Search results for: Fractional controller
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 922

Search results for: Fractional controller

922 Fractional Order Feedback Control of a Ball and Beam System

Authors: Santosh Kr. Choudhary

Abstract:

In this paper, fractional order feedback control of a ball beam model is investigated. The ball beam model is a particular example of the double Integrator system having strongly nonlinear characteristics and unstable dynamics which make the control of such system a challenging task. Most of the work in fractional order control systems are in theoretical nature and controller design and its implementation in practice is very small. In this work, a successful attempt has been made to design a fractional order PIλDμcontroller for a benchmark laboratory ball and beam model. Better performance can be achieved using a fractional order PID controller and it is demonstrated through simulations results with a comparison to the classic PID controller.

Keywords: Fractional order calculus, fractional order controller, fractional order system, ball and beam system, PIλDμ controller, modelling, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3519
921 Observer Based Control of a Class of Nonlinear Fractional Order Systems using LMI

Authors: Elham Amini Boroujeni, Hamid Reza Momeni

Abstract:

Design of an observer based controller for a class of fractional order systems has been done. Fractional order mathematics is used to express the system and the proposed observer. Fractional order Lyapunov theorem is used to derive the closed-loop asymptotic stability. The gains of the observer and observer based controller are derived systematically using the linear matrix inequality approach. Finally, the simulation results demonstrate validity and effectiveness of the proposed observer based controller.

Keywords: Fractional order calculus, Fractional order observer, Linear matrix inequality, Nonlinear Systems, Observer based Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2858
920 A Design of Fractional-Order PI Controller with Error Compensation

Authors: Mazidah Tajjudin, Norhashim Mohd Arshad, Ramli Adnan

Abstract:

Fractional-order controller was proven to perform better than the integer-order controller. However, the absence of a pole at origin produced marginal error in fractional-order control system. This study demonstrated the enhancement of the fractionalorder PI over the integer-order PI in a steam temperature control. The fractional-order controller was cascaded with an error compensator comprised of a very small zero and a pole at origin to produce a zero steady-state error for the closed-loop system. Some modification on the error compensator was suggested for different order fractional integrator that can improve the overall phase margin.

Keywords: Fractional-order PI, Ziegler-Nichols tuning, Oustaloup's Recursive Approximation, steam temperature control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273
919 PSO Based Optimal Design of Fractional Order Controller for Industrial Application

Authors: Rohit Gupta, Ruchika

Abstract:

In this paper, a PSO based fractional order PID (FOPID) controller is proposed for concentration control of an isothermal Continuous Stirred Tank Reactor (CSTR) problem. CSTR is used to carry out chemical reactions in industries, which possesses complex nonlinear dynamic characteristics. Particle Swarm Optimization algorithm technique, which is an evolutionary optimization technique based on the movement and intelligence of swarm is proposed for tuning of the controller for this system. Comparisons of proposed controller with conventional and fuzzy based controller illustrate the superiority of proposed PSO-FOPID controller.

Keywords: CSTR, Fractional Order PID Controller, Partical Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
918 Fractional-Order PI Controller Tuning Rules for Cascade Control System

Authors: Truong Nguyen Luan Vu, Le Hieu Giang, Le Linh

Abstract:

The fractional–order proportional integral (FOPI) controller tuning rules based on the fractional calculus for the cascade control system are systematically proposed in this paper. Accordingly, the ideal controller is obtained by using internal model control (IMC) approach for both the inner and outer loops, which gives the desired closed-loop responses. On the basis of the fractional calculus, the analytical tuning rules of FOPI controller for the inner loop can be established in the frequency domain. Besides, the outer loop is tuned by using any integer PI/PID controller tuning rules in the literature. The simulation study is considered for the stable process model and the results demonstrate the simplicity, flexibility, and effectiveness of the proposed method for the cascade control system in compared with the other methods.

