Search results for: Kelvin force probe microscopy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1253

Search results for: Kelvin force probe microscopy

203 Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System

Authors: O. Afshar

Abstract:

A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope.

Keywords: Receiver tube, heat convection, heat conduction, Nusselt number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
202 Error Correction of Radial Displacement in Grinding Machine Tool Spindle by Optimizing Shape and Bearing Tuning

Authors: Khairul Jauhari, Achmad Widodo, Ismoyo Haryanto

Abstract:

In this article, the radial displacement error correction capability of a high precision spindle grinding caused by unbalance force was investigated. The spindle shaft is considered as a flexible rotor mounted on two sets of angular contact ball bearing. Finite element methods (FEM) have been adopted for obtaining the equation of motion of the spindle. In this paper, firstly, natural frequencies, critical frequencies, and amplitude of the unbalance response caused by residual unbalance are determined in order to investigate the spindle behaviors. Furthermore, an optimization design algorithm is employed to minimize radial displacement of the spindle which considers dimension of the spindle shaft, the dynamic characteristics of the bearings, critical frequencies and amplitude of the unbalance response, and computes optimum spindle diameters and stiffness and damping of the bearings. Numerical simulation results show that by optimizing the spindle diameters, and stiffness and damping in the bearings, radial displacement of the spindle can be reduced. A spindle about 4 μm radial displacement error can be compensated with 2 μm accuracy. This certainly can improve the accuracy of the product of machining.

Keywords: Error correction, High precision grinding, Optimization, Radial displacement, Spindle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
201 Enhancement of Mechanical Properties for Al-Mg-Si Alloy Using Equal Channel Angular Pressing

Authors: A. Nassef, S. Samy, W. H. El Garaihy

Abstract:

Equal channel angular pressing (ECAP) of commercial Al-Mg-Si alloy was conducted using two strain rates. The ECAP processing was conducted at room temperature and at 250°C. Route A was adopted up to a total number of four passes in the present work. Structural evolution of the aluminum alloy discs was investigated before and after ECAP processing using optical microscopy (OM). Following ECAP, simple compression tests and Vicker’s hardness were performed. OM micrographs showed that, the average grain size of the as-received Al-Mg-Si disc tends to be larger than the size of the ECAP processed discs. Moreover, significant difference in the grain morphologies of the as-received and processed discs was observed. Intensity of deformation was observed via the alignment of the Al-Mg-Si consolidated particles (grains) in the direction of shear, which increased with increasing the number of passes via ECAP. Increasing the number of passes up to 4 resulted in increasing the grains aspect ratio up to ~5. It was found that the pressing temperature has a significant influence on the microstructure, Hv-values, and compressive strength of the processed discs. Hardness measurements demonstrated that 1-pass resulted in increase of Hv-value by 42% compared to that of the as-received alloy. 4-passes of ECAP processing resulted in additional increase in the Hv-value. A similar trend was observed for the yield and compressive strength. Experimental data of the Hv-values demonstrated that there is a lack of any significant dependence on the processing strain rate.

Keywords: Al-Mg-Si alloy, Equal channel angular pressing, Grain refinement, Severe plastic deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
200 Control of Airborne Aromatic Hydrocarbons over TiO2-Carbon Nanotube Composites

Authors: Joon Y. Lee, Seung H. Shin, Ho H. Chun, Wan K. Jo

Abstract:

Poly vinyl acetate (PVA)-based titania (TiO2)–carbon nanotube composite nanofibers (PVA-TCCNs) with various PVA-to-solvent ratios and PVA-based TiO2 composite nanofibers (PVA-TN) were synthesized using an electrospinning process, followed by thermal treatment. The photocatalytic activities of these nanofibers in the degradation of airborne monocyclic aromatics under visible-light irradiation were examined. This study focuses on the application of these photocatalysts to the degradation of the target compounds at sub-part-per-million indoor air concentrations. The characteristics of the photocatalysts were examined using scanning electron microscopy, X-ray diffraction, ultraviolet-visible spectroscopy, and Fourier-transform infrared spectroscopy. For all the target compounds, the PVA-TCCNs showed photocatalytic degradation efficiencies superior to those of the reference PVA-TN. Specifically, the average photocatalytic degradation efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX) obtained using the PVA-TCCNs with a PVA-to-solvent ratio of 0.3 (PVA-TCCN-0.3) were 11%, 59%, 89%, and 92%, respectively, whereas those observed using PVA-TNs were 5%, 9%, 28%, and 32%, respectively. PVA-TCCN-0.3 displayed the highest photocatalytic degradation efficiency for BTEX, suggesting the presence of an optimal PVA-to-solvent ratio for the synthesis of PVA-TCCNs. The average photocatalytic efficiencies for BTEX decreased from 11% to 4%, 59% to 18%, 89% to 37%, and 92% to 53%, respectively, when the flow rate was increased from 1.0 to 4.0 L min1. In addition, the average photocatalytic efficiencies for BTEX increased 11% to ~0%, 59% to 3%, 89% to 7%, and 92% to 13%, respectively, when the input concentration increased from 0.1 to 1.0 ppm. The prepared PVA-TCCNs were effective for the purification of airborne aromatics at indoor concentration levels, particularly when the operating conditions were optimized.

