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Abstract—Newton-Raphson State Estimation method using bus
admittance matrix remains as an efficient and most popular method to
estimate the state variables. Elements of Jacobian matrix are computed
from standard expressions which lack physical significance. In this
paper, elements of the state estimation Jacobian matrix are obtained
considering the power flow measurements in the network elements.
These elements are processed one-by-one and the Jacobian matrix H is
updated suitably in a simple manner. The constructed Jacobian matrix
H is integrated with Weight Least Square method to estimate the state
variables. The suggested procedure is successfully tested on IEEE
standard systems.

Keywords—State Estimation (SE), Weight Least Square (WLS),
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[. INTRODUCTION

TATE Estimation (SE) is the task of providing consistent

load flow results for an entire power system. The aim of
the state estimation is to get the best estimate of the system state
by processing a set of real-time redundant measurements
available in the Energy Management System (EMS) database.
The state of the power system is described by a collection of
voltage vectors for a given network topology and parameters.
Comprehensive discussion of the state of the art in electric
power system state estimation is presented in [1]-[3].

Most of the SE programs in practical use are formulated as
over-determined systems of non-linear equations and solved as
Weight Least Square (WLS) problems [1], [4]. In WLS method
the measured quantities are represented as sum of true values
and errors as

z=h(x)+e @)
where z is the measurement vector, consisting of real and
reactive power flows, bus injection powers and voltage
magnitudes; x is the true state variable vector, consisting of bus
voltage magnitudes and bus voltage angles; #A(x) is the
non-linear function that relates the states to the ideal
measurements; e is a vector of measurement errors. A state
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estimate X is to be obtained that minimizes the objective

function f given by

o2

3

= f wel or Y—L (2)
/ I = P
and this can be achieved when
m 6ej
ZIZWijT:O, (3)
J= n

where ‘w;” is the weighting factor for the respective
measurement and » = 1,2,..., number of state variables. This
non-linear least squares problem is usually solved iteratively as
a sequence of linear least squares problem. At each step of the
iteration, a WLS solution to the following noise-corrupted
system of linear equation is sought:

e=z-z=z-Hx=e-H(x-x)

“)

In (4) e is the measurement residual vector, the difference
between the actual measurement vector and the value of /(x) at
the current iteration, X —x is the difference between the
updated state and the current state, H is the Jacobian of /(x) in
(1) at the current iteration.

The SE Jacobian H, is not a square matrix. The H matrix
always has (2N — 1) columns, where N is equal to number of
buses. The number of rows in H matrix is equal to number of
measurements available. For full measurement set, number of
rows will be equal to (3N + 4B) where B is number of lines. The
elements of H represent the partial derivates of bus voltage
magnitudes, bus powers and line flows with respect to state
variables dand V. The general structure of H matrix is

[Hys Hyy |
Hp,,-ﬁ Hp,-,,V
Hp,v,-,é‘ Hp,,v,V
H=|H,; H,y )
q;i0 q;iV
Hps Hpy
L Hyps Hyy

where HV,t)" HV,V’ ) Hpij, o Hpij, 18 Hpji, 5 Hpji’ 8 Hqij} o Hqij, A Hq/, S»
Hy; v, Hps, Hpy, Hpsand Hp y are the sub-matrices of Jacobian
matrix. The first suffix indicates the available measurement and
the second suffix indicates the variable on which the partial
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derivatives are obtained. The constructional details of the SE
sub-matrices are discussed in Section III.

Fast Decoupled State Estimator (FDSE) [6], [7] is based on
assumptions that in practical power system networks under
steady-sate, real power flows are less sensitive to voltage
magnitudes and are very sensitive to voltage phase angles,
while reactive power flows are less sensitive to voltage phase
angles and are very sensitive to voltage magnitudes. Using
these properties, the sub-matrices Hpy, Hyjy, Hyjiv, Hpo, Hyjis
and H; s are neglected. Because of the approximations made,
the corrections on the voltages computed in each iteration are
less accurate. This results in poor convergence characteristic.
Newton-Raphson State Estimator (NRSE) method [6]-[9] that
was subsequently introduced became more popular because of
exact problem formulation and very good convergence
characteristic. In NRSE method, elements of Jacobian matrix
are computed from the standard expressions which are
functions of bus voltages, bus powers and the elements of bus
admittance matrix.