Keywords: Fractional calculus, fractional–order proportional integral controller, cascade control system, internal model control approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
917 Robust Fractional-Order PI Controller with Ziegler-Nichols Rules

Authors: Mazidah Tajjudin, Mohd Hezri Fazalul Rahiman, Norhashim Mohd Arshad, Ramli Adnan

Abstract:

In process control applications, above 90% of the controllers are of PID type. This paper proposed a robust PI controller with fractional-order integrator. The PI parameters were obtained using classical Ziegler-Nichols rules but enhanced with the application of error filter cascaded to the fractional-order PI. The controller was applied on steam temperature process that was described by FOPDT transfer function. The process can be classified as lag dominating process with very small relative dead-time. The proposed control scheme was compared with other PI controller tuned using Ziegler-Nichols and AMIGO rules. Other PI controller with fractional-order integrator known as F-MIGO was also considered. All the controllers were subjected to set point change and load disturbance tests. The performance was measured using Integral of Squared Error (ISE) and Integral of Control Signal (ICO). The proposed controller produced best performance for all the tests with the least ISE index.

Keywords: PID controller, fractional-order PID controller, PI control tuning, steam temperature control, Ziegler-Nichols tuning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3435
916 Tuning a Fractional Order PID Controller with Lead Compensator in Frequency Domain

Authors: Tahmine. V. Moghaddam, N. Bigdeli, K. Afshar

Abstract:

To achieve the desired specifications of gain and phase margins for plants with time-delay that stabilized with FO-PID controller a lead compensator is designed. At first the range of controlled system stability based on stability boundary criteria is determined. Using stability boundary locus method in frequency domain the fractional order controller parameters are tuned and then with drawing bode diagram in frequency domain accessing to desired gain and phase margin are shown. Numerical examples are given to illustrate the shapes of the stabilizing region and to show the design procedure.

Keywords: Fractional controller, Lead compensator, Stabilityregions, Stability boundary locus

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2564
915 Doubly Fed Induction Generator Based Variable Speed Wind Conversion System Control Enhancement by Applying Fractional Order Controller

Authors: Abdellatif Kasbi, Abderrafii Rahali

Abstract:

In an electric power grid connected wind generation system, dynamic control strategy is essential to use the wind energy efficiently as well as for an energy optimization. The present study has focused on decoupled power regulation of doubly fed induction generator, operating in wind turbine, in accordance with the vector control approach by applying fractional order proportional integral (FOPI) controller. The FOPI controller is designed based on a simple method; up such that the response of closed loop process is similar to the response of a specified fractional model whose transfer function is Bode’s ideal function. In this tuning operation, the parameters of the proposed fractional controller are established analytically using the impulse closed-loop response of the controlled process. To show the superior action of the developed FOPI controller in comparison with standard PI controller in different function conditions, the study is validated through simulation using the software MATLAB/Simulink.

Keywords: Wind generation system, DFIG, vector control approach, fractional order PI controller, Bode’s ideal transfer function, impulse response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 652
914 Application of Fractional Model Predictive Control to Thermal System

Authors: Aymen Rhouma, Khaled Hcheichi, Sami Hafsi

Abstract:

The article presents an application of Fractional Model Predictive Control (FMPC) to a fractional order thermal system using Controlled Auto Regressive Integrated Moving Average (CARIMA) model obtained by discretization of a continuous fractional differential equation. Moreover, the output deviation approach is exploited to design the K -step ahead output predictor, and the corresponding control law is obtained by solving a quadratic cost function. Experiment results onto a thermal system are presented to emphasize the performances and the effectiveness of the proposed predictive controller.

Keywords: Fractional model predictive control, fractional order systems, thermal system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1194
913 Fractional Order Controller Design for Vibration Attenuation in an Airplane Wing

Authors: Birs Isabela, Muresan Cristina, Folea Silviu, Prodan Ovidiu

Abstract:

The wing is one of the most important parts of an airplane because it ensures stability, sustenance and maneuverability of the airplane. Because of its shape, the airplane wing can be simplified to a smart beam. Active vibration suppression is realized using piezoelectric actuators that are mounted on the surface of the beam. This work presents a tuning procedure of fractional order controllers based on a graphical approach of the frequency domain representation. The efficacy of the method is proven by practically testing the controller on a laboratory scale experimental stand.