Keywords: Mixing ratio, nanofiber, polymer, reference photocatalyst.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
199 Control of an Asymmetrical Design of a Pneumatically Actuated Ambidextrous Robot Hand

Authors: Emre Akyürek, Anthony Huynh, Tatiana Kalganova

Abstract:

The Ambidextrous Robot Hand is a robotic device with the purpose to mimic either the gestures of a right or a left hand. The symmetrical behavior of its fingers allows them to bend in one way or another keeping a compliant and anthropomorphic shape. However, in addition to gestures they can reproduce on both sides, an asymmetrical mechanical design with a three tendons routing has been engineered to reduce the number of actuators. As a consequence, control algorithms must be adapted to drive efficiently the ambidextrous fingers from one position to another and to include grasping features. These movements are controlled by pneumatic muscles, which are nonlinear actuators. As their elasticity constantly varies when they are under actuation, the length of pneumatic muscles and the force they provide may differ for a same value of pressurized air. The control algorithms introduced in this paper take both the fingers asymmetrical design and the pneumatic muscles nonlinearity into account to permit an accurate control of the Ambidextrous Robot Hand. The finger motion is achieved by combining a classic PID controller with a phase plane switching control that turns the gain constants into dynamic values. The grasping ability is made possible because of a sliding mode control that makes the fingers adapt to the shape of an object before strengthening their positions.

Keywords: Ambidextrous hand, intelligent algorithms, nonlinear actuators, pneumatic muscles, robotics, sliding control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
198 Language Learning, Drives, and Context: A Grounded Theory of Learning Behavior

Authors: Julian Pigott

Abstract:

This paper presents the Language Learning as a Means of Drive Engagement (LLMDE) theory, derived from a grounded theory analysis of interviews with Japanese university students. According to LLMDE theory, language learning can be understood as a means of engaging one or more of four self-fulfillment drives: the drive to expand one’s horizons (perspective drive); the drive to make a success of oneself (status drive); the drive to engage in interaction with others (communication drive); and the drive to obtain intellectual and affective stimulation (entertainment drive). While many theories of learner psychology focus on conscious agency, LLMDE theory addresses the role of the unconscious. In addition, supplementary thematic analysis of the data revealed the role of context in mediating drive engagement. Unexpected memorable events, for example, play a key role in instigating and, indirectly, in regulating learning, as do institutional and cultural contexts. Given the apparent importance of such factors beyond the immediate control of the learner, and given the pervasive role of habit and drives, it is argued that the concept of motivation merits theoretical reappraisal. Rather than an underlying force determining language learning success or failure, it can be understood to emerge sporadically in consciousness to promote behavioral change, or to protect habitual behavior from disruption.

Keywords: Drives, grounded theory, motivation, significant events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 523
197 The Effect of Damping Treatment for Noise Control on Offshore Platforms Using Statistical Energy Analysis

Authors: Ji Xi, Cheng Song Chin, Ehsan Mesbahi

Abstract:

Structure-borne noise is an important aspect of offshore platform sound field. It can be generated either directly by vibrating machineries induced mechanical force, indirectly by the excitation of structure or excitation by incident airborne noise. Therefore, limiting of the transmission of vibration energy throughout the offshore platform is the key to control the structureborne noise. This is usually done by introducing damping treatment to the steel structures. Two types of damping treatment using onboard are presented. By conducting a Statistical Energy Analysis (SEA) simulation on a jack-up rig, the noise level in the source room, the neighboring rooms, and remote living quarter cabins are compared before and after the damping treatments been applied. The results demonstrated that, in the source neighboring room and living quarter area, there is a significant noise reduction with the damping treatment applied, whereas in the source room where air-borne sound predominates that of structure-borne sound, the impact is not obvious. The conclusion on effective damping treatment in the offshore platform is made which enable acoustic professionals to implement noise control during the design stage for offshore crews’ hearing protection and habitant comfortability.

Keywords: Statistical energy analysis, damping treatment, noise control, offshore platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2082
196 Parametric Analysis in the Electronic Sensor Frequency Adjustment Process

Authors: Rungchat Chompu-Inwai, Akararit Charoenkasemsuk

Abstract:

The use of electronic sensors in the electronics industry has become increasingly popular over the past few years, and it has become a high competition product. The frequency adjustment process is regarded as one of the most important process in the electronic sensor manufacturing process. Due to inaccuracies in the frequency adjustment process, up to 80% waste can be caused due to rework processes; therefore, this study aims to provide a preliminary understanding of the role of parameters used in the frequency adjustment process, and also make suggestions in order to further improve performance. Four parameters are considered in this study: air pressure, dispensing time, vacuum force, and the distance between the needle tip and the product. A full factorial design for experiment 2k was considered to determine those parameters that significantly affect the accuracy of the frequency adjustment process, where a deviation in the frequency after adjustment and the target frequency is expected to be 0 kHz. The experiment was conducted on two levels, using two replications and with five center-points added. In total, 37 experiments were carried out. The results reveal that air pressure and dispensing time significantly affect the frequency adjustment process. The mathematical relationship between these two parameters was formulated, and the optimal parameters for air pressure and dispensing time were found to be 0.45 MPa and 458 ms, respectively. The optimal parameters were examined by carrying out a confirmation experiment in which an average deviation of 0.082 kHz was achieved.

