Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32583
Synthesis and in vitro Characterization of a Gel-Derived SiO2-CaO-P2O5-SrO-Li2O Bioactive Glass

Authors: Mehrnaz Aminitabar, Moghan Amirhosseinian, Morteza Elsa


Bioactive glasses (BGs) are a group of surface-reactive biomaterials used in clinical applications as implants or filler materials in the human body to repair and replace diseased or damaged bone. Sol-gel technique was employed to prepare a SiO2-CaO-P2O5 glass with nominal composition of 58S BG with the addition of Sr and Li modifiers which imparts special properties to the BG. The effect of simultaneous addition of Sr and Li on bioactivity and biocompatibility, proliferation, alkaline phosphatase (ALP) activity of osteoblast cell line MC3T3-E1 and antibacterial property against methicillin-resistant Staphylococcus aureus (MRSA) bacteria were examined. BGs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy before and after soaking the samples in the simulated body fluid (SBF) for different time intervals to characterize the formation of hydroxyapatite (HA) formed on the surface of BGs. Structural characterization indicated that the simultaneous presence of 5% Sr and 5% Li in 58S-BG composition not only did not retard HA formation because of opposite effect of Sr and Li of the dissolution of BG in the SBF but also, stimulated the differentiation and proliferation of MC3T3-E1s. Moreover, the presence of Sr and Li on dissolution of the ions resulted in an increase in the mean number of DAPI-labeled nuclei which was in good agreement with live/dead assay. The result of antibacterial tests revealed that Sr and Li-substituted 58S BG exhibited a potential antibacterial effect against MRSA bacteria. Because of optimal proliferation and ALP activity of MC3T3-E1cells, proper bioactivity and high antibacterial potential against MRSA, BG-5/5 is suggested as a multifunctional candidate for bone tissue engineering.

Keywords: Antibacterial activity, bioactive glass, sol-gel, strontium.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 736


[1] L. L. Hench, The story of Bioglass®, J. Mater. Sci. Mater. Med. 17 (2006) 967–978. doi:10.1007/s10856-006-0432-z.
[2] Y. Ebisawa, T. Kokubo, K. Ohura, T. Yamamuro, Bioactivity of CaO.SiO2-based glasses:in vitro evaluation, J. Mater. Sci. Mater. Med. 1 (1990) 239–244. doi:10.1007/BF00701083.
[3] L. L. Hench, J. Wilson, An Introduction to Bioceramics, World Scientific, 1993. doi:10.1142/2028.
[4] A. Moghanian, S. Firoozi, M. Tahriri, Characterization, in vitro bioactivity and biological studies of sol-gel synthesized SrO substituted 58S bioactive glass, Ceram. Int. 43 (2017) 14880–14890. doi: 10.1016/J.CERAMINT.2017.08.004.
[5] A. Moghanian, A. Sedghi, A. Ghorbanoghli, E. Salari, The effect of magnesium content on in vitro bioactivity, biological behavior and antibacterial activity of sol–gel derived 58S bioactive glass, Ceram. Int. (2018). doi: 10.1016/J.CERAMINT.2018.02.159.
[6] L. Courthéoux, J. Lao, J.-M. Nedelec, E. Jallot, Controlled Bioactivity in Zinc-Doped Sol−Gel-Derived Binary Bioactive Glasses, (2008).
[7] C. Wu, Y. Zhou, M. Xu, P. Han, L. Chen, J. Chang, Y. Xiao, Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity, Biomaterials. 34 (2013) 422–433. doi: 10.1016/j.biomaterials.2012.09.066.
[8] B. Akkopru, C. Durucan, Preparation and microstructure of sol-gel derived silver-doped silica, J. Sol-Gel Sci. Technol. 43 (2007) 227–236. doi:10.1007/s10971-007-1561-7.
[9] A. Moghanian, S. Firoozi, M. Tahriri, Synthesis and in vitro studies of sol-gel derived lithium substituted 58S bioactive glass, Ceram. Int. 43 (2017) 12835–12843. doi: 10.1016/j.ceramint.2017.06.174.
[10] I. D. Xynos, A. J. Edgar, L. D. K. Buttery, L. L. Hench, J. M. Polak, Ionic Products of Bioactive Glass Dissolution Increase Proliferation of Human Osteoblasts and Induce Insulin-like Growth Factor II mRNA Expression and Protein Synthesis, Biochem. Biophys. Res. Commun. 276 (2000) 461–465. doi:10.1006/bbrc.2000.3503.
