**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**1009

# Search results for: Eigenvalues of nonsymmetric matrix

##### 1009 An Algorithm of Ordered Schur Factorization For Real Nonsymmetric Matrix

**Authors:**
Lokendra K. Balyan

**Abstract:**

**Keywords:**
Schur Factorization,
Eigenvalues of nonsymmetric matrix,
Orthoganal matrix.

##### 1008 The Relationship of Eigenvalues between Backward MPSD and Jacobi Iterative Matrices

**Authors:**
Zhuan-de Wang,
Hou-biao Li,
Zhong-xi Gao

**Abstract:**

In this paper, the backward MPSD (Modified Preconditioned Simultaneous Displacement) iterative matrix is firstly proposed. The relationship of eigenvalues between the backward MPSD iterative matrix and backward Jacobi iterative matrix for block p-cyclic case is obtained, which improves and refines the results in the corresponding references.

**Keywords:**
Backward MPSD iterative matrix,
Jacobi iterative matrix,
eigenvalue,
p-cyclic matrix.

##### 1007 Human Face Detection and Segmentation using Eigenvalues of Covariance Matrix, Hough Transform and Raster Scan Algorithms

**Authors:**
J. Prakash,
K. Rajesh

**Abstract:**

**Keywords:**
Circular Hough Transform,
Covariance matrix,
Eigenvalues,
Elliptical Hough Transform,
Face segmentation,
Raster
Scan Algorithm.

##### 1006 A Novel Approach for Coin Identification using Eigenvalues of Covariance Matrix, Hough Transform and Raster Scan Algorithms

**Authors:**
J. Prakash,
K. Rajesh

**Abstract:**

**Keywords:**
Circular Hough Transform,
Coin detection,
Covariance matrix,
Eigenvalues,
Raster scan Algorithm,
Texton.

##### 1005 Matrix Valued Difference Equations with Spectral Singularities

**Authors:**
Serifenur Cebesoy,
Yelda Aygar,
Elgiz Bairamov

**Abstract:**

In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial-type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities.

**Keywords:**
Difference Equations,
Jost Functions,
Asymptotics,
Eigenvalues,
Continuous Spectrum,
Spectral Singularities.

##### 1004 On Detour Spectra of Some Graphs

**Authors:**
S.K.Ayyaswamy,
S.Balachandran

**Abstract:**

**Keywords:**
Detour eigenvalue (of a graph),
detour spectrum(of a graph),
detour energy(of a graph),
detour - equienergetic graphs.

##### 1003 A Time-Reducible Approach to Compute Determinant |I-X|

**Authors:**
Wang Xingbo

**Abstract:**

*X*| is primary and fundamental because it can help to compute many other determinants. This article puts forward a time-reducible approach to compute determinant |I-

*X*|. The approach is derived from the Newton’s identity and its time complexity is no more than that to compute the eigenvalues of the square matrix

*X*. Mathematical deductions and numerical example are presented in detail for the approach. By comparison with classical approaches the new approach is proved to be superior to the classical ones and it can naturally reduce the computational time with the improvement of efficiency to compute eigenvalues of the square matrix.

**Keywords:**
Algorithm,
determinant,
computation,
eigenvalue,
time complexity.

##### 1002 A Contribution to the Polynomial Eigen Problem

**Authors:**
Malika Yaici,
Kamel Hariche,
Tim Clarke

**Abstract:**

The relationship between eigenstructure (eigenvalues and eigenvectors) and latent structure (latent roots and latent vectors) is established. In control theory eigenstructure is associated with the state space description of a dynamic multi-variable system and a latent structure is associated with its matrix fraction description. Beginning with block controller and block observer state space forms and moving on to any general state space form, we develop the identities that relate eigenvectors and latent vectors in either direction. Numerical examples illustrate this result. A brief discussion of the potential of these identities in linear control system design follows. Additionally, we present a consequent result: a quick and easy method to solve the polynomial eigenvalue problem for regular matrix polynomials.