Keywords: Design of Experiment, Electronic Sensor, Frequency Adjustment, Parametric Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
195 Determination of Poisson’s Ratio and Elastic Modulus of Compression Textile Materials

Authors: Chongyang Ye, Rong Liu

Abstract:

Compression textiles such as compression stockings (CSs) have been extensively applied for the prevention and treatment of chronic venous insufficiency of lower extremities. The involvement of multiple mechanical factors such as interface pressure, frictional force, and elastic materials make the interactions between lower limb and CSs to be complex. Determination of Poisson’s ratio and elastic moduli of CS materials are critical for constructing finite element (FE) modeling to numerically simulate a complex interactive system of CS and lower limb. In this study, a mixed approach, including an analytic model based on the orthotropic Hooke’s Law and experimental study (uniaxial tension testing and pure shear testing), has been proposed to determine Young’s modulus, Poisson’s ratio, and shear modulus of CS fabrics. The results indicated a linear relationship existing between the stress and strain properties of the studied CS samples under controlled stretch ratios (< 100%). The proposed method and the determined key mechanical properties of elastic orthotropic CS fabrics facilitate FE modeling for analyzing in-depth the effects of compression material design on their resultant biomechanical function in compression therapy.

Keywords: Elastic compression stockings, Young’s modulus, Poisson’s ratio, shear modulus, mechanical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 311
194 Study on Buckling and Yielding Behaviors of Low Yield Point Steel Plates

Authors: David Boyajian, Tadeh Zirakian

Abstract:

Stability and performance of steel plates are characterized by geometrical buckling and material yielding. In this paper, the geometrical buckling and material yielding behaviors of low yield point (LYP) steel plates are studied from the point of view of their application in steel plate shear wall (SPSW) systems. Use of LYP steel facilitates the design and application of web plates with improved buckling and energy absorption capacities in SPSW systems. LYP steel infill plates may yield first and then undergo inelastic buckling. Hence, accurate determination of the limiting plate thickness corresponding to simultaneous buckling and yielding can be effective in seismic design of such lateral force-resisting and energy dissipating systems. The limiting thicknesses of plates with different loading and support conditions are determined theoretically and verified through detailed numerical simulations. Effects of use of LYP steel and plate aspect ratio parameter on the limiting plate thickness are investigated as well. In addition, detailed studies are performed on determination of the limiting web-plate thickness in code-designed SPSWs. Some practical recommendations are accordingly provided for efficient seismic design of SPSW systems with LYP steel infill plates.

Keywords: Plates, buckling, yielding, low yield point steel, steel plate shear walls.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
193 Failure Analysis of a Fractured Control Pressure Tube from an Aircraft Engine

Authors: M. P. Valles-González, A. González Meije, A. Pastor Muro, M. García-Martínez, B. González Caballero

Abstract:

This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed by the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one of the most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material was characterized mechanically, by a hardness test, and microstructurally using a stereo microscope and an optical microscope. The results confirmed that the material was within specifications. To determine the macrofractographic features, a visual examination and an observation using a stereo microscope of the tube fracture surface were carried out. The results revealed a tube plastic macrodeformation, surface damaged and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with an energy-dispersive X-ray microanalysis system (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, were observed. The origin of the fracture was placed in defects located on the outer wall of the tube, leading to a final overload fracture.

Keywords: Aircraft Engine, microstructure, fatigue, FE-SEM, fractography, fracture, fuel tube, stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 479
192 Tuning for a Small Engine with a Supercharger

Authors: Shinji Kajiwara, Tadamasa Fukuoka

Abstract:

The formula project of Kinki University has been involved in the student Formula SAE of Japan (JSAE) since the second year the competition was held. The vehicle developed in the project uses a ZX-6R engine, which has been manufactured by Kawasaki Heavy Industries for the JSAE competition for the eighth time. The limited performance of the concept vehicle was improved through the development of a power train. The supercharger loading, engine dry sump, and engine cooling management of the vehicle were also enhanced. The supercharger loading enabled the vehicle to achieve a maximum output of 59.6 kW (80.6 PS)/9000 rpm and a maximum torque of 70.6 Nm (7.2 kgf m)/8000 rpm. We successfully achieved 90% of the engine’s torque band (4000–10000 rpm) with 50% of the revolutions in regular engine use (2000–12000 rpm). Using a dry sump system, we periodically managed hydraulic pressure during engine operation. A system that controls engine stoppage when hydraulic pressure falls was also constructed. Using the dry sump system at 80 mm reduced the required engine load and the vehicle’s center of gravity. Even when engine motion was suspended by the electromotive force exerted by the water pump, the circulation of cooling water was still possible. These findings enabled us to create a cooling system in accordance with the requirements of the competition.

