The Relationship of Eigenvalues between Backward MPSD and Jacobi Iterative Matrices
Authors: Zhuan-de Wang, Hou-biao Li, Zhong-xi Gao
Abstract:
In this paper, the backward MPSD (Modified Preconditioned Simultaneous Displacement) iterative matrix is firstly proposed. The relationship of eigenvalues between the backward MPSD iterative matrix and backward Jacobi iterative matrix for block p-cyclic case is obtained, which improves and refines the results in the corresponding references.
Keywords: Backward MPSD iterative matrix, Jacobi iterative matrix, eigenvalue, p-cyclic matrix.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087930
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792References:
[1] R. S. Varga, Matrix Iterative Analysis, 2nd Endition, Springer, Berlin,
2000.
[2] X. P. Liu, Convergence of some iterative methods, Numerical Computing
and Computer Applications, 1(1992)58-64 (in Chinese).
[3] H. X. Chen, Convergent and divergent relationship between MPSD
iterative method and Jacobi method, J. Appl. Math. and Computational
Math., 14(1)(2000)1-8 (in Chinese).
[4] N. M. Missirlis, D. J. Evans, The modified preconditioned simultaneous
displacement (MPSD) method, Math. Comp. Simulations, XXVI (1984)
257-262.
[5] Z. D. Wang, T. Z. Huang, Comparison results between Jacobi and other
iterative methods, J. Comp. Appl. Math. 169(2004)45-51.
[6] R. M. Li, Relationship of eigenvalue for USAOR iterative method applied
to a class of p-cyclic matrices, Linear Algebra Appl.362(2003)101-108.
[7] A. Hadjidimos, D. Noutsos, M. Tzoumas, Torwards the determination of
optimal p-cyclic SSOR, J. Comp. Appl. Math. 90(1996)1-14.
[8] S. Galanis, A. Hadjidimos, D. Noutsos, A Young-Eidson’s type algorithm
for complex p-cyclic SOR spectra, Linear Algebra Appl. 286(1999)87-
106.
[9] A. Hadjidimos, D. Noutsos, M. Tzoumas, On the exact p-cyclic SSOR
convergence domains, Linear Algebra Appl. 232(2003)213-236.
[10] A. Hadjidimos, D. Noutsos, M. Tzoumas, On the convergence domains
of the p-cyclic SOR, J. Comp. Appl. Math. 72(1996)63-83.
[11] S. Galanis, A. Hadjidimos, D. Noutsos, Optimal p-cyclic SOR for
complex spectra, Linear Algebra Appl. 263(1997)233-260.
[12] D. M. Young, Iterative Solution of Large Linear Systems, NewYork-
London, Academic Press, 1971.
[13] A. Hadjidimos, M. Neumann, Superior convergence domains for the
p-cyclic SSOR majorizer, J. Comp. Appl. Math. 62(1995)27-40.