[11] J. R. Jones, L. M. Ehrenfried, P. Saravanapavan, L. L. Hench, Controlling ion release from bioactive glass foam scaffolds with antibacterial properties, J. Mater. Sci. Mater. Med. 17 (2006) 989–996. doi: 10.1007/s10856-006-0434-x.
[12] A. Hoppe, N. S. Güldal, A. R. Boccaccini, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials. 32 (2011) 2757–2774. doi: 10.1016/j.biomaterials.2011.01.004.
[13] S. Murphy, A. W. Wren, M. R. Towler, D. Boyd, The effect of ionic dissolution products of Ca–Sr–Na–Zn–Si bioactive glass on in vitro cytocompatibility, J. Mater. Sci. Mater. Med. 21 (2010) 2827–2834. doi: 10.1007/s10856-010-4139-9.
[14] A. Moghanian, S. Firoozi, M. Tahriri, A. Sedghi, A comparative study on the in vitro formation of hydroxyapatite, cytotoxicity and antibacterial activity of 58S bioactive glass substituted by Li and Sr, Mater. Sci. Eng. C. 91 (2018) 349–360. doi: 10.1016/J.MSEC.2018.05.058.
[15] P. Habibovic, J. Barralet, Bioinorganics and biomaterials: bone repair, Acta Biomater. (2011).
[16] M. Arioka, F. Takahashi-Yanaga, M. Sasaki, T. Yoshihara, S. Morimoto, M. Hirata, Y. Mori, T. Sasaguri, Acceleration of bone regeneration by local application of lithium: Wnt signal-mediated osteoblastogenesis and Wnt signal-independent suppression of osteoclastogenesis, Biochem. Pharmacol. 90 (2014) 397–405. doi: 10.1016/j.bcp.2014.06.011.
[17] P. Han, C. Wu, J. Chang, Y. Xiao, The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/β-catenin signalling pathway by Li+ ions released from bioactive scaffolds, Biomaterials. (2012).
[18] A. Zamani, G. Omrani, M. Nasab, Lithium’s effect on bone mineral density, Bone. (2009).
[19] M. Khorami, S. Hesaraki, A. Behnamghader, H. Nazarian, S. Shahrabi, In vitro bioactivity and biocompatibility of lithium substituted 45S5 bioglass, Mater. Sci. Eng. C. 31 (2011) 1584–1592. doi: 10.1016/j.msec.2011.07.011.
[20] Z. Zhu, J. Yin, J. Guan, B. Hu, X. Niu, D. Jin, Y. Wang, C. Zhang, Lithium stimulates human bone marrow derived mesenchymal stem cell proliferation through GSK-3β-dependent β-catenin/Wnt pathway activation, FEBS J. 281 (2014) 5371–5389. doi:10.1111/febs.13081.
[21] A. Balamurugan, G. Sockalingum, J. Michel, J. Fauré, V. Banchet, L. Wortham, S. Bouthors, D. Laurent-Maquin, G. Balossier, Synthesis and characterisation of sol gel derived bioactive glass for biomedical applications, 2006. doi: 10.1016/j.matlet.2006.03.102.
[22] M. Vallet-Regí, C. V. Ragel, A. J. Salinas, Glasses with Medical Applications, Eur. J. Inorg. Chem. 2003 (2003) 1029–1042. doi:10.1002/ejic.200390134.
[23] P. Sepulveda, J. R. Jones, L. L. Hench, In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses, J. Biomed. Mater. Res. 61 (2002) 301–311. doi:10.1002/jbm.10207.
[24] D. Arcos, D. C. Greenspan, M. Vallet-Regí, A new quantitative method to evaluate the in vitro bioactivity of melt and sol-gel-derived silicate glasses, J. Biomed. Mater. Res. Part A. 65A (2003) 344–351. doi:10.1002/jbm.a.10503.
[25] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproducein vivo surface-structure changes in bioactive glass-ceramic A-W3, J. Biomed. Mater. Res. 24 (1990) 721–734. doi:10.1002/jbm.820240607.
[26] E. Gentleman, M. M. Stevens, R. G. Hill, D. S. Brauer, Surface properties and ion release from fluoride-containing bioactive glasses promote osteoblast differentiation and mineralization in vitro, Acta Biomater. 9 (2013) 5771–5779. doi: 10.1016/j.actbio.2012.10.043.
[27] M. D. O ’donnell, R.G. Hill, Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration, (2010). doi: 10.1016/j.actbio.2010.01.006.
[28] E. Gentleman, Y. C. Fredholm, G. Jell, N. Lotfibakhshaiesh, M. D. O’Donnell, R. G. Hill, M. M. Stevens, The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro, Biomaterials. 31 (2010) 3949–3956. doi: 10.1016/j.biomaterials.2010.01.121.