Keywords: Engine, combustion, cooling system, dry sump system, numerical simulation, power, torque, mechanical supercharger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072
191 Mediation in Turkish Health Law for Healthcare Disputes

Authors: V. Durmus, M. Uydaci

Abstract:

In order to prevent overburdened courts, rising costs of litigation, and lengthy trial resolutions, the Law on Mediation for Civil Disputes was enacted, which was aimed at defining the procedure and guiding principles for dispute resolutions under Civil Law, in 2012. This “Mediation Code” also applies for civil healthcare disputes in Turkey. Aside from mediation, reconciliation, governed by Articles 253-255 of Criminal Procedure Law, has emerged as an alternative way to resolve criminal medical disputes, but the difference between mediation and conciliation is mostly procedural. This article deals with mediation in Turkish health law and aspect of medical malpractice mediation in Turkey. In addition, this study examines the issue of mediation in health law from both a legal and normative point of view, including codes of mediation which regulate both the structural and professional practice of mediation providers. As a result, although there is not official record about success rate of medical malpractice litigations and malpractice mediation in Turkey, it is widely accepted that the success rate for medical malpractice cases is relatively low compared to other personal injury cases even if it is generally considered that medical malpractice case filings have gradually increased recently. According to the Justice Ministry’s Department of Mediation in Turkey, 719 civil disputes have referred to mediators since 2013 (when the first mediation law came into force) with a 98% success rate.

Keywords: Malpractice mediation, medical disputes, reconciliation, health litigation, Turkish Health Law.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
190 Synthesis and in vitro Characterization of a Gel-Derived SiO2-CaO-P2O5-SrO-Li2O Bioactive Glass

Authors: Mehrnaz Aminitabar, Moghan Amirhosseinian, Morteza Elsa

Abstract:

Bioactive glasses (BGs) are a group of surface-reactive biomaterials used in clinical applications as implants or filler materials in the human body to repair and replace diseased or damaged bone. Sol-gel technique was employed to prepare a SiO2-CaO-P2O5 glass with nominal composition of 58S BG with the addition of Sr and Li modifiers which imparts special properties to the BG. The effect of simultaneous addition of Sr and Li on bioactivity and biocompatibility, proliferation, alkaline phosphatase (ALP) activity of osteoblast cell line MC3T3-E1 and antibacterial property against methicillin-resistant Staphylococcus aureus (MRSA) bacteria were examined. BGs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy before and after soaking the samples in the simulated body fluid (SBF) for different time intervals to characterize the formation of hydroxyapatite (HA) formed on the surface of BGs. Structural characterization indicated that the simultaneous presence of 5% Sr and 5% Li in 58S-BG composition not only did not retard HA formation because of opposite effect of Sr and Li of the dissolution of BG in the SBF but also, stimulated the differentiation and proliferation of MC3T3-E1s. Moreover, the presence of Sr and Li on dissolution of the ions resulted in an increase in the mean number of DAPI-labeled nuclei which was in good agreement with live/dead assay. The result of antibacterial tests revealed that Sr and Li-substituted 58S BG exhibited a potential antibacterial effect against MRSA bacteria. Because of optimal proliferation and ALP activity of MC3T3-E1cells, proper bioactivity and high antibacterial potential against MRSA, BG-5/5 is suggested as a multifunctional candidate for bone tissue engineering.

Keywords: Antibacterial activity, bioactive glass, sol-gel, strontium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
189 Soil Moisture Control System: A Product Development Approach

Authors: Swapneel U. Naphade, Dushyant A. Patil, Satyabodh M. Kulkarni

Abstract:

In this work, we propose the concept and geometrical design of a soil moisture control system (SMCS) module by following the product development approach to develop an inexpensive, easy to use and quick to install product targeted towards agriculture practitioners. The module delivers water to the agricultural land efficiently by sensing the soil moisture and activating the delivery valve. We start with identifying the general needs of the potential customer. Then, based on customer needs we establish product specifications and identify important measuring quantities to evaluate our product. Keeping in mind the specifications, we develop various conceptual solutions of the product and select the best solution through concept screening and selection matrices. Then, we develop the product architecture by integrating the systems into the final product. In the end, the geometric design is done using human factors engineering concepts like heuristic analysis, task analysis, and human error reduction analysis. The result of human factors analysis reveals the remedies which should be applied while designing the geometry and software components of the product. We find that to design the best grip in terms of comfort and applied force, for a power-type grip, a grip-diameter of 35 mm is the most ideal.

Keywords: Agriculture, human factors, product design, soil moisture control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1249
188 Thresholding Approach for Automatic Detection of Pseudomonas aeruginosa Biofilms from Fluorescence in situ Hybridization Images

Authors: Zonglin Yang, Tatsuya Akiyama, Kerry S. Williamson, Michael J. Franklin, Thiruvarangan Ramaraj

Abstract:

Pseudomonas aeruginosa is an opportunistic pathogen that forms surface-associated microbial communities (biofilms) on artificial implant devices and on human tissue. Biofilm infections are difficult to treat with antibiotics, in part, because the bacteria in biofilms are physiologically heterogeneous. One measure of biological heterogeneity in a population of cells is to quantify the cellular concentrations of ribosomes, which can be probed with fluorescently labeled nucleic acids. The fluorescent signal intensity following fluorescence in situ hybridization (FISH) analysis correlates to the cellular level of ribosomes. The goals here are to provide computationally and statistically robust approaches to automatically quantify cellular heterogeneity in biofilms from a large library of epifluorescent microscopy FISH images. In this work, the initial steps were developed toward these goals by developing an automated biofilm detection approach for use with FISH images. The approach allows rapid identification of biofilm regions from FISH images that are counterstained with fluorescent dyes. This methodology provides advances over other computational methods, allowing subtraction of spurious signals and non-biological fluorescent substrata. This method will be a robust and user-friendly approach which will enable users to semi-automatically detect biofilm boundaries and extract intensity values from fluorescent images for quantitative analysis of biofilm heterogeneity.

