Search results for: Eventually positive matrix
2399 Tree Sign Patterns of Small Order that Allow an Eventually Positive Matrix
Authors: Ber-Lin Yu, Jie Cui, Hong Cheng, Zhengfeng Yu
Abstract:
A sign pattern is a matrix whose entries belong to the set {+,−, 0}. An n-by-n sign pattern A is said to allow an eventually positive matrix if there exist some real matrices A with the same sign pattern as A and a positive integer k0 such that Ak > 0 for all k ≥ k0. It is well known that identifying and classifying the n-by-n sign patterns that allow an eventually positive matrix are posed as two open problems. In this article, the tree sign patterns of small order that allow an eventually positive matrix are classified completely.Keywords: Eventually positive matrix, sign pattern, tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12672398 On Positive Definite Solutions of Quaternionic Matrix Equations
Authors: Minghui Wang
Abstract:
The real representation of the quaternionic matrix is definited and studied. The relations between the positive (semi)define quaternionic matrix and its real representation matrix are presented. By means of the real representation, the relation between the positive (semi)definite solutions of quaternionic matrix equations and those of corresponding real matrix equations is established.Keywords: Matrix equation, Quaternionic matrix, Real representation, positive (semi)definite solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14182397 The Partial Non-combinatorially Symmetric N10 -Matrix Completion Problem
Authors: Gu-Fang Mou, Ting-Zhu Huang
Abstract:
An n×n matrix is called an N1 0 -matrix if all principal minors are non-positive and each entry is non-positive. In this paper, we study the partial non-combinatorially symmetric N1 0 -matrix completion problems if the graph of its specified entries is a transitive tournament or a double cycle. In general, these digraphs do not have N1 0 -completion. Therefore, we have given sufficient conditions that guarantee the existence of the N1 0 -completion for these digraphs.
Keywords: Matrix completion, matrix completion, N10 -matrix, non-combinatorially symmetric, cycle, digraph.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10852396 On the Positive Definite Solutions of Nonlinear Matrix Equation
Authors: Tian Baoguang, Liang Chunyan, Chen Nan
Abstract:
In this paper, the nonlinear matrix equation is investigated. Based on the fixed-point theory, the boundary and the existence of the solution with the case r>-δi are discussed. An algorithm that avoids matrix inversion with the case -1<-δi<0 is proposed.
Keywords: Nonlinear matrix equation, Positive definite solution, The maximal-minimal solution, Iterative method, Free-inversion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20012395 A New Proof on the Growth Factor in Gaussian Elimination for Generalized Higham Matrices
Authors: Qian-Ping Guo, Hou-Biao Li
Abstract:
The generalized Higham matrix is a complex symmetric matrix A = B + iC, where both B ∈ Cn×n and C ∈ Cn×n are Hermitian positive definite, and i = √−1 is the imaginary unit. The growth factor in Gaussian elimination is less than 3√2 for this kind of matrices. In this paper, we give a new brief proof on this result by different techniques, which can be understood very easily, and obtain some new findings.
Keywords: CSPD matrix, positive definite, Schur complement, Higham matrix, Gaussian elimination, Growth factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17462394 On Generalized New Class of Matrix Polynomial Set
Authors: Ghazi S. Kahmmash
Abstract:
New generalization of the new class matrix polynomial set have been obtained. An explicit representation and an expansion of the matrix exponential in a series of these matrix are given for these matrix polynomials.
Keywords: Generating functions, Recurrences relation and Generalization of the new class matrix polynomial set.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12522393 A Preliminary Study on the Eventual Positivity of Irreducible Tridiagonal Sign Patterns
Authors: Berlin Yu
Abstract:
Motivated by Berman et al. [Sign patterns that allow eventual positivity, ELA, 19(2010): 108-120], we concentrate on the potential eventual positivity of irreducible tridiagonal sign patterns. The minimal potential eventual positivity of irreducible tridiagonal sign patterns of order less than six is established, and all the minimal potentially eventually positive tridiagonal sign patterns of order · 5 are identified. Our results indicate that if an irreducible tridiagonal sign pattern of order less than six A is minimal potentially eventually positive, then A requires the eventual positivity.
