Synthesis of Copper Sulfide Nanoparticles by Pulsed Plasma in Liquid Method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Synthesis of Copper Sulfide Nanoparticles by Pulsed Plasma in Liquid Method

Authors: Zhypargul Abdullaeva, Emil Omurzak, Tsutomu Mashimo

Abstract:

Copper sulfide nanoparticles (CuS) were successfully synthesized by the pulsed plasma in liquid method, using two copper rod electrodes submerged in molten sulfur. Low electrical energy and no high temperature were applied for synthesis. Obtained CuS nanoparticles were then analyzed by means of X-ray diffraction, Low and High Resolution Transmission Electron Microscopy, Electron Diffraction, X-ray Photoelectron, Raman Spectroscopies and Field Emission Scanning Electron Microscopy. XRD analysis revealed peaks for CuS with hexagonal phase composition. TEM and HRTEM studies showed that sizes of CuS nanoparticles ranged between 10-60 nm, with the average size of about 20 nm. Copper sulfide nanoparticles have short nanorod-like structure. Raman spectroscopy found peak for CuS at 474.2cm-1of Raman region.

Keywords: Copper sulfide, Nanoparticles, Pulsed plasma, Synthesis.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1056996

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4396

References:


[1] H. Anders, G. Michael, "Light-Induced Redox Reactions in Nanocrystalline Systems" Chem. Rev. 95, 1995, pp. 49-68.
[2] E. Ramli, T. B. Rauchfuss, C. L. Stem, "Interception of Copper Polysulfide Clusters in the Reaction of Copper and Sulfur in Donor Solvents: Polysulfide Complexes as the Link between Molecular and Nonmolecular Metal Sulfides" J. Am. Chem. Soc. 112, 1990, pp. 4043-4044.
[3] H. Toyoji, H. Yao, Jpn. Kokai Tokkyo Koho Jp02 173, p. 622.
[4] E. J Silvester, F. Grieser, B. A. Sexton, T. W. Healy, "Spectroscopic studies on copper sulfide sols" Langmuir, 7, 1991, pp. 2917-2922.
[5] S. T. Lakshmikumar, "Selenization of Cu and In Thin Films for the Preparation of Selenide Photo-absorber Layers in Solar Cells Using Se Vapor Source" Sol. Energy Mater. Sol.Cells 32, 1994, pp. 7-19.
[6] Lee, H.; Yoon, S. W.; Kim, E. J.; Park, J. In-Situ Growth of Copper Sulfide Nanocrystals on Multiwalled Carbon Nanotubes and Their Application as Novel Solar Cell and Amperometric Glucose Sensor Materials. Nano Lett. 2007, 7, pp. 778-784.
[7] L. Chen, Y. D. Xia, X. F. Liang, K. B. Yin, J. Yin, Liu, Z. G. Chen, Y. Nonvolatile Memory Devices with Cu2S and Cu-Pc Bilayered Films. Appl. Phys. Lett. 2007, 91, p. 073511.
[8] A. A. Korzhuev, Fiz. Khim. Obrab. Mater. 3, 1993, p. 131.
[9] M. Kruszynska, H. Borchert, A. Bachmatiuk, M. H. Rummeli, B. Buchner, J. Parisi, J. Kolny-Olesiak, ACS Nano, 2012, 6, pp 5889-5896.
[10] P. Roy, S. K. Srivastava, "Hydrothermal Growth of CuS Nanowires from Cu-Dithiooxamide, a Novel Single-Source Precursor, Crystal Growth & Design, 2006, 6, pp 1921-1926.
[11] R. Coustal, J. Chem. Phys. 1958, 38, p. 77.
[12] H. C. Yi, J. J. Moore, "Self-propagating high (combustion) synthesis (SHS) of powder-compacted materials" J. Mater. Sci. 25, 1990, pp. 1159-1168.
