**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31103

##### On Positive Definite Solutions of Quaternionic Matrix Equations

**Authors:**
Minghui Wang

**Abstract:**

**Keywords:**
Matrix Equation,
Quaternionic matrix,
Real representation,
positive (semi)definite solutions

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1332150

**References:**

[1] D. Finkelstein , J. Jauch , S. Schiminovich and D. Speiser, Foundations of quaternion quantum mechanics, J. Math. Phys., vol. 3, 1962, pp.207-231.

[2] S. Adler, Quaternionic quantum field theory Commun. Math. Phys., vol. 104, 1986, pp. 611-623.

[3] S. Adler, Quaternionic Quantum Mechanics and Quantum Fields, New York: Oxford University Press, 1995.

[4] J. Jiang, An algorithm for quaternionic linear equations in quaternionic quantum theory, J. Math. Phys., vol. 45, 2004, pp.4218-4228.

[5] J. Jiang, Cramer ruler for quaternionic linear equations in quaternionic quantum theory, Rep. Math. Phys., vol. 57, 2006, pp. 463-467.

[6] J. Jiang, Algebraic algorithms for least squares problem in quaternionic quantum theory, Comput. Phys. Commun., vol. 176, 2007, pp. 481-485.

[7] J. Jiang, Real representiations of quaternion matrices and quaternion matrix equations, Acta Mathematica Scientia, vol. 26A, 2006, pp. 578- 584.

[8] M. Wang, M. Wei and Y. Feng, An iterative algorithm for least squares problem in quaternionic quantum theory, Comput. Phys. Commun., vol. 179, 2008, pp. 203-207.