[29] Y. Gotoh, K. Hiraiwa, M. Nagayama, In vitro mineralization of osteoblastic cells derived from human bone., Bone Miner. 8 (1990) 239–50.
[30] C. E. Yellowley, Z. Li, Z. Zhou, C. R. Jacobs, H. J. Donahue, Functional Gap Junctions Between Osteocytic and Osteoblastic Cells, J. Bone Miner. Res. 15 (2010) 209–217. doi:10.1359/jbmr.2000.15.2.209.
[31] M. C. Enright, D. A. Robinson, G. Randle, E. J. Feil, H. Grundmann, B. G. Spratt, The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA)., Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 7687–92. doi: 10.1073/pnas.122108599.
[32] S. Hu, J. Chang, M. Liu, C. Ning, Study on antibacterial effect of 45S5 Bioglass®, J. Mater. Sci. Mater. Med. 20 (2009) 281–286. doi: 10.1007/s10856-008-3564-5.
[33] G. S. Lázaro, S. C. Santos, C. X. Resende, E.A. dos Santos, Individual and combined effects of the elements Zn, Mg and Sr on the surface reactivity of a SiO2•CaO•Na2O•P2O5 bioglass system, J. Non. Cryst. Solids. 386 (2014) 19–28. doi: 10.1016/j.jnoncrysol.2013.11.038.
[34] F. Baino, G. Novajra, V. Miguez-Pacheco, C. Vitale-Brovarone, Bioactive glasses: Special applications outside the skeletal system, J. Non. Cryst. Solids. 432 (2016) 15–30. doi: 10.1016/J.JNONCRYSOL.2015.02.015.
[35] B. Roling, M. Ingram, Mixed alkaline-earth effects in ion conducting glasses, J. Non. Cryst. Solids. 265 (2000) 113–119. doi: 10.1016/S0022-3093(99)00899-6.
[36] S. Shahrabi, S. Hesaraki, S. Moemeni, M. Khorami, Structural discrepancies and in vitro nanoapatite formation ability of sol–gel derived glasses doped with different bone stimulator ions, Ceram. Int. 37 (2011) 2737–2746. doi: 10.1016/j.ceramint.2011.04.025.
[37] X. Wu, G. Meng, S. Wang, F. Wu, W. Huang, Z. Gu, Zn and Sr incorporated 64S bioglasses: Material characterization, in-vitro bioactivity and mesenchymal stem cell responses, Mater. Sci. Eng. C. 52 (2015) 242–250. doi: 10.1016/j.msec.2015.03.057.
[38] M. Mozafari, F. Moztarzadeh, M. Tahriri, Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2–CaO–P2O5 glass in simulated body fluid, J. Non. Cryst. Solids. 356 (2010) 1470–1478. doi: 10.1016/j.jnoncrysol.2010.04.040.
[39] V. K. Vyas, A. S. Kumar, S. Prasad, S. P. Singh, R. Pyare, Bioactivity and mechanical behaviour of cobalt oxide-doped bioactive glass, Bull. Mater. Sci. 38 (2015) 957–964. doi:10.1007/s12034-015-0936-6.
[40] K. Zhang, H. Yan, D. C. Bell, A. Stein, L. F. Francis, Effects of materials parameters on mineralization and degradation of sol-gel bioactive glasses with 3D-ordered macroporous structures, J. Biomed. Mater. Res. 66A (2003) 860–869. doi: 10.1002/jbm.a.10093.
[41] D. Farlay, G. Panczer, C. Rey, P. D. Delmas, G. Boivin, Mineral maturity and crystallinity index are distinct characteristics of bone mineral, J. Bone Miner. Metab. 28 (2010) 433–445. doi: 10.1007/s00774-009-0146-7.
[42] J. Zeglinski, M. Nolan, M. Bredol, A. Schatte, S. A. M. Tofail, J. Kost, S. Bauer, M. Krause, W. W. Lu, Unravelling the specific site preference in doping of calcium hydroxyapatite with strontium from ab initio investigations and Rietveld analyses, Phys. Chem. Chem. Phys. 14 (2012) 3435. doi: 10.1039/c2cp23163h.
[43] C. Demin, F. Yuanfei, G. Guozhen, Preparation and solubility of the solid solution of strontium substituted hydroxyapatite, Chinese J. (2001). (accessed May 27, 2017).
