Investigating the Formation of Nano-Hydroxyapatite on a Biocompatible and Antibacterial Cu/Mg-Substituted Bioglass
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Investigating the Formation of Nano-Hydroxyapatite on a Biocompatible and Antibacterial Cu/Mg-Substituted Bioglass

Authors: Elhamalsadat Ghaffari, Moghan Amirhosseinian, Amir Khaleghipour

Abstract:

Multifunctional bioactive glasses (BGs) are designed with a focus on the provision of bactericidal and biological properties desired for angiogenesis, osteogenesis, and ultimately potential applications in bone tissue engineering. To achieve these, six sol-gel copper/magnesium substituted derivatives of 58S-BG, i.e. a mol% series of 60SiO2-4P2O5-5CuO-(31-x) CaO/xMgO (where x=0, 1, 3, 5, 8, and 10), were synthesized. Afterwards, the effect of MgO/CaO substitution on the in vitro formation of nano-hydroxyapatite (HA), osteoblast-like cell responses and BGs antibacterial performance were studied. During the BGs synthesis, the elimination of nitrates was achieved at 700 °C that prevented the BGs crystallization and stabilized the obtained dried gels. The structural and morphological evaluations were performed with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). These characterizations revealed that Cu-substituted 58S-BG consisting of 5 mol% MgO (BG-5/5) slightly had retarded the formation of HA. In addition, Cu-substituted 58S-BGs consisting 8 mol% and 10 mol% MgO (BG-5/8 and BG-5/10) displayed lower bioactivity probably due to the lower ion release rate of Ca–Si into the simulated body fluid (SBF). The determination of 3-(4, 5 dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and alkaline phosphate (ALP) activities proved that the highest values of both differentiation and proliferation of MC3T3-E1 cells can be obtained from a 5 mol% MgO substituted BG, while the over addition of MgO (8 mol% and 10 mol%) decreased the bioactivity. Furthermore, these novel Cu/Mg-substituted 58S-BGs displayed antibacterial effect against methicillin-resistant Staphylococcus aureus bacteria. Taken together, the results suggest the equally-substituted BG-5/5 (i.e. the one consists of 5 mol% of both CuO and MgO) as a promising candidate for bone tissue engineering, among all newly designed BGs in this work, owing to its desirable cell proliferation, ALP activity and antibacterial properties.

Keywords: Apatite, bioactivity, biomedical applications sol-gel processes.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.3300508

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 845

References:


[1] K. H. Karlsson, L. Hupa, Thirty-five years of guided tissue engineering, J. Non. Cryst. Solids. 354 (2008) 717–721.
[2] G. Dickson, F. Buchanan, D. Marsh, E. Harkin-Jones, U. Little, M. McCaigue, Orthopaedic tissue engineering and bone regeneration, Technol. Heal. Care. 15 (2007) 57–67.
[3] B. Sharma, S. Varghese, Progress in orthopedic biomaterials and drug delivery, Drug Deliv. Transl. Res. 6 (2016) 75–76.
[4] T. Kokubo, Nihon Medikaru Materiaru Kabushiki Kaisha., Bioceramics and their clinical applications, Woodhead Pub. and Maney Pub. on behalf of Institute of Materials, Minerals & Mining, 2008.
[5] M. Laczka, K. Cholewa-Kowalska, A. M. Osyczka, Bioactivity and osteoinductivity of glasses and glassceramics and their material determinants, Ceram. Int. 42 (2016) 14313–14325.
[6] L. L. Hench, The story of Bioglass®, J. Mater. Sci. Mater. Med. 17 (2006) 967–978.
[7] P. Sepulveda, J. R. Jones, L. L. Hench, Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses, J. Biomed. Mater. Res. 58 (2001) 734–740.
[8] D. Arcos, D. C. Greenspan, M. Vallet-Regí, A new quantitative method to evaluate the in vitro bioactivity of melt and sol-gel-derived silicate glasses, J. Biomed. Mater. Res. Part A. 65A (2003) 344–351.
[9] R. Ravarian, F. Moztarzadeh, M. S. Hashjin, S. M. Rabiee, P. Khoshakhlagh, M. Tahriri, Synthesis, characterization and bioactivity investigation of bioglass/hydroxyapatite composite, Ceram. Int. 36 (2010) 291–297.
[10] A. Moghanian, S. Firoozi, M. Tahriri, Synthesis and in vitro studies of sol-gel derived lithium substituted 58S bioactive glass, Ceram. Int. 43 (2017) 12835–12843.
[11] A. Moghanian, S. Firoozi, M. Tahriri, Characterization, in vitro bioactivity and biological studies of sol-gel synthesized SrO substituted 58S bioactive glass, Ceram. Int. 43 (2017).
[12] J. Ma, C. Z. Chen, D. G. Wang, X. Shao, C. Z. Wang, H. M. Zhang, Effect of MgO addition on the crystallization and in vitro bioactivity of glass ceramics in the CaO–MgO–SiO2–P2O5 system, Ceram. Int. 38 (2012) 6677–6684.
[13] A. Moghanian, A. Sedghi, A. Ghorbanoghli, E. Salari, The effect of magnesium content on in vitro bioactivity, biological behavior and antibacterial activity of sol–gel derived 58S bioactive glass, Ceram. Int. (2018).
[14] A. M. El-Kady, A. F. Ali, R. A. Rizk, M. M. Ahmed, Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles, Ceram. Int. 38 (2012) 177–188.
[15] C. Wu, Y. Zhou, M. Xu, P. Han, L. Chen, J. Chang, Y. Xiao, Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity, Biomaterials. 34 (2013) 422–433.
[16] R. L. Du, J. Chang, S. Y. Ni, W. Y. Zhai, J. Y. Wang, Characterization and in vitro Bioactivity of Zinc-containing Bioactive Glass and Glass-ceramics, J. Biomater. Appl. 20 (2006) 341–360.
[17] N. Kilcup, U. Werner-Zwanziger, E. Tonkopi, D. Boyd, Unanticipated stabilization of zinc-silicate glasses by addition of lanthanum: Implications for therapeutic inorganic ion delivery systems, J. Non. Cryst. Solids. 429 (2015) 83–92.
[18] J. Ma, C. Z. Chen, D. G. Wang, J. H. Hu, Synthesis, characterization and in vitro bioactivity of magnesium-doped sol–gel glass and glass-ceramics, Ceram. Int. 37 (2011) 1637–1644.
[19] A. Hoppe, B. Sarker, R. Detsch, N. Hild, D. Mohn, W. J. Stark, A. R. Boccaccini, In vitro reactivity of Sr-containing bioactive glass (type 1393) nanoparticles, J. Non. Cryst. Solids. 387 (2014) 41–46.
[20] F. Baino, G. Novajra, V. Miguez-Pacheco, C. Vitale-Brovarone, Bioactive glasses: Special applications outside the skeletal system, J. Non. Cryst. Solids. 432 (2016) 15–30.
[21] M. E. Maguire, J. A. Cowan, Magnesium chemistry and biochemistry, BioMetals. 15 (2002) 203–210.
[22] D. H. H. M. Viering, J. H. F. de Baaij, S. B. Walsh, R. Kleta, D. Bockenhauer, Genetic causes of hypomagnesemia, a clinical overview, Pediatr. Nephrol. 32 (2017) 1123–1135.
[23] S. Castiglioni, A. Cazzaniga, W. Albisetti, J. Maier, Magnesium and Osteoporosis: Current State of Knowledge and Future Research Directions, Nutrients. 5 (2013) 3022–3033.
[24] M. M. Belluci, T. Schoenmaker, C. Rossa-Junior, S. R. Orrico, T. J. de Vries, V. Everts, Magnesium deficiency results in an increased formation of osteoclasts, J. Nutr. Biochem. 24 (2013) 1488–1498.
