
 
Abstract—This paper considers the solution of the matrix 

differential models using quadratic, cubic, quartic, and quintic 
splines. Also using the Taylor’s and Picard’s matrix methods; one 
illustrative example is included.  
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I. INTRODUCTION 

N this work,  the evaluation of matrix functions is frequent 
in the solution of differential systems. So, the system [8] 

 

0(t) A(t) Y(t), Y(0) Y , [0,1]Y


       (1) 

 

where A(t)  is matrix and 0Y  is a vector arises of the parabolic 

equation. The matrix differential equation [3], [4] 
  

0 1(t) A(t) Y(t), Y(0) Y , Y (0) Y , [0,1]Y
 

      (2) 

        

where A(t)  is matrix, 0Y  and 1Y  are vectors arises of the 

hyperbolic equation. The matrix differential equation [10]  
 

 
0(t) A(t) Y(t) Y(t) B(t), Y(0) Y , [0,1]Y



      (3) 

                                               

where A(t)  and B(t)  are matrices appears in systems stability 

and control. 
Consider the matrix differential equation in the form [5] 
 

(t) A(t) Y(t) B(t), Y(0) , [0,1]Y D


     (4) 
 

 

where rxqCY(t) , C(t),B(t),A(t)  and D(t) are matrices. Let 

  is partition as }...{ 1tt0 n0  .The set of matrix 

splines of order m defined as [1] 
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If 2m   the matrix splines are called matrix quadratic 
splines, 3m   called matrix cubic splines, 4m   called 
matrix quartic splines and 5m   called matrix quintic splines. 

Reference [2] deals with the construction of an approximate 
solution of the first order matrix linear differential equations 
using matrix cubic splines. The present paper extended the 
first order linear differential equations using different matrix 
splines and also approximate the solution by using Picard's 
method and Taylor's method which are best than all matrix 
splines [6], [7], [9]. 

II. THE MATRIX SPLINE METHODS 

This section gives the theoretical studies for the matrix 
differential equation in the form (4) using the matrix quadratic 
splines, matrix cubic splines, matrix quartic splines and matrix 
quintic splines. 

A. The Matrix Quadratic Splines  

Consider the interval ],[ k00  ,  tk  ,  suppose the 

solution in the form  
 

2
0 0

1
( ) (0) (0)

2
S t Y Y t t



      (6)                   

 

where D0Y )( , C(0)B(0) Y(0)Y(0) A(0)(0)Y 


, but 

to find 0  we suppose that )t(S0  satisfies the matrix 

differential equation (4) at kt  , so 
 

0 0( ) ( ) ( ) ( )S k A k S k B k


     (7)                     

 
From (6) and (7) we get 
 

0( ( ) ) ( ) ( (0) (0) ) ( ) (0)
2

k
k I A k A k Y Y k B k Y

 

        (8)                     

 

where I  is the identity matrix, from (8) we get 0  and so 

)t(S0  as in (6). Consider ]k)1i(,ki[i  , 1ni1  ; 

suppose the matrix quadratic solution in the form  
 

  2
11

1
( ) ( ) ( ) ( ) ( )

2
ii i iS t S i k S i k t i k t i k



      (9)           

 

As above we determine i  from  
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1

1 1

( (( 1) )) (( 1) ) ( ( )
2

( ) ) (( 1) ) ( ),

i i

i i

k
k I A i k A i k S i k

S i k k B i k S i k

 

 

 

   

   

     (10) 

 

and then )t(Si  are determined for all  .n,...,1i   Note that 

solubility of the suggested scheme (10) is guaranteed showing 

that the matrix coefficient of i  is invertible. 

If  )t(AmaxM
1t0 

  then 1))k)1i((A
2

k
I(I  , so we 

get 
M

2
k   and then (10)  has a unique solution i .      

B. The Matrix Cubic Splines  

Consider the interval ],0[0 k ; suppose the solution in 

the form  
 

2 3
0 0

1 1
( ) (0) (0) (0) ,

2 6
S t Y Y t Y t t

 

      (11)                             

 

where D)0(Y  , B(0) Y(0) A(0)(0)Y 


 and 

)0(Y)0(A)0(Y)0(A)0(Y


 )0(B


 .  

To determine 0  we suppose that )t(S0  satisfies the matrix 

differential equation (4) at kt  , so 
 

2

0

2

( ( ) ) ( ) ( (0) (0)
2 3

1
(0) ) ( ) (0) (0)

2

k k
I A k A k Y Y k

Y k B k Y Y k




  

  

   

 (12) 

 

and )t(S0  as in (11). 

Consider ]k)1i(,ki[i  ,  1ni1  ,  suppose the 

matrix cubic solution in the form  
 

   11

2 3
1

( ) ( ) ( ) ( )

1 1
( ) ( ) ( ) ,

2 6

ii i

i i

S t S i k S i k t i k

S i k t i k t i k









  

   

   (13) 

 

As above we determine i  from  
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  (14)  

 

and then )t(Si  are determined for all  .n,...,1i   Note that 

solubility of the suggested scheme (14) is guaranteed showing 
that the matrix coefficient of i  is invertible. 

If  )t(AmaxM
1t0 

  then 1))k)1i((A
3

k
I(I  , so we get 

M

3
k   and then (14)  has a unique solution i .  