[13] I. P. Parkin, "Solid state metathesis reaction for metal borides, silicides, pnictides and chalcogenides: ionic or elemental pathways" Chem. Soc. Rev. 25, 1996, pp. 199-207.
[14] X. C Jiang, Y. Xie, J. Lu, W. He, L. Y Zhu, Y. T. Qian, "Homoepitaxial growth of ZnS nanowires and nanoribbons on the surfaces of micrometer-wide single crystal ZnS nanoribbon substrates" J. Mater. Chem. 10, 2000, p. 2193.
[15] S. K. Haram, A. R. Mahadeshwar, S. G. Dixit, "Synthesis and Characterization of Copper Sulfide Nanoparticles in Triton-X 100 Water-in-Oil Microemulsions", J. Phys. Chem. 1996, 100, pp. 5868-73.
[16] J. Lu, Y. Zhao, N. Chen, Y. Xie, Chem. Lett. 1, 2003, p. 30.
[17] G. Mao, M. Dong, D. G. Kurth, H.Mo lhwald, "Nano Lett. 2004, 4, p. 249.
[18] T. H.Larsen, M. Sigman, A. Ghezeibash, R. C. Doty, B. A. Korgel, J. Am. Chem. Soc. 2003, 125, p. 5698.
[19] L.Gao, E.Wang, S.Lian, Z.Kang, Y.Lan, D.Wu, "Microemulsion-directed synthesis of different CuS nanocrystals" Solid State Commun. 2004, 130, p. 309.
[20] X. H. Liao, N. Y. Chena, S. Xub, S. B. Yanga, J. J Zhu, "A microwave assisted heating method for the preparation of copper sulfide nanorods", J. Cryst. Growth, 2003, 252, p. 593.
[21] W. Zhang, X. Wen, S. Yang,"Synthesis and Characterization of Uniform Arrays of Copper Sulfide Nanorods Coated with Nanolayers of Polypyrrole" Langmuir, 2003, 19, p. 4420.
[22] C. R. Wang, K. B. Tang, Q. Yang, B. Hai, G. Z. Shen, Y. T. Qian, "Synthesis of CuS millimeter-scale tubular crystals" Chem. Lett. 6, 2001, pp. 494-495.
[23] C. Tan, Y. Zhu, R. Lu„P. Xue, C. Bao, X. Liu, Z. Fei, Zhao, Y. "Synthesis of copper sulfide nanotube in the hydrogel system" Mater. Chem. Phys. 2005, 91, p. 44.
[24] Q. Lu, F. Gao, D. Zhao,"One-Step Synthesis and Assembly of Copper Sulfide Nanoparticles to Nanowires, Nanotubes, and Nanovesicles by a Simple Organic Amine-Assisted Hydrothermal Process" Nano Lett. 2002, 2, p. 725.
[25] S. Wang, S. Yang, "Chem. Phys. Lett 2000, 322, p. 567.
[26] Q. B. Wu, S. Ren, S. Z. Deng, J. Chen, N. S Xu, J. Vac. Sci. Technol. B 2004, 22, p.1282.
[27] M. B. Sigman, A. Ghezelbash, T. Hanrath, A. E. Saunders, F. Lee, B.A. Korgel,"Solventless Synthesis of Monodisperse Cu2S Nanorods, Nanodisks, and Nanoplatelets" J. Am. Chem. Soc., 2003, 125, pp 16050-16057.
[28] S. Gorai, D. Ganguli,S. Chaudhuri,"Synthesis of Copper Sulfides of Varying Morphologies and Stoichiometries Controlled by Chelating and Nonchelating Solvents in a Solvothermal Process" Crystal Growth & Design, 2005, 5, pp 875-877.
[29] T. Thongtem, A. Phuruangrat, S. Thongtem, "Synthesis and analysis of CuS with different morphologies using cyclic microwave irradiation" J. Mater. Sci. 42, 2007, pp. 9316-9323.
[30] M. Ishii, K. Shibata, H. Nozaki, “Anion Distributions and Phase. Transitions in CuS1-xSex (x = 0-1) Studied by Raman Spectroscopy” J. Solid State Chem. 105, 1993, pp. 504-511.
[31] I. Nakai, Y. Sugitani, K. Nagashima, “X-ray photoelectron spectroscopic study of copper minerals” J. Inor. Nuclear Chemistry, 40, 1987, pp. 789-791.