Keywords: Image informatics, Pseudomonas aeruginosa, biofilm, FISH, computer vision, data visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1103
187 Study of Pipes Scaling of Purified Wastewater Intended for the Irrigation of Agadir Golf Grass

Authors: A. Driouiche, S. Mohareb, A. Hadfi

Abstract:

In Morocco’s Agadir region, the reuse of treated wastewater for irrigation of green spaces has faced the problem of scaling of the pipes of these waters. This research paper aims at studying the phenomenon of scaling caused by the treated wastewater from the Mzar sewage treatment plant. These waters are used in the irrigation of golf turf for the Ocean Golf Resort. Ocean Golf, located about 10 km from the center of the city of Agadir, is one of the most important recreation centers in Morocco. The course is a Belt Collins design with 27 holes, and is quite open with deep challenging bunkers. The formation of solid deposits in the irrigation systems has led to a decrease in their lifetime and, consequently, a loss of load and performance. Thus, the sprinklers used in golf turf irrigation are plugged in the first weeks of operation. To study this phenomenon, the wastewater used for the irrigation of the golf turf was taken and analyzed at various points, and also samples of scale formed in the circuits of the passage of these waters were characterized. This characterization of the scale was performed by X-ray fluorescence spectrometry, X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and scanning electron microscopy (SEM). The results of the physicochemical analysis of the waters show that they are full of bicarbonates (653 mg/L), chloride (478 mg/L), nitrate (412 mg/L), sodium (425 mg/L) and calcium (199mg/L). Their pH is slightly alkaline. The analysis of the scale reveals that it is rich in calcium and phosphorus. It is formed of calcium carbonate (CaCO₃), silica (SiO₂), calcium silicate (Ca₂SiO₄), hydroxylapatite (Ca₁₀P₆O₂₆), calcium carbonate and phosphate (Ca₁₀(PO₄) 6CO₃) and silicate calcium and magnesium (Ca₅MgSi₃O₁₂).

Keywords: Agadir, irrigation, scaling water, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 650
186 Nurse’s Role in Early Detection of Breast Cancer through Mammography and Genetic Screening and Its Impact on Patient's Outcome

Authors: Salwa Hagag Abdelaziz, Dorria Salem, Hoda Zaki, Suzan Atteya

Abstract:

Early detection of breast cancer saves many thousands of lives each year via application of mammography and genetic screening and many more lives could be saved if nurses are involved in breast care screening practices. So, the aim of the study was to identify nurse's role in early detection of breast cancer through mammography and genetic screening and its impact on patient's outcome. In order to achieve this aim, 400 women above 40 years, asymptomatic were recruited for mammography and genetic screening. In addition, 50 nurses and 6 technologists were involved in the study. A descriptive analytical design was used. Five tools were utilized: sociodemographic, mammographic examination and risk factors, women's before, during and after mammography, items relaying to technologists, and items related to nurses were also obtained. The study finding revealed that 3% of women detected for malignancy and 7.25% for fibroadenoma. Statistically significant differences were found between mammography results and age, family history, genetic screening, exposure to smoke, and using contraceptive pills. Nurses have insufficient knowledge about screening tests. Based on these findings the present study recommended involvement of nurses in breast care which is very important to in force population about screening practices.

Keywords: Early detection, Genetic Screening, Mammography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4186
185 Investigating the Formation of Nano-Hydroxyapatite on a Biocompatible and Antibacterial Cu/Mg-Substituted Bioglass

Authors: Elhamalsadat Ghaffari, Moghan Amirhosseinian, Amir Khaleghipour

Abstract:

Multifunctional bioactive glasses (BGs) are designed with a focus on the provision of bactericidal and biological properties desired for angiogenesis, osteogenesis, and ultimately potential applications in bone tissue engineering. To achieve these, six sol-gel copper/magnesium substituted derivatives of 58S-BG, i.e. a mol% series of 60SiO2-4P2O5-5CuO-(31-x) CaO/xMgO (where x=0, 1, 3, 5, 8, and 10), were synthesized. Afterwards, the effect of MgO/CaO substitution on the in vitro formation of nano-hydroxyapatite (HA), osteoblast-like cell responses and BGs antibacterial performance were studied. During the BGs synthesis, the elimination of nitrates was achieved at 700 °C that prevented the BGs crystallization and stabilized the obtained dried gels. The structural and morphological evaluations were performed with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). These characterizations revealed that Cu-substituted 58S-BG consisting of 5 mol% MgO (BG-5/5) slightly had retarded the formation of HA. In addition, Cu-substituted 58S-BGs consisting 8 mol% and 10 mol% MgO (BG-5/8 and BG-5/10) displayed lower bioactivity probably due to the lower ion release rate of Ca–Si into the simulated body fluid (SBF). The determination of 3-(4, 5 dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and alkaline phosphate (ALP) activities proved that the highest values of both differentiation and proliferation of MC3T3-E1 cells can be obtained from a 5 mol% MgO substituted BG, while the over addition of MgO (8 mol% and 10 mol%) decreased the bioactivity. Furthermore, these novel Cu/Mg-substituted 58S-BGs displayed antibacterial effect against methicillin-resistant Staphylococcus aureus bacteria. Taken together, the results suggest the equally-substituted BG-5/5 (i.e. the one consists of 5 mol% of both CuO and MgO) as a promising candidate for bone tissue engineering, among all newly designed BGs in this work, owing to its desirable cell proliferation, ALP activity and antibacterial properties.