Keywords: Eventual positivity, potentially positive sign pattern, tridiagnoal sign pattern, minimal potentially positive sign pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12712392 Fuzzy Adjacency Matrix in Graphs
Authors: Mahdi Taheri, Mehrana Niroumand
Abstract:
In this paper a new definition of adjacency matrix in the simple graphs is presented that is called fuzzy adjacency matrix, so that elements of it are in the form of 0 and n N n 1 , ∈ that are in the interval [0, 1], and then some charactristics of this matrix are presented with the related examples . This form matrix has complete of information of a graph.Keywords: Graph, adjacency matrix, fuzzy numbers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23722391 A New Inversion-free Method for Hermitian Positive Definite Solution of Matrix Equation
Authors: Minghui Wang, Juntao Zhang
Abstract:
An inversion-free iterative algorithm is presented for solving nonlinear matrix equation with a stepsize parameter t. The existence of the maximal solution is discussed in detail, and the method for finding it is proposed. Finally, two numerical examples are reported that show the efficiency of the method.
Keywords: Inversion-free method, Hermitian positive definite solution, Maximal solution, Convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16052390 Stochastic Subspace Modelling of Turbulence
Authors: M. T. Sichani, B. J. Pedersen, S. R. K. Nielsen
Abstract:
Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper an empirical cross spectral density function for the along-wind turbulence component over the wind field area is taken as the starting point. The spectrum is spatially discretized in terms of a Hermitian cross-spectral density matrix for the turbulence state vector which turns out not to be positive definite. Since the succeeding state space and ARMA modelling of the turbulence rely on the positive definiteness of the cross-spectral density matrix, the problem with the non-positive definiteness of such matrices is at first addressed and suitable treatments regarding it are proposed. From the adjusted positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method.Keywords: Turbulence, wind turbine, complex coherence, state space modelling, ARMA modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16442389 Inverse Matrix in the Theory of Dynamic Systems
Authors: R. Masarova, M. Juhas, B. Juhasova, Z. Sutova
Abstract:
In dynamic system theory a mathematical model is often used to describe their properties. In order to find a transfer matrix of a dynamic system we need to calculate an inverse matrix. The paper contains the fusion of the classical theory and the procedures used in the theory of automated control for calculating the inverse matrix. The final part of the paper models the given problem by the Matlab.Keywords: Dynamic system, transfer matrix, inverse matrix, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24122388 Numerical Treatment of Matrix Differential Models Using Matrix Splines
Authors: Kholod M. Abualnaja
Abstract:
This paper consider the solution of the matrix differential models using quadratic, cubic, quartic, and quintic splines. Also using the Taylor’s and Picard’s matrix methods, one illustrative example is included.
Keywords: Matrix Splines, Cubic Splines, Quartic Splines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17022387 A Note on Potentially Power-Positive Sign Patterns
Authors: Ber-Lin Yu, Ting-Zhu Huang
Abstract:
In this note, some properties of potentially powerpositive sign patterns are established, and all the potentially powerpositive sign patterns of order ≤ 3 are classified completely.
Keywords: Sign pattern, potentially eventually positive sign pattern, potentially power-positive sign pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11172386 The Relationship of Eigenvalues between Backward MPSD and Jacobi Iterative Matrices
Authors: Zhuan-de Wang, Hou-biao Li, Zhong-xi Gao
Abstract:
In this paper, the backward MPSD (Modified Preconditioned Simultaneous Displacement) iterative matrix is firstly proposed. The relationship of eigenvalues between the backward MPSD iterative matrix and backward Jacobi iterative matrix for block p-cyclic case is obtained, which improves and refines the results in the corresponding references.