Keywords: Fractional order controller, piezoelectric actuators, smart beam, vibration suppression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1210
912 Backstepping Sliding Mode Controller Coupled to Adaptive Sliding Mode Observer for Interconnected Fractional Nonlinear System

Authors: D. Elleuch, T. Damak

Abstract:

Performance control law is studied for an interconnected fractional nonlinear system. Applying a backstepping algorithm, a backstepping sliding mode controller (BSMC) is developed for fractional nonlinear system. To improve control law performance, BSMC is coupled to an adaptive sliding mode observer have a filtered error as a sliding surface. The both architecture performance is studied throughout the inverted pendulum mounted on a cart. Simulation result show that the BSMC coupled to an adaptive sliding mode observer have stable control law and eligible control amplitude than the BSMC.

Keywords: Backstepping sliding mode controller, interconnected fractional nonlinear system, adaptive sliding mode observer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270
911 Design a Fractional Order Controller for Power Control of Doubly Fed Induction Generator Based Wind Generation System

Authors: Abdellatif Kasbi, Abderrafii Rahali

Abstract:

During the recent years, much interest has been devoted to fractional order control that has appeared as a very eligible control approach for the systems experiencing parametric uncertainty and outer disturbances. The main purpose of this paper is to design and evaluate the performance of a fractional order proportional integral (FOPI) controller applied to control prototype variable speed wind generation system (WGS) that uses a doubly fed induction generator (DFIG). In this paper, the DFIG-machine is controlled according to the stator field-oriented control (FOC) strategy, which makes it possible to regulate separately the reactive and active powers exchanged between the WGS and the grid. The considered system is modeled and simulated using MATLAB-Simulink, and the performance of FOPI controller applied to the back-to-back power converter control of DFIG based grid connected variable speed wind turbine are evaluated and compared to the ones obtained with a conventional PI controller.

Keywords: Design, fractional order PI controller, wind generation system, doubly fed induction generator, wind turbine, field-oriented control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 711
910 Notes on Fractional k-Covered Graphs

Authors: Sizhong Zhou, Yang Xu

Abstract:

A graph G is fractional k-covered if for each edge e of G, there exists a fractional k-factor h, such that h(e) = 1. If k = 2, then a fractional k-covered graph is called a fractional 2-covered graph. The binding number bind(G) is defined as follows, bind(G) = min{|NG(X)| |X| : ├ÿ = X Ôèå V (G),NG(X) = V (G)}. In this paper, it is proved that G is fractional 2-covered if δ(G) ≥ 4 and bind(G) > 5 3 .

Keywords: graph, binding number, fractional k-factor, fractional k-covered graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154
909 On Fractional (k,m)-Deleted Graphs with Constrains Conditions

Authors: Sizhong Zhou, Hongxia Liu

Abstract:

Let G be a graph of order n, and let k  2 and m  0 be two integers. Let h : E(G)  [0, 1] be a function. If e∋x h(e) = k holds for each x  V (G), then we call G[Fh] a fractional k-factor of G with indicator function h where Fh = {e  E(G) : h(e) > 0}. A graph G is called a fractional (k,m)-deleted graph if there exists a fractional k-factor G[Fh] of G with indicator function h such that h(e) = 0 for any e  E(H), where H is any subgraph of G with m edges. In this paper, it is proved that G is a fractional (k,m)-deleted graph if (G)  k + m + m k+1 , n  4k2 + 2k − 6 + (4k 2 +6k−2)m−2 k−1 and max{dG(x), dG(y)}  n 2 for any vertices x and y of G with dG(x, y) = 2. Furthermore, it is shown that the result in this paper is best possible in some sense.

Keywords: Graph, degree condition, fractional k-factor, fractional (k, m)-deleted graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1182
908 A Neighborhood Condition for Fractional k-deleted Graphs

Authors: Sizhong Zhou, Hongxia Liu

Abstract:

Abstract–Let k ≥ 3 be an integer, and let G be a graph of order n with n ≥ 9k +3- 42(k - 1)2 + 2. Then a spanning subgraph F of G is called a k-factor if dF (x) = k for each x ∈ V (G). A fractional k-factor is a way of assigning weights to the edges of a graph G (with all weights between 0 and 1) such that for each vertex the sum of the weights of the edges incident with that vertex is k. A graph G is a fractional k-deleted graph if there exists a fractional k-factor after deleting any edge of G. In this paper, it is proved that G is a fractional k-deleted graph if G satisfies δ(G) ≥ k + 1 and |NG(x) ∪ NG(y)| ≥ 1 2 (n + k - 2) for each pair of nonadjacent vertices x, y of G.

