Characterization of Electrohydrodynamic Force on Dielectric-Barrier-Discharge Plasma Actuator Using Fluid Simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33132
Characterization of Electrohydrodynamic Force on Dielectric-Barrier-Discharge Plasma Actuator Using Fluid Simulation

Authors: Hiroyuki Nishida, Taku Nonomura, Takashi Abe

Abstract:

Wall-surface jet induced by the dielectric barrier discharge (DBD) has been proposed as an actuator for active flow control in aerodynamic applications. Discharge plasma evolution of the DBD plasma actuator was simulated based on a simple fluid model, in which the electron, one type of positive ion and negative ion were taken into account. Two-dimensional simulation was conducted, and the results are in agreement with the insights obtained from experimental studies. The simulation results indicate that the discharge mode changes depending on applied voltage slope; when the applied voltage is positive-going with high applied voltage slope, the corona-type discharge mode turns into the streamer-type discharge mode and the threshold voltage slope is around 300 kV/ms in this simulation. The characteristics of the electrohydrodynamic (EHD) force, which is the source of the wall-surface jet, also change depending on the discharge mode; the tentative peak value of the EHD force during the positive-going voltage phase is saturated by the periodical formation of the streamer-type discharge.

Keywords: Dielectric barrier discharge, Plasma actuator, Fluid simulation.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1072521

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2476

References:


[1] J. R. Roth , D. M. Sherman, and S. P. Wilkinson, "Electrohydrodynamic Flow Control with a Glow-Discharge Surface Plasma",AIAA J., vol. 38, 2000, pp. 1166-1172.
[2] M. L. Post and T. C. Corke, "Separation Control on High Angle of Attack Airfoil using Plasma Actuator",AIAA J., vol. 42, 2004, pp. 2177-2184.
[3] M. L. Post and T. C. Corke, "Separation Control using Plasma Actuators: Dynamic Stall Vortex Control on Oscillating Airfoil",AIAA J., vol. 44, 2006, p. 3125-3135.
[4] T. Matsuno, K. Ota, T. Kanatani and H. Kawazoe, "Development of Trielectrode Plasma Actuator and Its Application to Delta Wing Vortex Control," 29th AIAA Applied Aerodynamics Conf., Honolulu, 2011, AIAA 2011-3514.
[5] C. L. Enloe, R. D. McLaughlin, G. I. Font and J. W. Boughn, "Parameterization of Temporal Structure in the Single-Dielectric-Barrier Aerodynamic Plasma Actuator," AIAA J., Vol. 44, 2006, pp. 1127-1136.
[6] C. O. Porter, J. W. Baughn, T. E. McLaughlin, C. L. Enloe and G. I. Font, "Plasma Actuator Force Measurement," AIAA J., Vol. 45, 2007, pp. 1562-1570.
[7] C. L. Enloe, G. I. Font, T. E. McLaughlin and D. M. Orlov, "Surface Potential and Longitudinal Electric Field Measurements in the Aerodynamics Plasma Actuator," AIAA J., Vol. 46, 2008, pp. 2730-2740.
[8] C. Porter, A. Abbas, K. Cohen, T. McLaughlin and C. L. Enloe, "Spatially Distributed Forcing and Jet Vectoring with a Plasma Actuator," AIAA J., Vol. 47, 2009, pp. 1368-1378.
[9] J. P. Boeuf and L. C. Pitchford, "Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge", J. of Applied Physics, Vol. 97, 2005, pp. 103307-1 - 103307-10.
[10] J. P. Boeuf, T. Lagmich, Th. Unfer, Th. Callegari and L. C. Pitchford, "Electrohydrodynamic Force in Dielectric Barrier Discharge Plasma Actuators", J. of Physics D: Applied Physics, vol. 40, 2007, pp. 652-662.
[11] Y. Lagmich, Th. Callegari, L. C. Pitchford and J. P. Boeuf, "Model Description of Surface Dielectric Barrier Discharges for Flow Control", J. of Physics D: Applied Physics, vol. 41, 2008, pp. 095205-1 - 095205-10.
[12] A. V. Likhanskii, V. Semak, D. Opaits, M. Shneider, R. Miles and S. Macheret, "The role of the photoionization in the numerical modeling of the DBD plasma actuator", 47th AIAA Aerospace Science Meeting, 2009, AIAA 2009-841.
[13] N. Kimura, S. Sato, T. Abe and Y. Takizawa, "A Parametric Experimental Study for Momentum Transfer by Plasma Actuator", 45th AIAA Aerospace Science Meeting, Reno, 2007, AIAA 2007-187.
[14] Y. Takizawa, A. Matsuda, K. Kikuchi, T. Abe and A. Sasoh, "Optical Observation of Discharge Plasma Structure in DBD Plasma Actuator", 38th AIAA Plasmadynamics and Lasers Conf., Miami, 2007, AIAA 2007-4376.
[15] T. Abe, Y. Takizawa, S. Sato and N. Kimura, "Experimental Study for Momentum Transfer in a Dielectric Barrier Discharge Plasma Actuator", AIAA J., Vol. 46, 2008, pp. 2248-2256.
[16] T. Abe and M. Takagaki, "Momentum Coupling and Flow Induction in a DBD Plasma Actuator", 40th AIAA Plasmadynamics and Lasers Conf., San Antonio, 2009, AIAA 2009-4068.
[17] C. L. Enloe, M. G. McHarg, G. I. Font and T. E. McLaughlin, "Plasma-induced force and self-induced drag in the dielectric barrier discharge aerodynamic plasma actuator", 47th AIAA Aerospace Science Meeting, Reno, 2009, AIAA 2009-1622.
[18] G. I. Font, C. L. Enloe and T. McLaughlin, "Effects of Volumetric Momentum Addition on the Total Force production of a Plasma Actuator", 39th AIAA Fluid Dynamics Conf., San Antonio, 2009, AIAA 2009-4285.
[19] C. L. Enloe, G. I. Font, J. Newcomb, A. Teague, A. Vasso and T. McLaughlin, "Effects of Oxygen Content on the Behavior of the Dielectric Barrier Discharge Aerodynamic Plasma Actuator", 48th Aerospace Science Meeting, Orland, AIAA 2010-545.
[20] D. M. Orlov, G. I. Font and D. Edelstein, "Characterization of Discharge modes of Plasma Actuators", AIAA J., vol. 46, 2008, pp. 314-3148.
[21] J. Poggie, "High-Order Numerical Methods for Electrical Discharge modeling", 41st AIAA Plasmadynamics and Lasers Conf., Chicago, 2010, AIAA 2010-4632.
[22] H. Nishida and T. Abe, "Numerical analysis of plasma evolution on dielectric barrier discharge plasma actuator," J. of Applied Plasma Physics, vol. 110, 2011, pp. 013302-1 - 013302-9.
[23] H. Nishida and T. Abe, "Validation Study of Numerical Simulation of Discharge Plasma on DBD Plasma Actuator," 42nd AIAA Plasmadynamics and Lasers Conf., Honolulu, 2011, AIAA 2011-3913.
[24] See http://www.siglo-kinema.com/bolsig.htm for more information about the Bolsig database.