Keywords: Backward MPSD iterative matrix, Jacobi iterative matrix, eigenvalue, p-cyclic matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17772385 On the Algorithmic Iterative Solutions of Conjugate Gradient, Gauss-Seidel and Jacobi Methods for Solving Systems of Linear Equations
Authors: H. D. Ibrahim, H. C. Chinwenyi, H. N. Ude
Abstract:
In this paper, efforts were made to examine and compare the algorithmic iterative solutions of conjugate gradient method as against other methods such as Gauss-Seidel and Jacobi approaches for solving systems of linear equations of the form Ax = b, where A is a real n x n symmetric and positive definite matrix. We performed algorithmic iterative steps and obtained analytical solutions of a typical 3 x 3 symmetric and positive definite matrix using the three methods described in this paper (Gauss-Seidel, Jacobi and Conjugate Gradient methods) respectively. From the results obtained, we discovered that the Conjugate Gradient method converges faster to exact solutions in fewer iterative steps than the two other methods which took much iteration, much time and kept tending to the exact solutions.
Keywords: conjugate gradient, linear equations, symmetric and positive definite matrix, Gauss-Seidel, Jacobi, algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4732384 Connectivity Estimation from the Inverse Coherence Matrix in a Complex Chaotic Oscillator Network
Authors: Won Sup Kim, Xue-Mei Cui, Seung Kee Han
Abstract:
We present on the method of inverse coherence matrix for the estimation of network connectivity from multivariate time series of a complex system. In a model system of coupled chaotic oscillators, it is shown that the inverse coherence matrix defined as the inverse of cross coherence matrix is proportional to the network connectivity. Therefore the inverse coherence matrix could be used for the distinction between the directly connected links from indirectly connected links in a complex network. We compare the result of network estimation using the method of the inverse coherence matrix with the results obtained from the coherence matrix and the partial coherence matrix.
Keywords: Chaotic oscillator, complex network, inverse coherence matrix, network estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20032383 The Relationship of Emotional Intelligence, Perceived Stress, Religious Coping with Psychological Distress among Afghan Students
Authors: Mustafa Jahanara
Abstract:
The aim of present research was to study of the relationship between emotional intelligence, perceived stress, positive religious coping with psychological distress to in a sample of undergraduate students in Polytechnic University in Kabul. One hundred and fifty-tow students (102 male, 50 female) were included in this study. All participants completed the Emotional Intelligence Scale (EIS), General Health Questionnaire (GHQ 12), Perceived Stress Scale (PSS-10), and the Brief RCOPE. The results revealed that EI was negatively associated with perceived stress and psychological distress. Also emotional intelligence was positively correlated with positive religious coping. Perceived stress was positive related with psychological distress and negatively correlated with positive religious coping. Eventually positive religious coping was significantly and negatively correlated with psychological distress. However, emotional intelligence and positive religious coping could influence on mental health.Keywords: Emotional intelligence, perceived stress, positive religious coping, psychological distress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19062382 Changes in Fine PM Pollution Levels with Tightening of Regulations on Vehicle Emissions
Authors: Akihiro Iijima, Kimiyo Kumagai
Abstract:
A long-term campaign for monitoring the concentration of atmospheric Particulate Matter (PM) was conducted at multiple sites located in the center and suburbs of the Tokyo Metropolitan Area in Japan. The concentration of fine PM has shown a declining trend over the last two decades. A positive matrix factorization model elucidated that the contribution of combustion sources was drastically reduced. In Japan, the regulations on vehicle exhaust emissions were phased in and gradually tightened over the last two decades, which has triggered a notable reduction in PM emissions from automobiles and has contributed to the mitigation of the problem of fine PM pollution.Keywords: Air pollution, Diesel-powered vehicle, Positive matrix factorization, Receptor modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17652381 Solving Linear Matrix Equations by Matrix Decompositions
Authors: Yongxin Yuan, Kezheng Zuo
Abstract:
In this paper, a system of linear matrix equations is considered. A new necessary and sufficient condition for the consistency of the equations is derived by means of the generalized singular-value decomposition, and the explicit representation of the general solution is provided.
Keywords: Matrix equation, Generalized inverse, Generalized singular-value decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20582380 The Convergence Results between Backward USSOR and Jacobi Iterative Matrices
Authors: Zuan-De Wang, Hou-biao Li, Zhong-xi Gao
Abstract:
In this paper, the backward Ussor iterative matrix is proposed. The relationship of convergence between the backward Ussor iterative matrix and Jacobi iterative matrix is obtained, which makes the results in the corresponding references be improved and refined.Moreover,numerical examples also illustrate the effectiveness of these conclusions.