Keywords: Graph, minimum degree, neighborhood union, fractional k-factor, fractional k-deleted graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1044
907 Online Robust Model Predictive Control for Linear Fractional Transformation Systems Using Linear Matrix Inequalities

Authors: Peyman Sindareh Esfahani, Jeffery Kurt Pieper

Abstract:

In this paper, the problem of robust model predictive control (MPC) for discrete-time linear systems in linear fractional transformation form with structured uncertainty and norm-bounded disturbance is investigated. The problem of minimization of the cost function for MPC design is converted to minimization of the worst case of the cost function. Then, this problem is reduced to minimization of an upper bound of the cost function subject to a terminal inequality satisfying the l2-norm of the closed loop system. The characteristic of the linear fractional transformation system is taken into account, and by using some mathematical tools, the robust predictive controller design problem is turned into a linear matrix inequality minimization problem. Afterwards, a formulation which includes an integrator to improve the performance of the proposed robust model predictive controller in steady state condition is studied. The validity of the approaches is illustrated through a robust control benchmark problem.

Keywords: Linear fractional transformation, linear matrix inequality, robust model predictive control, state feedback control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265
906 20 GHz Fractional Phased Locked Loop Circuit for the Gbps Wireless Communication

Authors: Ki-Jin Kim, Sanghoon Park, K. H. Ahn

Abstract:

This paper presents the 20-GHz fractional PLL (Phase Locked Loop) circuit for the next generation Wi-Fi by using 90 nm TSMC process. The newly suggested millimeter wave 16/17 pre-scalar is designed and verified by measurement to make the fractional PLL having a low quantization noise. The operational bandwidth of the 60 GHz system is 15 % of the carrier frequency which requires large value of Kv (VCO control gain) resulting in degradation of phase noise. To solve this problem, this paper adopts AFC (Automatic Frequency Controller) controlled 4-bit millimeter wave VCO with small value of Kv. Also constant Kv is implemented using 4-bit varactor bank. The measured operational bandwidth is 18.2 ~ 23.2 GHz which is 25 % of the carrier frequency. The phase noise of -58 and -96.2 dBc/Hz at 100 KHz and 1 MHz offset is measured respectively. The total power consumption of the PLL is only 30 mW.

Keywords: Millimeter Wave Fractional PLL, Wide band VCO, WPAN Transceiver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
905 Fractional Masks Based On Generalized Fractional Differential Operator for Image Denoising

Authors: Hamid A. Jalab, Rabha W. Ibrahim

Abstract:

This paper introduces an image denoising algorithm based on generalized Srivastava-Owa fractional differential operator for removing Gaussian noise in digital images. The structures of nxn fractional masks are constructed by this algorithm. Experiments show that, the capability of the denoising algorithm by fractional differential-based approach appears efficient to smooth the Gaussian noisy images for different noisy levels. The denoising performance is measured by using peak signal to noise ratio (PSNR) for the denoising images. The results showed an improved performance (higher PSNR values) when compared with standard Gaussian smoothing filter.

Keywords: Fractional calculus, fractional differential operator, fractional mask, fractional filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2984
904 Derivation of Fractional Black-Scholes Equations Driven by Fractional G-Brownian Motion and Their Application in European Option Pricing

Authors: Changhong Guo, Shaomei Fang, Yong He

Abstract:

In this paper, fractional Black-Scholes models for the European option pricing were established based on the fractional G-Brownian motion (fGBm), which generalizes the concepts of the classical Brownian motion, fractional Brownian motion and the G-Brownian motion, and that can be used to be a tool for considering the long range dependence and uncertain volatility for the financial markets simultaneously. A generalized fractional Black-Scholes equation (FBSE) was derived by using the Taylor’s series of fractional order and the theory of absence of arbitrage. Finally, some explicit option pricing formulas for the European call option and put option under the FBSE were also solved, which extended the classical option pricing formulas given by F. Black and M. Scholes.

Keywords: European option pricing, fractional Black-Scholes equations, fractional G-Brownian motion, Taylor’s series of fractional order, uncertain volatility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804
903 Existence of Iterative Cauchy Fractional Differential Equation

Authors: Rabha W. Ibrahim

Abstract:

Our main aim in this paper is to use the technique of non expansive operators to more general iterative and non iterative fractional differential equations (Cauchy type ). The non integer case is taken in sense of Riemann-Liouville fractional operators. Applications are illustrated.

