torre Sebastián, R. L. Diego

Abstract:

Aluminum Matrix Composites reinforced with nanocrystalline Ni3Al carbon-coated intermetallic particles, were synthesized by powder metallurgy. Powder mixture of aluminum with 0.5-volume fraction of reinforcement particles was compacted by spark plasma sintering (SPS) technique and the compared with conventional sintering process. The better results for SPS technique were obtained in 520ºC-5kN-3min.The hardness (70.5±8 HV) and the elastic modulus (95 GPa) were evaluated in function of sintering conditions for SPS technique; it was found that the incorporation of these kind of reinforcement particles in aluminum matrix improve its mechanical properties. The densities were about 94% and 97% of the theoretical density. The carbon coating avoided the interfacial reaction between matrix-particle at high temperature (520°C) without show composition change either intermetallic dissolution.

Keywords: Aluminum matrix composites, Intermetallics Spark plasma sintering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303
261 The Effect of Buckwheat (Fagopyrum esculentum Moench) Groats Addition to the Lard Diet on Antioxidant Parameters of Plasma and Selected Tissues in Wistar Rats

Authors: Chlopicka Joanna, Barton Henryk, Kryczyk Jadwiga, Francik Renata

Abstract:

Recent studies demonstrated that high-fat diet increases oxidative stress in plasma and in a variety of tissues. Many researchers have been looking for natural products, which can reverse the effect of high fat diet. Recently, buckwheat is becoming common ingredient in functional food because of it properties. In study on buckwheat, it is known that, this plant plays roles as anti-oxidative, anti-inflammatory and anti-hypertensive. Nevertheless still little is known about buckwheat groats. The aim of this study was to investigate the effects of addition of buckwheat groats to the fat diet (30% lard), on some antioxidant and oxidant stress parameters in plasma and selected tissues in Wistar rats. The experiment was carried out with three months old male Wistar rats ca. 250g of body weight fed for 5 weeks with either a high-fat (30% of lard) diet or control diet, with or without addition of buckwheat groats. In plasma biochemistry and the activities of the antioxidant enzymes were measured selected tissues: glutathione peroxidase (GPX), catalase (CAT) and the levels of total and reduced glutathione (GSH), free thiol groups (pSH), antioxidant potential of plasma (FRAP) and oxidant stress indices - proteins carbonyl groups (CO) and malonyldialdehyde concentration (MDA). Activity of catalase (CAT) in plasma of rats was significantly increased in buckwheat groats groups and activity of GPx3 in plasma of rats was decreased in buckwheat groups as compared to control group. The reduced glutathione (GSH) in plasma of rats was significantly increased and protein CO was significantly decreased in buckwheat groups as compared to controls. The lowered concentration of GSH was found in serum of rats fed buckwheat groats addition but it accompanied in 7-fold increase in reduced-to-oxidized glutatione ratio, significant increase in HDL and decrease in nonHDL concentration. Conclusions: Buckwheat groats indicate a beneficial effect in inhibiting protein and lipid peroxidation in rats and improved lipid profile. These results suggest that buckwheat groats exert a significant antioxidant potential and may be used as normal food constituent to ameliorate the oxidant-induced damage in organism. 

Keywords: Antioxidant, buckwheat, high-fat diet, rats.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436
260 Supplementation of Saccharomyces Cerevisiae or Lactobacillus Acidophilus in Goats Diets

Authors: Pramote Paengkoum, Y. Han , S. Traiyakun, J. Khotsakdee, S. Paengkoum

Abstract:

This experiment was performed with the purpose of investigating effect of additional blend of probiotics Saccharomyces cerevisiae and Lactobacillus acidophilus on plasma fatty acid profiles particularly conjugated linoleic acid (CLA) in growing goats fed corn silage, and selected the optimal levels of the probiotics for further study. Twenty-four growing crossbred (Thai native x Anglo-Nubian) goats that weighed (14.2 ± 2.3) kg, aged about 6 months, were purchased and allocated to 4 treatments according to Randomized Complete Block Design (RCBD) with 6 goats in each treatment. The blocks were made by weight into heavy, medium, and light goats and each of the treatments contained two goats from each of the blocks. In the mean time, ruminal average pH unaffected, but the NH3-N and also plasma urea nitrogen (p<0.05), total volatile fatty acid (p>0.05) were raised, but propionic proportion (p<0.05) and butyric proportion (p>0.05) were reduced in concurrent with raise of acetic proportion and resultantly C2:C3 ratio (p>0.05). On plasma fatty acid profiles, total saturated fatty acids (p>0.05) was increased, and contrasted with decrease of C15:0 (p<0.01), C16:0 (p>0.05), and C18-C22 polyunsaturated fatty acids (p<0.05 or p<0.01). In addition, the experiment proved that the supplemented probiotics was in force for heightening CLA (p<0.01); for raising desirable fatty acids (p<0.05); for reducing ratio of PUFA: SFA (p>0.05) and for raising ratio of n6:n3 (p<0.05).

Keywords: Probiotic, conjugated linoleic acid, plasma fattyacid, goats

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
259 Vincristine-Dextran Complex Loaded Solid Lipid Nanoparticles for Drug Delivery to the Brain

Authors: E. Aboutaleb, R. Dinarvand

Abstract:

The purpose of this work was to inspect the potential of vincristine-dextran complex loaded solid lipid nanoparticles for drug delivery to the brain. The nanoparticles were stained with a fluorescence dye and their plasma pharmacokinetic and brain concentrations were investigated following injection to rats. The result revealed a significant improvement in the plasma concentration profile of the SLN injected animals as well as a sharp increased concentration in the brains.

Keywords: Brain, Coumarin-6, Nanoparticles, SLN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2313
258 Synthesis and Characterization of Plasma Polymerized Thin Films Deposited from Benzene and Hexamethyldisiloxane using (PECVD) Method

Authors: Hisham M. Abourayana, Nuri A. Zreiba, Abdulkader M. Elamin

Abstract:

Polymer-like organic thin films were deposited on both aluminum alloy type 6061 and glass substrates at room temperature by Plasma Enhanced Chemical Vapor Deposition (PECVD) methodusing benzene and hexamethyldisiloxane (HMDSO) as precursor materials. The surface and physical properties of plasma-polymerized organic thin films were investigated at different r.f. powers. The effects of benzene/argon ratio on the properties of plasma polymerized benzene films were also investigated. It is found that using benzene alone results in a non-coherent and non-adherent powdery deposited material. The chemical structure and surface properties of the asgrown plasma polymerized thin films were analyzed on glass substrates with FTIR and contact angle measurements. FTIR spectra of benzene deposited film indicated that the benzene rings are preserved when increasing benzene ratio and/or decreasing r.f. powers. FTIR spectra of HMDSO deposited films indicated an increase of the hydrogen concentration and a decrease of the oxygen concentration with the increase of r.f. power. The contact angle (θ) of the films prepared from benzene was found to increase by about 43% as benzene ratio increases from 10% to 20%. θ was then found to decrease to the original value (51°) when the benzene ratio increases to 100%. The contact angle, θ, for both benzene and HMDSO deposited films were found to increase with r.f. power. This signifies that the plasma polymerized organic films have substantially low surface energy as the r.f power increases. The corrosion resistance of aluminum alloy substrate both bare and covered with plasma polymerized thin films was carried out by potentiodynamic polarization measurements in standard 3.5 wt. % NaCl solution at room temperature. The results indicate that the benzene and HMDSO deposited films are suitable for protection of the aluminum substrate against corrosion. The changes in the processing parameters seem to have a strong influence on the film protective ability. Surface roughness of films deposited on aluminum alloy substrate was investigated using scanning electron microscopy (SEM). The SEM images indicate that the surface roughness of benzene deposited films increase with decreasing the benzene ratio. SEM images of benzene and HMDSO deposited films indicate that the surface roughness decreases with increasing r.f. power. Studying the above parameters indicate that the films produced are suitable for specific practical applications.

Keywords: Plasma polymerization, potentiodynamic test, Contact angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2821
257 Growth of Droplet in Radiation-Induced Plasma of Own Steam

Authors: Pavlo Selyshchev

Abstract:

The theoretical approach is developed to describe the change of drops in the atmosphere of own steam and buffer gas under irradiation. It is shown that the irradiation influences on size of stable droplet and on the conditions under which the droplet exists. Under irradiation the change of drop becomes more complex: the not monotone and periodical change of size of drop becomes possible. All possible solutions are represented by means of phase portrait. It is found all qualitatively different phase portraits as function of critical parameters: rate generation of clusters and substance density.