[25] S. Bernick, G. F. Hungerford, Effect of Dietary Magnesium Deficiency on the Bones and Teeth of Rats, J. Dent. Res. 44 (1965) 1317–1324.
[26] R. K. Rude, H. E. Gruber, L. Y. Wei, A. Frausto, B. G. Mills, Magnesium Deficiency: Effect on Bone and Mineral Metabolism in the Mouse, Calcif. Tissue Int. 72 (2003) 32–41.
[27] M. A. Saghiri, A. Asatourian, J. Orangi, C. M. Sorenson, N. Sheibani, Functional role of inorganic trace elements in angiogenesis—Part II: Cr, Si, Zn, Cu, and S, Crit. Rev. Oncol. Hematol. 96 (2015) 143–155.
[28] A. Nasulewicz, A. Mazur, A. Opolski, Role of copper in tumour angiogenesis—clinical implications, J. Trace Elem. Med. Biol. 18 (2004) 1–8.
[29] G. Hu, Copper stimulates proliferation of human endothelial cells under culture, J. Cell. Biochem. 69 (1998) 326–335.
[30] J. Li, D. Zhai, F. Lv, Q. Yu, H. Ma, J. Yin, Z. Yi, M. Liu, Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing, Acta Biomater. (2016).
[31] J. Ye, J. He, C. Wang, K. Yao, Z. Gou, Copper-containing mesoporous bioactive glass coatings on orbital implants for improving drug delivery capacity and antibacterial activity, Biotechnol. Lett. 36 (2014) 961–968.
[32] J. Pérez-Pariente, A. F. Balas, M. Vallet-Regí*, Surface and Chemical Study of SiO2•P2O5•CaO•(MgO) Bioactive Glasses, Chem. Mater. 12 (2000) 750–755.
[33] J. Ma, C. Z. Chen, D. G. Wang, Y. Jiao, J. Z. Shi, Effect of magnesia on the degradability and bioactivity of sol–gel derived SiO2–CaO–MgO–P2O5 system glasses, Colloids Surfaces B Biointerfaces. 81 (2010) 87–95.
[34] M. Vallet-Regí, A. J. Salinas, J. Román, M. Gil, L. L. Hench, Effect of magnesium content on the in vitro bioactivity of CaO-MgO-SiO2-P2O5 sol-gel glasses, J. Mater. Chem. 9 (1999) 515–518.
[35] E. Dietrich, H. Oudadesse, In vitro bioactivity of melt‐derived glass 46S6 doped with magnesium, J. Biomed. 88 (2009) 1087–1096.
[36] D. Bellucci, A. Sola, R. Salvatori, A. Anesi, L. Chiarini, V. Cannillo, Role of magnesium oxide and strontium oxide as modifiers in silicate-based bioactive glasses: Effects on thermal behaviour, mechanical properties and in-vitro bioactivity, Mater. Sci. Eng. C. 72 (2017) 566–575.
[37] S. J. Watts, R. G. Hill, M. D. O’Donnell, R. V. Law, Influence of magnesia on the structure and properties of bioactive glasses, J. Non. Cryst. Solids. 356 (2010) 517–524.
[38] M. Prabhu, K. Kavitha, P. Manivasakan, V. Rajendran, P. Kulandaivelu, Synthesis, characterization and biological response of magnesium-substituted nanobioactive glass particles for biomedical applications, Ceram. Int. 39 (2013) 1683–1694.
[39] M. Erol, A. Özyuguran, Ö. Çelebican, Synthesis, Characterization, and In Vitro Bioactivity of Sol-Gel-Derived Zn, Mg, and Zn-Mg Co-Doped Bioactive Glasses, Chem. Eng. Technol. 33 (2010) 1066–1074.
[40] J. S. Moya, A. P. Tomsia, A. Pazo, C. Santos, F. Guitin, In vitro formation of hydroxylapatite layer in a MgO-containing glass, J. Mater. Sci. Mater. Med. 5 (1994) 529–532.
[41] A.. Salinas, J. Román, M. Vallet-Regi, J. Oliveira, R.. Correia, M.. Fernandes, In vitro bioactivity of glass and glass-ceramics of the 3CaO•P2O5–CaO•SiO2–CaO•MgO•2SiO2 system, Biomaterials. 21 (2000) 251–257.
[42] A. Saboori, M. Rabiee, F. Moztarzadeh, M. Sheikhi, M. Tahriri, M. Karimi, Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2–CaO–P2O5–MgO bioglass, Mater. Sci. Eng. C. 29 (2009) 335–340.
[43] X. Wang, X. Li, A. Ito, Y. Sogo, Synthesis and characterization of hierarchically macroporous and mesoporous CaO–MO–SiO2–P2O5 (M=Mg, Zn, Sr) bioactive glass scaffolds, Acta Biomater. 7 (2011) 3638–3644.
[44] A. Balamurugan, G. Balossier, J. Michel, S. Kannan, H. Benhayoune, A.H.S. Rebelo, J.M.F. Ferreira, Sol gel derived SiO2-CaO-MgO-P2O5 bioglass system—Preparation andin vitro characterization, J. Biomed. Mater. Res. Part B Appl. Biomater. 83B (2007) 546–553.
[45] R. Namba, M. Inacio, E. Paxton, Risk factors associated with deep surgical site infections after primary total knee arthroplasty: an analysis of 56,216 knees, JBJS. (2013).