Keywords: Fractional calculus, fractional differential equation, Cauchy equation, Riemann-Liouville fractional operators, Volterra integral equation, non-expansive mapping, iterative differential equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2653
902 Stability of Interval Fractional-order Systems with Order 0 < α < 1

Authors: Hong Li, Shou-ming Zhong, Hou-biao Li

Abstract:

In this paper, some brief sufficient conditions for the stability of FO-LTI systems dαx(t) dtα = Ax(t) with the fractional order are investigated when the matrix A and the fractional order α are uncertain or both α and A are uncertain, respectively. In addition, we also relate the stability of a fractional-order system with order 0 < α ≤ 1 to the stability of its equivalent fractional-order system with order 1 ≤ β < 2, the relationship between α and β is presented. Finally, a numeric experiment is given to demonstrate the effectiveness of our results.

Keywords: Interval fractional-order systems, linear matrix inequality (LMI), asymptotical stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3581
901 Relation between Roots and Tangent Lines of Function in Fractional Dimensions: A Method for Optimization Problems

Authors: Ali Dorostkar

Abstract:

In this paper, a basic schematic of fractional dimensional optimization problem is presented. As will be shown, a method is performed based on a relation between roots and tangent lines of function in fractional dimensions for an arbitrary initial point. It is shown that for each polynomial function with order N at least N tangent lines must be existed in fractional dimensions of 0 < α < N+1 which pass exactly through the all roots of the proposed function. Geometrical analysis of tangent lines in fractional dimensions is also presented to clarify more intuitively the proposed method. Results show that with an appropriate selection of fractional dimensions, we can directly find the roots. Method is presented for giving a different direction of optimization problems by the use of fractional dimensions.

Keywords: Tangent line, fractional dimension, root, optimization problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 535
900 Evolutionary Design of Polynomial Controller

Authors: R. Matousek, S. Lang, P. Minar, P. Pivonka

Abstract:

In the control theory one attempts to find a controller that provides the best possible performance with respect to some given measures of performance. There are many sorts of controllers e.g. a typical PID controller, LQR controller, Fuzzy controller etc. In the paper will be introduced polynomial controller with novel tuning method which is based on the special pole placement encoding scheme and optimization by Genetic Algorithms (GA). The examples will show the performance of the novel designed polynomial controller with comparison to common PID controller.

Keywords: Evolutionary design, Genetic algorithms, PID controller, Pole placement, Polynomial controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
899 Lyapunov Type Inequalities for Fractional Impulsive Hamiltonian Systems

Authors: Kazem Ghanbari, Yousef Gholami

Abstract:

This paper deals with study about fractional order impulsive Hamiltonian systems and fractional impulsive Sturm-Liouville type problems derived from these systems. The main purpose of this paper devotes to obtain so called Lyapunov type inequalities for mentioned problems. Also, in view point on applicability of obtained inequalities, some qualitative properties such as stability, disconjugacy, nonexistence and oscillatory behaviour of fractional Hamiltonian systems and fractional Sturm-Liouville type problems under impulsive conditions will be derived. At the end, we want to point out that for studying fractional order Hamiltonian systems, we will apply recently introduced fractional Conformable operators.

Keywords: Fractional derivatives and integrals, Hamiltonian system, Lyapunov type inequalities, stability, disconjugacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
898 Realization of Fractional-Order Capacitors with Field-Effect Transistors

Authors: Steve Hung-Lung Tu, Yu-Hsuan Cheng

Abstract:

A novel and efficient approach to realize fractional-order capacitors is investigated in this paper. Meanwhile, a new approach which is more efficient for semiconductor implementation of fractional-order capacitors is proposed. The feasibility of the approach has been verified with the preliminary measured results.

Keywords: Fractional-order, field-effect transistors, RC transmission lines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3135
897 Some Remarks About Riemann-Liouville and Caputo Impulsive Fractional Calculus

Authors: M. De la Sen

Abstract:

This paper establishes some closed formulas for Riemann- Liouville impulsive fractional integral calculus and also for Riemann- Liouville and Caputo impulsive fractional derivatives.