Nowadays, with the advent of fast computers, even huge
amount of complex calculations can be carried out very
efficiently in much lesser time. Therefore, there is no need to go
for approximate models. In this paper, an attempt is made to
introduce more physical meaning for the elements of the SE
Jacobian matrix H. Bus admittance matrix of transmission
network does not find place in computing the elements of the H
matrix. The power flows in the network elements are taken as
the basic components in constructing the H matrix. Network
elements are added one-by-one and the A matrix is updated in a
simple manner. Resulting final A matrix is exactly same as that
obtained in NRSE method.

II. POWER FLOWS IN TRANSMISSION NETWORK ELEMENTS

The transmission network consists of transmission lines,
transformers and shunt parameters. In NRSE method the
transmission network is represented by the bus admittance
matrix and the elements of the A matrix are computed using the
elements of bus admittance matrix. Alternatively, in this paper,
the elements of the H matrix are obtained considering the
power flows in the transmission network elements.

Consider the general transmission network element between
buses i and j, as shown in Fig. 1.

i

J
Transmission line /
Transformer
V./O.
i< V.Z 5‘,.
gshi+jbshi g-th+jbshj

Fig. 1 Transmission network element between buses i and j

Here the transmission line is represented by the series

impedance ro+jx, or by the corresponding
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Many methods of SE are introduced since 1960 [1], [4], [5].
Several assumptions are made in the different methods of SE.
admittance g +Jjb;, Transformer with series impedance

rH X and off-nominal tap setting “a” with tap setting

the series

admittances

bus i is
1

facility at represented by

admittance (gij + jbij_) and  shunt

[1;2‘1) (gi/. +jb,./.)and ("a_l] (g”_ +jb,.>/.) at buses i and j
respectively. Half line charging admittance and external shunt
admittance if any, are added together and represented as
g, +jb,, and g +jb,, , at buses i and j respectively. For

such a general transmission network element, the real and
reactive power flows are given by the following expressions.

2, 8ij
Py =V (02

Vi, .
+gs,”.)—7’(gl.j cosd,, +b,,sind, ) (6)

v, |
p/i:V;’z(gi/+gsh/)_7j(gi/COSé‘i/’_bi/‘Slné‘i/’) ™

b, vy,
4q;; :_Viz(j"'bshi)_Tj(gij Sln&ij _bij COS&,{/) ®)

z " e, s ©)
q,,=-V; (b, +b,, /.)+T(g,/. sind,; +b,; cosd, ;)

where
6, =0, —5.,. (10)
All the line flows computed from (6) to (9) are stored in the
real power and reactive power matrix as in (11) and (12) from
which bus powers can be calculated.

0 P Pi3 Pin
P2 0 P23 Pan

P=\py pn 0 P3N (11)
Pwvi Pn2 Pnz - O
0 912 4913 91N
q21 0 q23 UP3Y

O=qs 43 0 q3n (12)
dn1 4nN2 4N3 0

The real and reactive power flows in line i-j depend ond, &, V;
and V;. The partial derivatives of p;, p;;, ¢; and g;; with respect to

0,, 0, V;and V; can be derived from (6) to (9).

III. CONSTRUCTION OF SE JACOBIAN MATRIX, H

All the elements of H matrix are partial derivatives of
available measurements with respect to 0 and V. The elements
of sub-matrices Hy5, Hy y are given by:
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L (13)
v 06, foralliand j
oV,
vy, =o—=01
P GV/ i ]
v, (14)
= =1
AP

If at particular bus, the voltage meter is not available, the row
corresponding to that particular bus will be deleted.