Keywords: Irradiation, steam, plasma, cluster formation, liquid droplets, evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
256 Characteristics of Ozone Generated from Dielectric Barrier Discharge Plasma Actuators

Authors: R. Osada, S. Ogata, T. Segawa

Abstract:

Dielectric barrier discharge plasma actuators (DBD-PAs) have been developed for active flow control devices. However, it is necessary to reduce ozone produced by DBD toward practical applications using DBD-PAs. In this study, variations of ozone concentration, flow velocity, power consumption were investigated by changing exposed electrodes of DBD-PAs. Two exposed electrode prototypes were prepared: span-type with exposed electrode width of 0.1 mm, and normal-type with width of 5 mm. It was found that span-type shows lower power consumption and higher flow velocity than that of normal-type at Vp-p = 4.0-6.0 kV. Ozone concentration of span-type higher than normal-type at Vp-p = 4.0-8.0 kV. In addition, it was confirmed that catalyst located in downstream from the exposed electrode can reduce ozone concentration between 18 and 42% without affecting the induced flow.

Keywords: Dielectric barrier discharge plasma actuators, ozone diffusion, PIV measurement, power consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1136
255 Synthesis and Reactions of Sulphone Hydrazides

Authors: Mohamed E. Khalifa

Abstract:

The chemistry of sulphone hydrazide has gained increase interest in both synthetic organic chemistry and biological fields and has considerable value. The therapeutic importance of these compounds is the attractive force to continue research in such a point. The present review covers the literature up to date for the synthesis, reactions and applications of such compounds.

Keywords: Sulphone hydrazide compounds, Reactions, Synthesis, Biological activities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4143
254 Dye-Sensitized Solar Cell by Plasma Spray

Authors: C.C. Chen, C.C. Wei, S.H. Chen, S.J. Hsieh, W.G. Diau

Abstract:

This paper aims to scale up Dye-sensitized Solar Cell (DSSC) production using a commonly available industrial material – stainless steel - and industrial plasma equipment. A working DSSC electrode formed by (1) coating titania nanotube (TiO2 NT) film on 304 stainless steel substrate using a plasma spray technique; then, (2) filling the nano-pores of the TiO2 NT film using a TiF4 sol-gel method. A DSSC device consists of an anode absorbed photosensitive dye (N3), a transparent conductive cathode with platinum (Pt) nano-catalytic particles adhered to its surface, and an electrolytic solution sealed between the anode and the transparent conductive cathode. The photo-current conversion efficiency of the DSSC sample was tested under an AM 1.5 Solar Simulator. The sample has a short current (Isc) of 0.83 mA cm-2, open voltage (Voc) of 0.81V, filling factor (FF) of 0.52, and conversion efficiency (η) of 2.18% on a 0.16 cm2 DSSC work-piece.

Keywords: DSSC, Spray, stainless steel, TiO2 NT, efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
253 Investigation of Monochromatization Light Effect at Molecular/Atomic Level in Electronegative-Electropositive Gas Mixtures Plasma

Authors: L.C. Ciobotaru

Abstract:

In electronegative-electropositive gas mixtures plasma, at a total pressure varying in the range of ten to hundred Torr, the appearance of a quasi-mochromatization effect of the emitted radiation was reported. This radiation could be the result of the generating mechanisms at molecular level, which is the case of the excimer radiation but also at atomic level. Thus, in the last case, in (Ne+1%Ar/Xe+H2) gas mixtures plasma in a dielectric barrier discharge, this effect, called M-effect, consists in the reduction of the discharge emission spectrum practice at one single, strong spectral line with λ = 585.3 nm. The present paper is concerned with the characteristics comparative investigation of the principal reaction mechanisms involved in the quasi-monochromatization effect existence in the case of the excimer radiation, respectively of the Meffect. Also, the paper points out the role of the metastable electronegative atoms in the appearance of the monochromatization – effect at atomic level.

Keywords: Colombian forces, Direct Harpoon reaction, Monochromatization – effect, Resonant polar three-body reaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363