Keywords: Rimann- Liouville fractional calculus, Caputofractional derivative, Dirac delta, Distributional derivatives, Highorderdistributional derivatives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
896 Oil Displacement by Water in Hauterivian Sandstone Reservoir of Kashkari Oil Field

Authors: A. J. Nazari, S. Honma

Abstract:

This paper evaluates oil displacement by water in Hauterivian sandstone reservoir of Kashkari oil field in North of Afghanistan. The core samples of this oil field were taken out from well No-21st, and the relative permeability and fractional flow are analyzed. Steady state flow laboratory experiments are performed to empirically obtain the fractional flow curves and relative permeability in different water saturation ratio. The relative permeability represents the simultaneous flow behavior in the reservoir. The fractional flow approach describes the individual phases as fractional of the total flow. The fractional flow curve interprets oil displacement by water, and from the tangent of fractional flow curve can find out the average saturation behind the water front flow saturation. Therefore, relative permeability and fractional flow curves are suitable for describing the displacement of oil by water in a petroleum reservoir. The effects of irreducible water saturation, residual oil saturation on the displaceable amount of oil are investigated through Buckley-Leveret analysis.

Keywords: Fractional flow, oil displacement, relative permeability, simultaneously flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
895 An Efficient Hamiltonian for Discrete Fractional Fourier Transform

Authors: Sukrit Shankar, Pardha Saradhi K., Chetana Shanta Patsa, Jaydev Sharma

Abstract:

Fractional Fourier Transform, which is a generalization of the classical Fourier Transform, is a powerful tool for the analysis of transient signals. The discrete Fractional Fourier Transform Hamiltonians have been proposed in the past with varying degrees of correlation between their eigenvectors and Hermite Gaussian functions. In this paper, we propose a new Hamiltonian for the discrete Fractional Fourier Transform and show that the eigenvectors of the proposed matrix has a higher degree of correlation with the Hermite Gaussian functions. Also, the proposed matrix is shown to give better Fractional Fourier responses with various transform orders for different signals.

Keywords: Fractional Fourier Transform, Hamiltonian, Eigen Vectors, Discrete Hermite Gaussians.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
894 Lower Bound of Time Span Product for a General Class of Signals in Fractional Fourier Domain

Authors: Sukrit Shankar, Chetana Shanta Patsa, Jaydev Sharma

Abstract:

Fractional Fourier Transform is a generalization of the classical Fourier Transform which is often symbolized as the rotation in time- frequency plane. Similar to the product of time and frequency span which provides the Uncertainty Principle for the classical Fourier domain, there has not been till date an Uncertainty Principle for the Fractional Fourier domain for a generalized class of finite energy signals. Though the lower bound for the product of time and Fractional Fourier span is derived for the real signals, a tighter lower bound for a general class of signals is of practical importance, especially for the analysis of signals containing chirps. We hence formulate a mathematical derivation that gives the lower bound of time and Fractional Fourier span product. The relation proves to be utmost importance in taking the Fractional Fourier Transform with adaptive time and Fractional span resolutions for a varied class of complex signals.

Keywords: Fractional Fourier Transform, uncertainty principle, Fractional Fourier Span, amplitude, phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175
893 Perturbation in the Fractional Fourier Span due to Erroneous Transform Order and Window Function

Authors: Sukrit Shankar, Chetana Shanta Patsa, Jaydev Sharma

Abstract:

Fractional Fourier Transform is a generalization of the classical Fourier Transform. The Fractional Fourier span in general depends on the amplitude and phase functions of the signal and varies with the transform order. However, with the development of the Fractional Fourier filter banks, it is advantageous in some cases to have different transform orders for different filter banks to achieve better decorrelation of the windowed and overlapped time signal. We present an expression that is useful for finding the perturbation in the Fractional Fourier span due to the erroneous transform order and the possible variation in the window shape and length. The expression is based on the dependency of the time-Fractional Fourier span Uncertainty on the amplitude and phase function of the signal. We also show with the help of the developed expression that the perturbation of span has a varying degree of sensitivity for varying degree of transform order and the window coefficients.

Keywords: Fractional Fourier Transform, Perturbation, Fractional Fourier span, amplitude, phase, transform order, filterbanks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452