The Relationship of Eigenvalues between Backward MPSD and Jacobi Iterative Matrices
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
The Relationship of Eigenvalues between Backward MPSD and Jacobi Iterative Matrices

Authors: Zhuan-de Wang, Hou-biao Li, Zhong-xi Gao

Abstract:

In this paper, the backward MPSD (Modified Preconditioned Simultaneous Displacement) iterative matrix is firstly proposed. The relationship of eigenvalues between the backward MPSD iterative matrix and backward Jacobi iterative matrix for block p-cyclic case is obtained, which improves and refines the results in the corresponding references.

Keywords: Backward MPSD iterative matrix, Jacobi iterative matrix, eigenvalue, p-cyclic matrix.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087930

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792

References:


[1] R. S. Varga, Matrix Iterative Analysis, 2nd Endition, Springer, Berlin, 2000.
[2] X. P. Liu, Convergence of some iterative methods, Numerical Computing and Computer Applications, 1(1992)58-64 (in Chinese).
[3] H. X. Chen, Convergent and divergent relationship between MPSD iterative method and Jacobi method, J. Appl. Math. and Computational Math., 14(1)(2000)1-8 (in Chinese).
[4] N. M. Missirlis, D. J. Evans, The modified preconditioned simultaneous displacement (MPSD) method, Math. Comp. Simulations, XXVI (1984) 257-262.
[5] Z. D. Wang, T. Z. Huang, Comparison results between Jacobi and other iterative methods, J. Comp. Appl. Math. 169(2004)45-51.
[6] R. M. Li, Relationship of eigenvalue for USAOR iterative method applied to a class of p-cyclic matrices, Linear Algebra Appl.362(2003)101-108.
[7] A. Hadjidimos, D. Noutsos, M. Tzoumas, Torwards the determination of optimal p-cyclic SSOR, J. Comp. Appl. Math. 90(1996)1-14.
[8] S. Galanis, A. Hadjidimos, D. Noutsos, A Young-Eidson’s type algorithm for complex p-cyclic SOR spectra, Linear Algebra Appl. 286(1999)87- 106.
[9] A. Hadjidimos, D. Noutsos, M. Tzoumas, On the exact p-cyclic SSOR convergence domains, Linear Algebra Appl. 232(2003)213-236.
[10] A. Hadjidimos, D. Noutsos, M. Tzoumas, On the convergence domains of the p-cyclic SOR, J. Comp. Appl. Math. 72(1996)63-83.
[11] S. Galanis, A. Hadjidimos, D. Noutsos, Optimal p-cyclic SOR for complex spectra, Linear Algebra Appl. 263(1997)233-260.
[12] D. M. Young, Iterative Solution of Large Linear Systems, NewYork- London, Academic Press, 1971.
[13] A. Hadjidimos, M. Neumann, Superior convergence domains for the p-cyclic SSOR majorizer, J. Comp. Appl. Math. 62(1995)27-40.