Using (6) to (9) the expression for the partial derivatives of
Dij» Dii» ¢ and g;; with respect to &, &, Vi and V; are obtained.
Thus

6171']‘ Viv; .

a—é‘i:T](gijsmé‘,j—bijcosé}j) (15)
6p,—j 44

8_5/_:—_(&151“5 ;—b;jcos6; ;) (16)
op; V-

Pij =2V, - (gjjcosﬁij ;siné; ;) (17)
ov;

6p-,

iy cosd; ; +b; ;sin g, 18
= (g,, 7 (18)
6pji |44 ]

—L = sind; ; +b; ; cos 19
5 a8 ) (19)
op;:; VV.

Pji __ ”(gusmé' +b; ;€089 ;) (20)
a5,

p; v, .
a—Vi:—gj(gucosé‘,-j—b,jsmﬁU) 21
..

P =2V;(g; ;i + &n )~ (gljcosﬁ —b;;sind; ;) (22)
,

quj 24 f

=) o8 6; ; +b; ;sing; 23
5 8y P (23)
oq;.. ViV,

9i) =—2L(g;;€086; ; +b; ;sind; ;) (24)
06, a

i :_2V( b )— (g,jsmﬁ —b; ;cos3; ;) (25)
ov;

aqij V; .

a_Vj:—;’(gl.jmn&ij—b,-./-cosci-j) (26)
oq;; V¥, :

= e b sind) @n
o, W, .
?;j:_T(gijCOS@j_bijSlné}j) (28)
6qjl' v, .

B—Vizj(gijsmé}j-i—bijcosé}j) 29
0q;; v

01;]- =—2Vj(b,-j+bshj)+ (g”smé‘ +b cosJ; ) (30)

To construct the A matrix, initially all its elements are set to
zero. Network elements are considered one-by-one. For the
element between buses i-j, the partial derivatives of line flows
with respect tod;, 9, V; and V; are computed using (15) to (30).
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These values are simply added to the corresponding elements of
sub-matrices Hy;, 5i Hyij, o Hypij vie Hpij, vie Hyji, 50 Hyji 5, Hoi, vis
Hyi v, Hyj, oio Hyy, o Hyi vie Hyy v, Hgi, sy Hyji, o Hyji, i and
Hyji,vj-

Sub-matrices Hps, Hpy, Hyp sand Hypyare now considered.
Partial derivatives of bus powers can be expressed in terms of
partial derivatives of line flows. To illustrate this let i-j, i-k and
i-m be the elements connected at bus i. Then the bus powers P;
and Q; are given by

B=p;j+Pik+Pim (31)
0:=4; j+ 4k +4im (32)
Therefore
 Op;: Op;r  Op;
6E _ p11+ p1k+ Pim (33)
08, 06, 06, 00;
. 0q;; 0Oq;, Oq;
&: ql/ 4 q; 4 Dim (34)

05, 05, 05, 06,

i

Similar expressions can be written for other partial
derivatives of P; and Q; with respect to &, V; and V. Likewise
considering bus powers P; and O, part1a1 denvatlves of P; and
Q; can also be obtained in terms of partial derivatives of line
flows in the lines connected to bus j. It is to be noted that the
partial derivatives of the line flows contribute to the partial
derivatives of bus powers. Table I shows a few partial
derivative of line flows and the corresponding partial derivative
of bus powers to which it contributes.

TABLEI
PARTIAL DERIVATIVES OF LINE FLOWS AND THE CORRESPONDING PARTIAL
DERIVATIVES OF BUS POWERS

Partial Derivatives of

Line flows Bus Power
op;; Opj;i ©4;; 0q;; oP, oP; 80, 0Q;
a5, ” 00; ’ ov; ’ ov; 09; ’ 55/’ ov; ’ ov;

The partial derivatives of Pij i 6171/ Pij will contribute to
00; 65 0V 6V

%i i i P respectively. Similar results are true for Dji> 4ij
00; 6(5 8V 6V

and g;. Those values will be added to the corresponding
elements of Hp s, Hpy , Hps and Hyy. This process is repeated
for all the network elements. Once all the network elements are
added, we get the final A matrix.