[46] K. Yuan, Y. Chan, K. Kung, Comparison of osseointegration on various implant surfaces after bacterial contamination and cleaning: a rabbit study., Int. J. (2014).
[47] J. Kolmas, E. Groszyk, D. Kwiatkowska-Różycka, Substituted hydroxyapatites with antibacterial properties., Biomed Res. Int. 2014 (2014) 178123.
[48] D. Campoccia, L. Montanaro, C. R. Arciola, A review of the biomaterials technologies for infection-resistant surfaces, Biomaterials. 34 (2013) 8533–8554.
[49] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproducein vivo surface-structure changes in bioactive glass-ceramic A-W3, J. Biomed. Mater. Res. 24 (1990) 721–734.
[50] H. M. Elgendy, M. E. Norman, A. R. Keaton, C. T. Laurencin, Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: an approach towards the development of a bone-bioerodible polymer composite material, Biomaterials. 14 (1993) 263–269.
[51] Y. Gotoh, K. Hiraiwa, M. Nagayama, In vitro mineralization of osteoblastic cells derived from human bone., Bone Miner. 8 (1990) 239–50.
[52] C. E. Yellowley, Z. Li, Z. Zhou, C. R. Jacobs, H. J. Donahue, Functional Gap Junctions Between Osteocytic and Osteoblastic Cells, J. Bone Miner. Res. 15 (2010) 209–217.
[53] S. Hu, J. Chang, M. Liu, C. Ning, Study on antibacterial effect of 45S5 Bioglass®, J. Mater. Sci. Mater. Med. 20 (2009) 281–286.
[54] S. Hu, C. Ning, Y. Zhou, L. Chen, K. Lin, J. Chang, Antibacterial activity of silicate bioceramics, J. Wuhan Univ. Technol. Sci. Ed. 26 (2011) 226–230.
[55] R. L. Siqueira, O. Peitl, E. D. Zanotto, Gel-derived SiO2–CaO–Na2O–P2O5 bioactive powders: Synthesis and in vitro bioactivity, Mater. Sci. Eng. C. 31 (2011) 983–991.
[56] D. Xiao, Z. Tan, Y. Fu, K. Duan, X. Zheng, X. Lu, Hydrothermal synthesis of hollow hydroxyapatite microspheres with nano-structured surface assisted by inositol hexakisphosphate, Ceram. Int. (2014).
[57] M. Mozafari, F. Moztarzadeh, M. Tahriri, Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2–CaO–P2O5 glass in simulated body fluid, J. Non. Cryst. Solids. 356 (2010) 1470–1478.
[58] R. Kamalian, A. Yazdanpanah, F. Moztarzadeh, R. Ravarian, Z. Moztarzadeh, M. Tahmasbi, # Masoud Mozafari, Synthesis And Characterization Of Bioactive Glass/Forsterite Nanocomposites For Bone Implants, Ceram. – Silikáty. 56 (2012) 331–340.
[59] V. K. Vyas, A. S. Kumar, S. Prasad, S. P. Singh, R. Pyare, Bioactivity and mechanical behaviour of cobalt oxide-doped bioactive glass, Bull. Mater. Sci. 38 (2015) 957–964.
[60] K. Zhang, H. Yan, D.C. Bell, A. Stein, L. F. Francis, Effects of materials parameters on mineralization and degradation of sol-gel bioactive glasses with 3D-ordered macroporous structures, J. Biomed. Mater. Res. 66A (2003) 860–869.
[61] L. L. Hench, J. Wilson, An Introduction to Bioceramics, World Scientific, 1993.
[62] J. R. Jones, New trends in bioactive scaffolds: The importance of nanostructure, J. Eur. Ceram. Soc. 29 (2009) 1275–1281.
[63] X. Chen, J. Ou, Y. Wei, Z. Huang, Y. Kang, G. Yin, Effect of MgO contents on the mechanical properties and biological performances of bioceramics in the MgO–CaO–SiO2 system, J. Mater. Sci. Mater. Med. 21 (2010) 1463–1471.
[64] D. Khvostenko, T. J. Hilton, J. L. Ferracane, J. C. Mitchell, J. J. Kruzic, Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations, Dent. Mater. 32 (2016) 73–81.
[65] J. P. Ruparelia, A. K. Chatterjee, S. P. Duttagupta, S. Mukherji, Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta Biomater. 4 (2008) 707–716.
[66] Robinson D Griffith R Shechtman D Evans R Conzemius M, In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, Acta Biomater. 6 (2010) 1869–1877.
[67] I. Allan, H. Newman, M. Wilson, Antibacterial activity of particulate Bioglass® against supra- and subgingival bacteria, Biomaterials. 22 (2001) 1683–1687.
[68] M. Kazem-Rostami, A. Moghanian, Hünlich base derivatives as photo-responsive Λ-shaped hinges, Org. Chem. Front. 4 (2017) 224–228.
[69] A. Khazaei, S. Saednia, J. Saien, M. Kazem-Rostami, M. Sadeghpour, M. K. Borazjani, F. Abbasi, Grafting Amino Drugs to Poly(styrene- alt -maleic Anhydride) as a Potential Method for Drug Release, J. Braz. Chem. Soc. 24 (2013) 1109–1115.