C. The Matrix Quartic Splines 

Consider the interval ]k,0[0  ; suppose the solution in 

the form  
 

       2 3 4
0 0

1 1 1
( ) (0) (0) (0) (0) ,

2 6 24
S t Y Y t Y t Y t t

  

      (15) 

  
for this case 0  can be determined from  
 

3
2

0

3 2

1
( ( )) ( ) ( (0) (0) (0)

6 4 2
1

(0) ) ( ) (0) (0) (0) ,
6

k k
I A k A k Y Y k Y k

Y k B k Y Y k Y k


 

   

   

    

  (16)     

     
and )t(S0  as in (15). Consider ]k)1i(,ki[i  , 

1ni1  ; suppose the matrix quartic solution in the form  
 

2
1 11

3 4
1

1
( ) ( ) ( ) ( ) ( ) ( )

2
1 1

( ) ( ) ( ) ,
6 24

i ii i

i i

S t S i k S i k t i k S i k t i k

S i k t i k t i k

 

 





    

   

 (17)     

 

as above we determine i  from  
        

3

1 1

2 3
1 1 1

2
1 1

( (( 1) )) (( 1) ) ( ( ) ( )
6 4

1 1
( ) ( ) ) (( 1) ) ( )

2 6

1
( ) ( ) ,

2

i i i

i i i

i i

k k
I A i k A i k S i k S i k k

S i k k S i k k B i k S i k

S i k k S i k k




 

  

  

 

 

    

    

 

(18) 

 

and then )t(Si  are determined for all  .n,...,1i   Note that 

solubility of the suggested scheme (18) is guaranteed showing 
that the matrix coefficient of i  is invertible. 

If  )t(AmaxM
1t0 

  then 1))k)1i((A
4

k
I(I  , so we get 

M

4
k   and then (18)  has a unique solution i .  

D. The Matrix Quintic Splines 
Consider the interval ]k,0[0  ; suppose the solution in 

the form  
 

2 3
0

4 5
0

1 1
( ) (0) (0) (0) (0)

2 6
1 1

(0) ,
24 120

S t Y Y t Y t Y t

Y t t

  



   

 

  (19)        
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for this case 0 can be determined from  

 

4
2

0

3 4

2 3

1
( ( )) ( ) ( (0) (0) (0)

24 5 2
1 1

(0) (0) ) ( ) (0) (0)
6 24

(0) (0) ,

k k
I A k A k Y Y k Y k

Y k Y k B k Y Y k

Y k Y k


 

   

 

   

    

 

 (20) 

 

and )t(S0  as in (19). 

Consider ]k)1i(,ki[i  ,  1ni1  ;  suppose the 

matrix quintic solution in the form  
 

2
1 11

3 4
1 1

5

1
( ) ( ) ( ) ( ) ( ) ( )

2
1 1
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 (21)   

 

as above we determine i  from  
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 (22)                                                                                                                             

 
and then )t(Si  are determined for all  .n,...,1i   

Note that solubility of the suggested scheme (22) is 
guaranteed showing that the matrix coefficient of i  is 

invertible. 

If )t(AmaxM
1t0 

  then 1))k)1i((A
5

k
I(I  , so we get 

M

5
k   and then (22)  has a unique solution i .  

III. THE MATRIX PICARD'S METHOD 

In this section we see the Picard’s method for the matrix 
differential equation in the form (4) then the first 
approximation is 

 

                            

1 0

0

( ) ( ) ( ( ) ( ) ( ) )
t

i iY t Y t A t Y t B t dt       (23)                                      

 

where ,2,1,0i,D)t(Y0  . As in ordinary differential 

equation we get a sequence 


0i )}t(Y{  which is convergent to 

the exact solution. 

IV. THE MATRIX TAYLOR'S METHOD 

Suppose the approximate solution for the matrix differential 
equation (4) takes the form 

                    
( )

21 1
( ) (0) (0) (0) ... (0)

2 !

n
n

nY t Y Y t Y t Y t
n

 

      (24)                   

 

where 
)n(

)0(Y),...,0(Y),0(Y


 all can be determined from the 

matrix differential equation (4). 

V. ILLUSTRATION OF THE ANALYSIS 

In this section, distinct matrix differential equations will be 
tested by using the proposed methods. 

Example: We first consider the matrix differential equation 
in the form  

 

2 2
1 1

3 3 2
2 2

1 1 2

2 2

( ) ( )2 1 2 11
,

( ) ( )1 1 1

0 1,

(0) ( )1
, ,

(0) 0 ( )

y t y tt t t

y t y tt t t t t t

t

y y t
C

y y t



      
                

 

    
     
    

   (25) 

 

this matrix differential equation has the exact solution 







t

t

et

e
, 

in the following table we see the matrix splines methods. 
 

TABLE I 
THE MATRIX SPLINES METHODS 

],[ 1ii tt Quadratic Cubic Quartic Quintic 

[0,0.1] 3.06573E-4 6.33769E-6 1.14628E-7 1.7956E-9 

[0.1,0.2] 7.11688E-4 6.33769E-6 8.81776E-7 5.7101E-8 

[0.2,0.3] 12.397E-4 8.32925E-6 2.2721E-6 5.46782E-7 

[0,0.1] 3.06573E-4 6.33769E-6 1.14628E-7 1.7956E-9 

 
In the following table we see the approximation solution 

using quadratic matrix method in some intervals. 
 

TABLE II 
QUADRATIC MATRIX METHOD 

Quadratic ]t,t[ 1ii   













2

2

t0804.1t

t527889.0t1
 [0,0.1] 













2

2

t25257.1t965567.000172163.0

t583928.0t988792.000056.1
 [0.1,0.2] 













2

2

t44897.1t887004.0009578.0

t645822.0t964035.000304.1
 [0.2,0.3] 
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VI. CONCLUSION 

In this work we have found the solution of the matrix 
differential models using quadratic, cubic, quartic, and quintic 
splines. Also using the Taylor’s and Picard’s matrix methods 
we reached these important numerical methods of solution 
through the application in the examples. 
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