Control of Airborne Aromatic Hydrocarbons over TiO2-Carbon Nanotube Composites
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Control of Airborne Aromatic Hydrocarbons over TiO2-Carbon Nanotube Composites

Authors: Joon Y. Lee, Seung H. Shin, Ho H. Chun, Wan K. Jo

Abstract:

Poly vinyl acetate (PVA)-based titania (TiO2)–carbon nanotube composite nanofibers (PVA-TCCNs) with various PVA-to-solvent ratios and PVA-based TiO2 composite nanofibers (PVA-TN) were synthesized using an electrospinning process, followed by thermal treatment. The photocatalytic activities of these nanofibers in the degradation of airborne monocyclic aromatics under visible-light irradiation were examined. This study focuses on the application of these photocatalysts to the degradation of the target compounds at sub-part-per-million indoor air concentrations. The characteristics of the photocatalysts were examined using scanning electron microscopy, X-ray diffraction, ultraviolet-visible spectroscopy, and Fourier-transform infrared spectroscopy. For all the target compounds, the PVA-TCCNs showed photocatalytic degradation efficiencies superior to those of the reference PVA-TN. Specifically, the average photocatalytic degradation efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX) obtained using the PVA-TCCNs with a PVA-to-solvent ratio of 0.3 (PVA-TCCN-0.3) were 11%, 59%, 89%, and 92%, respectively, whereas those observed using PVA-TNs were 5%, 9%, 28%, and 32%, respectively. PVA-TCCN-0.3 displayed the highest photocatalytic degradation efficiency for BTEX, suggesting the presence of an optimal PVA-to-solvent ratio for the synthesis of PVA-TCCNs. The average photocatalytic efficiencies for BTEX decreased from 11% to 4%, 59% to 18%, 89% to 37%, and 92% to 53%, respectively, when the flow rate was increased from 1.0 to 4.0 L min1. In addition, the average photocatalytic efficiencies for BTEX increased 11% to ~0%, 59% to 3%, 89% to 7%, and 92% to 13%, respectively, when the input concentration increased from 0.1 to 1.0 ppm. The prepared PVA-TCCNs were effective for the purification of airborne aromatics at indoor concentration levels, particularly when the operating conditions were optimized.

Keywords: Mixing ratio, nanofiber, polymer, reference photocatalyst.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1100080

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239

References:


[1] M. de Blas, M. Navazo, L. Alonso, N. Durana, M. Gomez, and C, Iza J. Sci Total Environ, 2012, 426: 327.
[2] M. Masiol, C. Agostinelli, G. Formenton, E. Tarabotti, and B. Pavoni, Sci Total Environ, 2014, 494-495: 84.
[3] M. C. McCarthy, Y. –A. Aklilu, S. G. Brown, and D. A. Lyder, Atmos Environ, 2013, 81: 504.
[4] F. –C. Su, B. Mukherjee, and S. Batterman, Environ Res, 2013, 126: 192.
[5] USEPA (United States of Environmental Agency), Health Effects Information Used In Cancer and Noncancer Risk Characterization for the 1999 National-Scale Assessment. Accessed in December 2012. http://www.epa.gov/ttn/atw/nata1999/99pdfs/healtheffectsinfo.pdf.
[6] W. Xie, H. Chen, X. Zhang, X. Hu, and G. Li, Chin J Catal, 2013, 34: 1076.
[7] Y. Zheng, Z. Pan, and X. Wang, Chin J Catal, 2013, 34: 524.
[8] L. G. Devi and R. Kavitha, Appl Catal B, 2013, 140-141: 559.
[9] K. Nakata and A. Fujishima, J Photochem Photobiol C, 2012, 13: 169.
[10] M. A. Henderson, Surf Sci Rep, 2011, 66: 185.
[11] R. Leary and A. Westwood, Carbon, 2011, 49: 741.
[12] S. M. Miranda, G. E. Romanos, V. Likodimos, R. R. N. Marques, E. P. Favvas, F. K. Katsaros, K. L. Stefanopoulos, V. J. P. Vilar, J. L. Faria, P. Falaras, and A. M. T. Silva, Appl Catal B, 2014, 147: 65.
[13] Z. Meng Z and W. Ou, Chin J Catal, 2012, 33: 1495.
[14] M. J. Sampaio, R. R. N. Marques, P. B. Tavares, J. L. Faria, A. M. T. Silva, and C. G. Silva, J Environ Chem Eng, 2013, 1: 945.
[15] M. Y. Guo, F. Liu, Y. H. Leung, A. M. C. Ng, A. B. Djuriśić, and W. K. Chan, Curr Appl Phys, 2013, 13: 1280.
[16] K. Rajasekar, S. Thennarasu, R. Rajesh, R. Abirami, K. B. Ameen, A. Ramasubbu, Solid State Sci 2013, 26: 45.
[17] S. An, M. W. Lee, B. N. Joshi, A. Jo, Y. Jung, and S. S. Yoon, Ceramics Int, 2014, 40: 3305.
[18] L. Szatmáry, J. Šubrt, V. Kalousek, J. Mosinger, and K. Lang, Catal Today, 2014, 230: 74.
[19] C. Prahsarn, W. Klinsukhon, and N. Roungpaisan, Mater Lett, 2011, 65: 2498.
[20] G. Hu, X. Meng, X. Feng, Y. Ding, S. Zhang, and M. Yang, J Mater Sci, 2007, 42: 7162.
[21] S. Kedem, D.Rozen, Y. Cohen, and Y. Paz, J Phys Chem C, 2009, 113: 14893.
[22] M. K. Pilehrood, P. Heikkilä, and A. Harlin, Autex Res J, 2012, 12: 1
[23] S. Aryl, C. K. Kim, K. –W. Kim, M. S. Khil, and H. Y. Kim, Mater Sci Eng C, 2008, 28: 75.
[24] S. Singh, H. Mahalingam, and P. K. Singh, Appl Catal B, 2013, 462-463: 178.
[25] N. T. Nolan, D. W. Synnott, M. K. Seery, S. J. Hinder, A. Van Wassenhoven, and S. C. Pillai, J Hazard Mater, 2012, 211−212: 88.
[26] J. Li, S. L. Zhou, G. –B. Hong, and C. –T. Chang, Chem Eng J, 2013, 219: 486.
[27] A. Rey, P. García-Muñoz, M. D. Hernández-Alonso, E. Mena, S. Garćia-Rodríguez, and F. J. Beltrán, Appl Catal B, 154-155: 274.
[28] W. K. Jo and H. J. Kang, Power Technol, 2013, 250: 115.
[29] J. C. S. Wu and Y. –T. Cheng, J Catal, 2006, 237: 393.
[30] W. Zhou, G. Du, P. Hu, Y. Yin, J. Li, J. Yu, G. Wang, J. Wang, H. Liu, J. Wang, and H. Zhang, J. Hazard. Mater., 2011, 197: 19.
[31] Z. Wang, J. Liu, Y. Dai, W. Dong, S. Zhang, and J. Chen, J Hazard Mater, 2012, 215−216: 25.
[32] W. K. Jo, J Air Waste Manage, 2013, 63: 963.