Keywords: Apatite, bioactivity, biomedical applications sol-gel processes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 740
184 Cleaning Performance of High-Frequency, High-Intensity 360 kHz Frequency Operating in Thickness Mode Transducers

Authors: R. Vetrimurugan, Terry Lim, M. J. Goodson, R. Nagarajan

Abstract:

This study investigates the cleaning performance of high intensity 360 kHz frequency on removal of nano-dimensional and sub-micron particles from various surfaces, uniformity of the cleaning tank and run to run variation of cleaning process. The uniformity of the cleaning tank was measured by two different methods i.e. 1. ppbTM meter and 2. Liquid Particle Counting (LPC) technique. The result indicates that the energy was distributed more uniformly throughout the entire cleaning vessel even at the corners and edges of the tank when megasonic sweeping technology is applied. The result also shows that rinsing the parts with 360 kHz frequency at final rinse gives lower particle counts, hence higher cleaning efficiency as compared to other frequencies. When megasonic sweeping technology is applied each piezoelectric transducers will operate at their optimum resonant frequency and generates stronger acoustic cavitational force and higher acoustic streaming velocity. These combined forces are helping to enhance the particle removal and at the same time improve the overall cleaning performance. The multiple extractions study was also carried out for various frequencies to measure the cleaning potential and asymptote value.

Keywords: Power distribution, megasonic sweeping, thickness mode transducers, cavitation intensity, particle removal, laser particle counting, nano, submicron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338
183 Development of Elementary Literacy in the Czech Republic

Authors: Iva Košek Bartošová

Abstract:

There is great attention being paid in the field of development of first reading, thus early literacy skills in the Czech Republic. Yet inconclusive results of PISA and PIRLS force us to think over the teacher´s work, his/her roles in the education process and methods and forms used in lessons. There is also a significant importance to monitor the family environment and the pupil, themselves. The aim of the publishing output is to focus on one side dealing with methods of practicing reading technique and their results in the process of comprehension. In the first part of the contribution there are the goals of development of reading literacy and the methods used in reading practice in some EU countries and a follow-up comparison of research implemented by the help of modern technology of an eye tracker device in the year 2015 and a research conducted at the Institute of Education and Psychological Counselling of the Czech Republic in the year 2011/12. These are the results of a diagnostic test of reading in first classes of primary schools, taught by the genetic method and analytic-synthetic method. The results show that in the first stage of practice there are no statistically significant differences between any researched subjects taught by different methods of reading practice (with the use of several diagnostic texts focused on reading technique and its comprehension). Different results are shown at the end of Grade One and during Grade Two of primary school.

Keywords: Elementary literacy, eye tracker device, diagnostic reading tests, reading teaching method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1043
182 Vibration Suppression of Timoshenko Beams with Embedded Piezoelectrics Using POF

Authors: T. C. Manjunath, B. Bandyopadhyay

Abstract:

This paper deals with the design of a periodic output feedback controller for a flexible beam structure modeled with Timoshenko beam theory, Finite Element Method, State space methods and embedded piezoelectrics concept. The first 3 modes are considered in modeling the beam. The main objective of this work is to control the vibrations of the beam when subjected to an external force. Shear piezoelectric sensors and actuators are embedded into the top and bottom layers of a flexible aluminum beam structure, thus making it intelligent and self-adaptive. The composite beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. 4 state space SISO models are thus developed. Periodic Output Feedback (POF) Controllers are designed for the 4 SISO models of the same plant to control the flexural vibrations. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Conclusions are finally drawn.

Keywords: Smart structure, Timoshenko beam theory, Periodic output feedback control, Finite Element Method, State space model, SISO, Embedded sensors and actuators, Vibration control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2086
181 Multiaxial Fatigue Analysis of a High Performance Nickel-Based Superalloy

Authors: P. Selva, B. Lorrain, J. Alexis, A. Seror, A. Longuet, C. Mary, F. Denard

Abstract:

Over the past four decades, the fatigue behavior of nickel-based alloys has been widely studied. However, in recent years, significant advances in the fabrication process leading to grain size reduction have been made in order to improve fatigue properties of aircraft turbine discs. Indeed, a change in particle size affects the initiation mode of fatigue cracks as well as the fatigue life of the material. The present study aims to investigate the fatigue behavior of a newly developed nickel-based superalloy under biaxial-planar loading. Low Cycle Fatigue (LCF) tests are performed at different stress ratios so as to study the influence of the multiaxial stress state on the fatigue life of the material. Full-field displacement and strain measurements as well as crack initiation detection are obtained using Digital Image Correlation (DIC) techniques. The aim of this presentation is first to provide an in-depth description of both the experimental set-up and protocol: the multiaxial testing machine, the specific design of the cruciform specimen and performances of the DIC code are introduced. Second, results for sixteen specimens related to different load ratios are presented. Crack detection, strain amplitude and number of cycles to crack initiation vs. triaxial stress ratio for each loading case are given. Third, from fractographic investigations by scanning electron microscopy it is found that the mechanism of fatigue crack initiation does not depend on the triaxial stress ratio and that most fatigue cracks initiate from subsurface carbides.