Keywords: Backward USSOR iterative matrix, Jacobi iterative matrix, convergence, spectral radius
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13032379 An Algorithm of Ordered Schur Factorization For Real Nonsymmetric Matrix
Authors: Lokendra K. Balyan
Abstract:
In this paper, we present an algorithm for computing a Schur factorization of a real nonsymmetric matrix with ordered diagonal blocks such that upper left blocks contains the largest magnitude eigenvalues. Especially in case of multiple eigenvalues, when matrix is non diagonalizable, we construct an invariant subspaces with few additional tricks which are heuristic and numerical results shows the stability and accuracy of the algorithm.Keywords: Schur Factorization, Eigenvalues of nonsymmetric matrix, Orthoganal matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24192378 Numerical Simulation of Effect of Various Rib Configurations on Enhancing Heat Transfer of Matrix Cooling Channel
Authors: Seok Min Choi, Minho Bang, Seuong Yun Kim, Hyungmin Lee, Won-Gu Joo, Hyung Hee Cho
Abstract:
The matrix cooling channel was used for gas turbine blade cooling passage. The matrix cooling structure is useful for the structure stability however the cooling performance of internal cooling channel was not enough for cooling. Therefore, we designed the rib configurations in the matrix cooling channel to enhance the cooling performance. The numerical simulation was conducted to analyze cooling performance of rib configured matrix cooling channel. Three different rib configurations were used which are vertical rib, angled rib and c-type rib. Three configurations were adopted in two positions of matrix cooling channel which is one fourth and three fourth of channel. The result shows that downstream rib has much higher cooling performance than upstream rib. Furthermore, the angled rib in the channel has much higher cooling performance than vertical rib. This is because; the angled rib improves the swirl effect of matrix cooling channel more effectively. The friction factor was increased with the installation of rib. However, the thermal performance was increased with the installation of rib in the matrix cooling channel.Keywords: Matrix cooling, rib, heat transfer, gas turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12392377 Bounds on the Second Stage Spectral Radius of Graphs
Authors: S.K.Ayyaswamy, S.Balachandran, K.Kannan
Abstract:
Let G be a graph of order n. The second stage adjacency matrix of G is the symmetric n × n matrix for which the ijth entry is 1 if the vertices vi and vj are of distance two; otherwise 0. The sum of the absolute values of this second stage adjacency matrix is called the second stage energy of G. In this paper we investigate a few properties and determine some upper bounds for the largest eigenvalue.
Keywords: Second stage spectral radius, Irreducible matrix, Derived graph
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13012376 Some New Subclasses of Nonsingular H-matrices
Authors: Guangbin Wang, Liangliang Li, Fuping Tan
Abstract:
In this paper, we obtain some new subclasses of non¬singular H-matrices by using a diagonally dominant matrix
Keywords: H-matrix, diagonal dominance, a diagonally dominant matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10362375 Effects of the Mass and Damping Matrix Model in the Nonlinear Seismic Response of Steel Frames
Authors: A. Reyes-Salazar, M. D. Llanes-Tizoc, E. Bojorquez, F. Valenzuela-Beltran, J. Bojorquez, J. R. Gaxiola-Camacho, A. Haldar
Abstract:
Seismic analysis of steel buildings is usually based on the use of the concentrated mass (ML) matrix and the Rayleigh damping matrix (C). Similarly, the initial stiffness matrix (KO) and the first two modes associated to lateral vibrations are commonly used to develop the matrix C. The evaluation of the accuracy of these practices for the particular case of steel buildings with moment-resisting steel frames constitutes the main objective of this research. For this, the nonlinear seismic responses of three models of steel frames, representing low-, medium- and high-rise steel buildings, are considered. Results indicate that if the ML matrix is used, shears and bending moments in columns are underestimated by up to 30% and 65%, respectively, when compared to the corresponding results obtained with the consistent mass matrix (MC). It is also shown that if KO is used in C instead the tangent stiffness matrix (Kt), axial loads in columns are underestimated by up to 80%. It is concluded that the consistent mass matrix should be used in the structural modelling of moment resisting steel frames and the tangent stiffness matrix should be used to develop the Rayleigh damping matrix.