[44] S. Hesaraki, M. Gholami, S. Vazehrad, S. Shahrabi, The effect of Sr concentration on bioactivity and biocompatibility of sol–gel derived glasses based on CaO–SrO–SiO2–P2O5 quaternary system, Mater. Sci. Eng. C. 30 (2010) 383–390. doi: 10.1016/j.msec.2009.12.001.
[45] J. R. Jones, New trends in bioactive scaffolds: The importance of nanostructure, J. Eur. Ceram. Soc. 29 (2009) 1275–1281. doi: 10.1016/j.jeurceramsoc.2008.08.003.
[46] S. Taherkhani, F. Moztarzadeh, Influence of strontium on the structure and biological properties of sol–gel-derived mesoporous bioactive glass (MBG) powder, J. Sol-Gel Sci. Technol. 78 (2016) 539–549. doi:10.1007/s10971-016-3995-2.
[47] P. G. Koutsoukos, G. H. Nancollas, Influence of strontium ion on the crystallization of hydroxyapatite from aqueous solution, J. Phys. Chem. 85 (1981) 2403–2408. doi:10.1021/j150616a022.
[48] H. Attar, K. G. Prashanth, A. K. Chaubey, M. Calin, L. C. Zhang, S. Scudino, J. Eckert, Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes, Mater. Lett. 142 (2015) 38–41. doi: 10.1016/J.MATLET.2014.11.156.
[49] Y. Zhang, L. Wei, J. Chang, R. J. Miron, B. Shi, S. Yi, C. Wu, G. Sayegh, V. Guarneri, K. Desrouleaux, J. Cui, A. Adamus, R. F. Gagel, G. N. Hortobagyi, Strontium-incorporated mesoporous bioactive glass scaffolds stimulating in vitro proliferation and differentiation of bone marrow stromal cells and in vivo regeneration of osteoporotic bone defects, J. Mater. Chem. B. 1 (2013) 5711. doi:10.1039/c3tb21047b.
[50] J. Zhang, S. Zhao, Y. Zhu, Y. Huang, M. Zhu, C. Tao, C. Zhang, Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration, Acta Biomater. 10 (2014) 2269–2281. doi: 10.1016/j.actbio.2014.01.001.
[51] J. Liu, S.C.F. Rawlinson, R.G. Hill, F. Fortune, Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects, Dent. Mater. 32 (2016) 412–422. doi: 10.1016/
[52] K. Qiu, X. J. Zhao, C. X. Wan, C. S. Zhao, Y. W. Chen, Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds, Biomaterials. 27 (2006) 1277–1286. doi: 10.1016/j.biomaterials.2005.08.006.
[53] K. L. Wong, C. T. Wong, W. C. Liu, H. B. Pan, M. K. Fong, W. M. Lam, W. L. Cheung, W. M. Tang, K. Y. Chiu, K. D. K. Luk, W. W. Lu, Mechanical properties and in vitro response of strontium-containing hydroxyapatite/polyetheretherketone composites, Biomaterials. 30 (2009) 3810–3817. doi: 10.1016/j.biomaterials.2009.04.016.
[54] X. Wang, X. Li, A. Ito, Y. Sogo, Synthesis and characterization of hierarchically macroporous and mesoporous CaO–MO–SiO2–P2O5 (M=Mg, Zn, Sr) bioactive glass scaffolds, Acta Biomater. 7 (2011) 3638–3644. doi: 10.1016/j.actbio.2011.06.029.
[55] P. Han, C. Wu, J. Chang, Y. Xiao, The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/?-catenin signalling pathway by Li+ ions released from bioactive scaffolds, Biomaterials. 33 (2012) 6370–6379. doi: 10.1016/j.biomaterials.2012.05.061.
[56] K. Yuan, Y. Chan, K. Kung, Comparison of osseointegration on various implant surfaces after bacterial contamination and cleaning: a rabbit study., Int. J. (2014). (accessed March 5, 2017).
[57] D. Khvostenko, T. J. Hilton, J. L. Ferracane, J. C. Mitchell, J. J. Kruzic, Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations, Dent. Mater. 32 (2016) 73–81. doi: 10.1016/
[58] J. Lieb, Lithium and antidepressants: Stimulating immune function and preventing and reversing infection, Med. Hypotheses. 69 (2007) 8–11. doi: 10.1016/j.mehy.2006.12.005.
[59] J. Liu, S. Rawlinson, R. Hill, F. Fortune, Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects, Dent. Mater. (2016). (accessed March 2, 2017).
[60] I. Allan, H. Newman, M. Wilson, Antibacterial activity of particulate Bioglass® against supra- and subgingival bacteria, Biomaterials. 22 (2001) 1683–1687. doi:10.1016/S0142-9612(00)00330-6.