IV. COMPUTING AND RECORDING ONLY THE REQUIRED
PARTIAL DERIVATIVES ALONE

The H matrix will have 3N+4B number of rows if all possible
measurements are available in the network. However, in
practice, number of available measurements will be much less.
Instead of computing elements of rows corresponding to
unavailable measurements and then deleting them, proper
logics can be adopted to compute and record only the required
partial derivatives alone. When line i-j is processed, it may not
be always necessary to compute all the 16 partial derivatives
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given by (15) to (30). The partial derivatives %ij  %Pi; %P

a5, 05, o,

and Pi; are to be computed only when pj; or P; or both p; and
ov,;

P; are in the available measurement list. Thus following three

cases are possible.

CASE 1: p; is an available measurement. The four partial

derivatives are entered in row corresponding to p;.

CASE 2: P; is an available measurement. The four partial

derivatives are added to previous values in the row

corresponding to P;.

CASE 3: p; and P; are available measurements. The four partial

derivatives are entered in the row corresponding to p; and

added to previous values in the row corresponding to P;.

Such logics are to be followed for %, %, %, Pji ;%,
06; 095, oV, oV, 05

i

oq;; , oq;; , oq;; and 0q,; , 0q; , 0q,; , 0q,; also.
06; oV, ov; 06; 05; oV, ov;

V. TEST RESULTS

The three bus power system [6] as shown in Fig. 2 is used to
illustrate the construction of A Jacobian matrix. In this system
bus 1 is the slack bus and the tap setting “a” for all lines are 1.
With the network data as listed in Table II and the available
measurements as listed in Table III, the Jacobian matrix H is
constructed as discussed in Section IV, taking the initial bus
voltages as 1, =V, =, =1.020°.

2
<@
<_

| 3 —p : Voltmeter
@—» : Power measurement

—&— : Line flow measurement

Fig. 2 Single-line diagram and measurement configuration of a 3-bus
power system

TABLEII
NETWORK DATA
Line R X (pu) Total Line Charging Susceptance
From Bus To (pw) P B (pu)
Bus
1 2 0.01  0.03
1 3 0.02  0.05
2 3 0.03  0.08
TABLEIII
AVAILABLE MEASUREMENTS FOR THE THREE BUS SYSTEM
Measurements Value (pu) Weightage
v 1.006 62500
Vs 0.968 62500
pr2 0.888 15625
D13 1.173 15625
q13 0.663 15625
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P, -0.501
0, -0.286

10000
10000

Noting that V; and ¥V, are available measurements, the
sub-matrices of Hy s, Hy are obtained as

Hy s Hyy _{0 0 0 1 0 0
Hvz,a‘

Hy, 00 0 0 1 0

where 0 spans from ¢;, J, to J; and V spans from V;, V;to V3.
To illustrate all the stages of constructing the other

sub-matrices of the network elements are added one by one as

shown below.

Iteration 1

Element 1-2 is added. The line flow measurements
corresponding to this element are p;;, p,;, q;2> and ¢,;. All these
measurements are categorized according to the three different
cases as in Section IV. The p;, will be categorized as CASE 1
since this measurement is one of the available measurements
and P; is not an available measurement. Similarly, g,, is also
categorized as CASE 1.However, p,; and ¢,, are categorized as
CASE 2 since these measurements will contribute to P, and O,
respectively; but they are not listed as the available
measurements. The new constructed sub-matrices are:

Hpoo Hpow | T30 30 0 10 -10 0]
Hy s Hp,y 0 0 0 0 0 0
Hy,s Hgoy | |10 10 0 30 =30 0
H, s Hy, 0 0 0 0 0 0
Hp s Hpp -30 30 0 -10 10 O
2> 2>
Hy, s Hoy | |10 -10 0 -30 30 O]
Element 1-3 is added. The line flow measurements

corresponding to this element are p;;, pss, ¢;3 and q3;. Now, p;;
and ¢;; will be categorized as CASE 1 since these
measurements are listed as the available measurements and P;
and Q; are not the available measurements. However it is not
necessary to compute the partial derivatives of p;; and g3, as
they and P; and Q; are not in available measurements. With this,
the constructed sub-matrices are:

Hpos Hpor ] T30 Z30 o0 10 -10 0
Hy s Hy,y 1724 0 -1724 689 0 —6.89
Hy,s Hy,y | | =10 10 0 30 =30 0
H, s H, .y ~689 0 689 1724 0 —17.24
Hps Hpy -30 30 0 -10 10 0
Hoys Ho,y | L 10 Z10 0 =30 30 0 |

Element 2-3 is added. Following similar logics, p,; and ¢»; will
fall under CASE 2 and the partial derivatives of p;, and g3, are
not required. The constructed sub-matrices are:
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Hpps Hpoy 30 =30 0 10 10 0
Hy s Hyp 1724 0 —1724 689 0  —689
Hy,s Hoop | | =10 10 0 30 -30 0
wo Hyw | |68 0 6.89 1724 0 —17.24
Hp s Hp, Z30 4096 -10.96 —10 1411 —4.11
Hos Ho,y 10 —1411 411  —30 4096 -10.96
The final H matrix will be the combination of all the

sub-matrices with the column corresponding to slack bus being
deleted. Thus the constructed Jacobian matrix H in the first
iteration is

0 0 1 0 0
0 0 0 1 0
-30 0 10 -10 0
gl 0 1724 689 0 689
10 0 30 =30 0
0 689 1724 0 -17.24
40.96 1096 —10 1411 —4.11
|—14.11 411  -30 40.96 —10.96]

Using the above H matrix, state variables are updated as
¥, =0.9997£0%, ¥, =0.9743 £ - 0.021°;7; = 0.9428 £ - 0.045°.

All the above stages are repeated until the convergence is
obtained in iteration 3 with the final state variables values as
¥, =0.9996.20%;V, = 0.9741£-0.022°;7; = 0.94392-0.048°.  These
estimates are same as obtained in NRSE method.

The suggested procedure is tested on 5-bus system [9] and
IEEE 14-bus system also. Table IV shows the state variables
results obtained through the proposed algorithm and existing
method [10] for IEEE 14-bus system. The results agree with
those obtained by NRSE method.

TABLE IV
COMPARISON RESULTS — IEEE 14-BUS SYSTEM

Actual values NRSE Proposed
V (pu) 0 (rad) V (pu) 0 (rad) V (pu) 0 (rad)

1.06 0 1.06 0 1.06 0
1.045 -0.0871 1.0451 -0.0871 1.0451 -0.0871

1.01 -0.2227 1.0101 -0.22262 1.0101  -0.22262
1.012 -0.1785 1.0123 -0.17854 1.0123  -0.17854
1.016 -0.1527 1.0163 -0.15279 1.0163  -0.15279

1.07 -0.2516 1.0707 -0.25188 1.0707  -0.25188
1.049 -0.2309 1.0498 -0.23095 1.0498  -0.23095

1.09 -0.2309 1.0905 -0.23095 1.0905  -0.23095
1.033 -0.2585 1.0332 -0.25855 1.0332  -0.25855
1.032 -0.2622 1.0323 -0.26224 1.0323 -0.26224
1.047 -0.259 1.0479 -0.2592 1.0479 -0.2592
1.053 -0.2664 1.0543 -0.26667 1.0543  -0.26667
1.047 -0.2671 1.0476 -0.26727 1.0476  -0.26727
1.021 -0.2802 1.0212 -0.28024 1.0212  -0.28024

VI. CONCLUSION

WLS method embedded with NRSE to calculate the bus
power and lines flows is still the best and well accepted method
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for the SE. Elements of the Jacobian matrix are computed using
the elements of the bus admittance matrix. Recognizing that the
elements of the Jacobian matrix H are contributed by the partial
derivatives of the power flows in the network elements, a
simple and meaningful algorithm to construct the Jacobian
matrix H is presented. The final Jacobian H matrix is obtained
mainly from the partial derivatives of the line flows.

The concept involved in this algorithm is simple to
understand. Since it involves repeated procedure, Jacobian
matrix can be obtained through simple computer program. The
suggested procedure is tested on 3-bus, 5-bus and IEEE 14-bus
systems and found to give the correct results.
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