Keywords: Moment-resisting steel frames, consistent and concentrated mass matrices, nonlinear seismic response, Rayleigh damping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3992374 Redundancy Component Matrix and Structural Robustness
Authors: Xinjian Kou, Linlin Li, Yongju Zhou, Jimian Song
Abstract:
We introduce the redundancy matrix that expresses clearly the geometrical/topological configuration of the structure. With the matrix, the redundancy of the structure is resolved into redundant components and assigned to each member or rigid joint. The values of the diagonal elements in the matrix indicates the importance of the corresponding members or rigid joints, and the geometrically correlations can be shown with the non-diagonal elements. If a member or rigid joint failures, reassignment of the redundant components can be calculated with the recursive method given in the paper. By combining the indexes of reliability and redundancy components, we define an index concerning the structural robustness. To further explain the properties of the redundancy matrix, we cited several examples of statically indeterminate structures, including two trusses and a rigid frame. With the examples, some simple results and the properties of the matrix are discussed. The examples also illustrate that the redundancy matrix and the relevant concepts are valuable in structural safety analysis.
Keywords: Structural robustness, structural reliability, redundancy component, redundancy matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11402373 Newton-Raphson State Estimation Solution Employing Systematically Constructed Jacobian Matrix
Authors: Nursyarizal Mohd Nor, Ramiah Jegatheesan, Perumal Nallagownden
Abstract:
Newton-Raphson State Estimation method using bus admittance matrix remains as an efficient and most popular method to estimate the state variables. Elements of Jacobian matrix are computed from standard expressions which lack physical significance. In this paper, elements of the state estimation Jacobian matrix are obtained considering the power flow measurements in the network elements. These elements are processed one-by-one and the Jacobian matrix H is updated suitably in a simple manner. The constructed Jacobian matrix H is integrated with Weight Least Square method to estimate the state variables. The suggested procedure is successfully tested on IEEE standard systems.Keywords: State Estimation (SE), Weight Least Square (WLS), Newton-Raphson State Estimation (NRSE), Jacobian matrix H.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24642372 Decision Making using Maximization of Negret
Authors: José M. Merigó, Montserrat Casanovas
Abstract:
We analyze the problem of decision making under ignorance with regrets. Recently, Yager has developed a new method for decision making where instead of using regrets he uses another type of transformation called negrets. Basically, the negret is considered as the dual of the regret. We study this problem in detail and we suggest the use of geometric aggregation operators in this method. For doing this, we develop a different method for constructing the negret matrix where all the values are positive. The main result obtained is that now the model is able to deal with negative numbers because of the transformation done in the negret matrix. We further extent these results to another model developed also by Yager about mixing valuations and negrets. Unfortunately, in this case we are not able to deal with negative numbers because the valuations can be either positive or negative.Keywords: Decision Making, Aggregation operators, Negret, OWA operator, OWG operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13092371 Conjugate Gradient Algorithm for the Symmetric Arrowhead Solution of Matrix Equation AXB=C
Authors: Minghui Wang, Luping Xu, Juntao Zhang
Abstract:
Based on the conjugate gradient (CG) algorithm, the constrained matrix equation AXB=C and the associate optimal approximation problem are considered for the symmetric arrowhead matrix solutions in the premise of consistency. The convergence results of the method are presented. At last, a numerical example is given to illustrate the efficiency of this method.Keywords: Iterative method, symmetric arrowhead matrix, conjugate gradient algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14092370 Membership Surface and Arithmetic Operations of Imprecise Matrix
Authors: Dhruba Das
Abstract:
In this paper, a method has been developed to construct the membership surfaces of row and column vectors and arithmetic operations of imprecise matrix. A matrix with imprecise elements would be called an imprecise matrix. The membership surface of imprecise vector has been already shown based on Randomness-Impreciseness Consistency Principle. The Randomness- Impreciseness Consistency Principle leads to defining a normal law of impreciseness using two different laws of randomness. In this paper, the author has shown row and column membership surfaces and arithmetic operations of imprecise matrix and demonstrated with the help of numerical example.Keywords: Imprecise number, Imprecise vector, Membership surface, Imprecise matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799