Keywords: Cruciform specimen, multiaxial fatigue, Nickelbased superalloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
180 A Fuzzy Logic Based Model to Predict Surface Roughness of A Machined Surface in Glass Milling Operation Using CBN Grinding Tool

Authors: Ahmed A. D. Sarhan, M. Sayuti, M. Hamdi

Abstract:

Nowadays, the demand for high product quality focuses extensive attention to the quality of machined surface. The (CNC) milling machine facilities provides a wide variety of parameters set-up, making the machining process on the glass excellent in manufacturing complicated special products compared to other machining processes. However, the application of grinding process on the CNC milling machine could be an ideal solution to improve the product quality, but adopting the right machining parameters is required. In glass milling operation, several machining parameters are considered to be significant in affecting surface roughness. These parameters include the lubrication pressure, spindle speed, feed rate and depth of cut. In this research work, a fuzzy logic model is offered to predict the surface roughness of a machined surface in glass milling operation using CBN grinding tool. Four membership functions are allocated to be connected with each input of the model. The predicted results achieved via fuzzy logic model are compared to the experimental result. The result demonstrated settlement between the fuzzy model and experimental results with the 93.103% accuracy.

Keywords: CNC-machine, Glass milling, Grinding, Surface roughness, Cutting force, Fuzzy logic model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2611
179 Analysis of Motor Cycle Helmet under Static and Dynamic Loading

Authors: V. C. Sathish Gandhi, R. Kumaravelan, S. Ramesh, M. Venkatesan, M. Ponraj

Abstract:

Each year nearly nine hundred persons die in head injuries and over fifty thousand persons are severely injured due to non wearing of helmets. In motor cycle accidents, the human head is exposed to heavy impact loading against natural protection. In this work, an attempt has been made for analyzing the helmet with all the standard data. The simulation software ‘ANSYS’ is used to analyze the helmet with different conditions such as bottom fixed-load on top surface, bottom fixed -load on top line, side fixed –load on opposite surface, side fixed-load on opposite line and dynamic analysis. The maximum force of 19.5 kN is applied on the helmet to study the model in static and dynamic conditions. The simulation has been carried out for the static condition for the parameters like total deformation, strain energy, von-Mises stress for different cases. The dynamic analysis has been performed for the parameter like total deformation and equivalent elastic strain. The result shows that these values are concentrated in the retention portion of the helmet. These results have been compared with the standard experimental data proposed by the BIS and well within the acceptable limit.

Keywords: Helmet, Deformation, Strain energy, Equivalent elastic strain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4849
178 Frequency Response Analysis of Reinforced- Soil Retaining Walls with Polymeric Strips

Authors: Ali Komakpanah, Maryam Yazdi

Abstract:

Few studies have been conducted on polymeric strip and the behavior of soil retaining walls. This paper will present the effect of frequency on the dynamic behavior of reinforced soil retaining walls with polymeric strips. The frequency content describes how the amplitude of a ground motion is distributed among different frequencies. Since the frequency content of an earthquake motion will strongly influence the effects of that motion, the characterization of the motion cannot be completed without the consideration of its frequency content. The maximum axial force of reinforcements and horizontal displacement of the reinforced walls are focused in this research. To clarify the dynamic behavior of reinforced soil retaining walls with polymeric strips, a numerical modeling using Finite Difference Method is benefited. As the results indicate, the frequency of input base acceleration has an important effect on the behavior of these structures. Because of resonant in the system, where the frequency of the input dynamic load is equal to the natural frequency of the system, the maximum horizontal displacement and the maximum axial forces in polymeric strips is occurred. Moreover, they were to increase the structure flexibility because of the main advantages of polymeric strips; i.e. being simple method of construction, having a homogeneous behavior with soils, and possessing long durability, which are of great importance in dynamic analysis.

Keywords: dynamic analysis, frequency, polymeric strip, reinforced soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
177 Fractal Dimension of Breast Cancer Cell Migration in a Wound Healing Assay

Authors: R. Sullivan, T. Holden, G. Tremberger, Jr, E. Cheung, C. Branch, J. Burrero, G. Surpris, S. Quintana, A. Rameau, N. Gadura, H. Yao, R. Subramaniam, P. Schneider, S. A. Rotenberg, P. Marchese, A. Flamhlolz, D. Lieberman, T. Cheung

Abstract:

Migration in breast cancer cell wound healing assay had been studied using image fractal dimension analysis. The migration of MDA-MB-231 cells (highly motile) in a wound healing assay was captured using time-lapse phase contrast video microscopy and compared to MDA-MB-468 cell migration (moderately motile). The Higuchi fractal method was used to compute the fractal dimension of the image intensity fluctuation along a single pixel width region parallel to the wound. The near-wound region fractal dimension was found to decrease three times faster in the MDA-MB- 231 cells initially as compared to the less cancerous MDA-MB-468 cells. The inner region fractal dimension was found to be fairly constant for both cell types in time and suggests a wound influence range of about 15 cell layer. The box-counting fractal dimension method was also used to study region of interest (ROI). The MDAMB- 468 ROI area fractal dimension was found to decrease continuously up to 7 hours. The MDA-MB-231 ROI area fractal dimension was found to increase and is consistent with the behavior of a HGF-treated MDA-MB-231 wound healing assay posted in the public domain. A fractal dimension based capacity index has been formulated to quantify the invasiveness of the MDA-MB-231 cells in the perpendicular-to-wound direction. Our results suggest that image intensity fluctuation fractal dimension analysis can be used as a tool to quantify cell migration in terms of cancer severity and treatment responses.

Keywords: Higuchi fractal dimension, box-counting fractal dimension, cancer cell migration, wound healing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484
176 Numerical Analysis of Cold-Formed Steel Shear Wall Panels Subjected to Cyclic Loading

Authors: H. Meddah, M. Berediaf-Bourahla, B. El-Djouzi, N. Bourahla

Abstract:

Shear walls made of cold formed steel are used as lateral force resisting components in residential and low-rise commercial and industrial constructions. The seismic design analysis of such structures is often complex due to the slenderness of members and their instability prevalence. In this context, a simplified modeling technique across the panel is proposed by using the finite element method. The approach is based on idealizing the whole panel by a nonlinear shear link element which reflects its shear behavior connected to rigid body elements which transmit the forces to the end elements (studs) that resist the tension and the compression. The numerical model of the shear wall panel was subjected to cyclic loads in order to evaluate the seismic performance of the structure in terms of lateral displacement and energy dissipation capacity. In order to validate this model, the numerical results were compared with those from literature tests. This modeling technique is particularly useful for the design of cold formed steel structures where the shear forces in each panel and the axial forces in the studs can be obtained using spectrum analysis.

Keywords: Cold-formed steel, cyclic loading, modeling technique, nonlinear analysis, shear wall panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219
175 Two-Stage Launch Vehicle Trajectory Modeling for Low Earth Orbit Applications

Authors: Assem M. F. Sallam, Ah. El-S. Makled

Abstract:

This paper presents a study on the trajectory of a two stage launch vehicle. The study includes dynamic responses of motion parameters as well as the variation of angles affecting the orientation of the launch vehicle (LV). LV dynamic characteristics including state vector variation with corresponding altitude and velocity for the different LV stages separation, as well as the angle of attack and flight path angles are also discussed. A flight trajectory study for the drop zone of first stage and the jettisoning of fairing are introduced in the mathematical modeling to study their effect. To increase the accuracy of the LV model, atmospheric model is used taking into consideration geographical location and the values of solar flux related to the date and time of launch, accurate atmospheric model leads to enhancement of the calculation of Mach number, which affects the drag force over the LV. The mathematical model is implemented on MATLAB based software (Simulink). The real available experimental data are compared with results obtained from the theoretical computation model. The comparison shows good agreement, which proves the validity of the developed simulation model; the maximum error noticed was generally less than 10%, which is a result that can lead to future works and enhancement to decrease this level of error.

Keywords: Launch vehicle modeling, launch vehicle trajectory, mathematical modeling, MATLAB-Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3229
174 Preparation of Polymer-Stabilized Magnetic Iron Oxide as Selective Drug Nanocarriers to Human Acute Myeloid Leukemia

Authors: Kheireddine El-Boubbou

Abstract:

Drug delivery to target human acute myeloid leukemia (AML) using a nanoparticulate chemotherapeutic formulation that can deliver drugs selectively to AML cancer is hugely needed. In this work, we report the development of a nanoformulation made of polymeric-stabilized multifunctional magnetic iron oxide nanoparticles (PMNP) loaded with the anticancer drug Doxorubicin (Dox) as a promising drug carrier to treat AML. Dox@PMNP conjugates simultaneously exhibited high drug content, maximized fluorescence, and excellent release properties. Nanoparticulate uptake and cell death following addition of Dox@PMNPs were then evaluated in different types of human AML target cells, as well as on normal human cells. While the unloaded MNPs were not toxic to any of the cells, Dox@PMNPs were found to be highly toxic to the different AML cell lines, albeit at different inhibitory concentrations (IC50 values), but showed very little toxicity towards the normal cells. In comparison, free Dox showed significant potency concurrently to all the cell lines, suggesting huge potentials for the use of Dox@PMNPs as selective AML anticancer cargos. Live confocal imaging, fluorescence and electron microscopy confirmed that Dox is indeed delivered to the nucleus in relatively short periods of time, causing apoptotic cell death. Importantly, this targeted payload may potentially enhance the effectiveness of the drug in AML patients and may further allow physicians to image leukemic cells exposed to Dox@PMNPs using MRI.

Keywords: Magnetic nanoparticles, drug delivery, acute myeloid leukemia, iron oxide, cancer nanotherapy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1094