**Keywords:**
Eigenvalues/Eigenvectors,
Latent values/vectors,
Matrix fraction description,
State space description.

##### 1001 The Inverse Eigenvalue Problem via Orthogonal Matrices

**Authors:**
A. M. Nazari,
B. Sepehrian,
M. Jabari

**Abstract:**

In this paper we study the inverse eigenvalue problem for symmetric special matrices and introduce sufficient conditions for obtaining nonnegative matrices. We get the HROU algorithm from [1] and introduce some extension of this algorithm. If we have some eigenvectors and associated eigenvalues of a matrix, then by this extension we can find the symmetric matrix that its eigenvalue and eigenvectors are given. At last we study the special cases and get some remarkable results.

**Keywords:**
Householder matrix,
nonnegative matrix,
Inverse eigenvalue problem.

##### 1000 The Inverse Problem of Nonsymmetric Matrices with a Submatrix Constraint and its Approximation

**Authors:**
Yongxin Yuan,
Hao Liu

**Abstract:**

In this paper, we first give the representation of the general solution of the following least-squares problem (LSP): Given matrices X ∈ Rn×p, B ∈ Rp×p and A0 ∈ Rr×r, find a matrix A ∈ Rn×n such that XT AX − B = min, s. t. A([1, r]) = A0, where A([1, r]) is the r×r leading principal submatrix of the matrix A. We then consider a best approximation problem: given an n × n matrix A˜ with A˜([1, r]) = A0, find Aˆ ∈ SE such that A˜ − Aˆ = minA∈SE A˜ − A, where SE is the solution set of LSP. We show that the best approximation solution Aˆ is unique and derive an explicit formula for it. Keyw

**Keywords:**
Inverse problem,
Least-squares solution,
model updating,
Singular value decomposition (SVD),
Optimal approximation.

##### 999 Bound State Solutions of the Schrödinger Equation for Hulthen-Yukawa Potential in D-Dimensions

**Authors:**
I. Otete,
A. I. Ejere,
I. S. Okunzuwa

**Abstract:**

In this work, we used the Hulthen-Yukawa potential to obtain the bound state energy eigenvalues of the Schrödinger equation in D-dimensions within the frame work of the Nikiforov-Uvarov (NU) method. We demonstrated the graphical behaviour of the Hulthen and the Yukawa potential and investigated how the screening parameter and the potential depth affected the structure and the nature of the bound state eigenvalues. The results we obtained showed that increasing the screening parameter lowers the energy eigenvalues. Also, the eigenvalues acted as an inverse function of the potential depth. That is, increasing the potential depth reduces the energy eigenvalues.

**Keywords:**
Schrödinger's equation,
bound state,
Hulthen-Yukawa potential,
Nikiforov-Uvarov,
D-dimensions

##### 998 On Generalized New Class of Matrix Polynomial Set

**Authors:**
Ghazi S. Kahmmash

**Abstract:**

New generalization of the new class matrix polynomial set have been obtained. An explicit representation and an expansion of the matrix exponential in a series of these matrix are given for these matrix polynomials.

**Keywords:**
Generating functions,
Recurrences relation and Generalization of the new class matrix polynomial set.

##### 997 Using Spectral Vectors and M-Tree for Graph Clustering and Searching in Graph Databases of Protein Structures

**Authors:**
Do Phuc,
Nguyen Thi Kim Phung

**Abstract:**

**Keywords:**
Eigenvalues,
m-tree,
graph database,
protein
structure,
spectra graph theory.

##### 996 Eigenvalues of Particle Bound in Single and Double Delta Function Potentials through Numerical Analysis

**Authors:**
Edward Aris D. Fajardo,
Hamdi Muhyuddin D. Barra

**Abstract:**

**Keywords:**
Double Delta Potential,
Eigenstates,
Eigenvalue,
Numerov Method,
Single Delta Potential

##### 995 An Improved Adaptive Dot-Shape Beamforming Algorithm Research on Frequency Diverse Array

**Authors:**
Yanping Liao,
Zenan Wu,
Ruigang Zhao

**Abstract:**

Frequency diverse array (FDA) beamforming is a technology developed in recent years, and its antenna pattern has a unique angle-distance-dependent characteristic. However, the beam is always required to have strong concentration, high resolution and low sidelobe level to form the point-to-point interference in the concentrated set. In order to eliminate the angle-distance coupling of the traditional FDA and to make the beam energy more concentrated, this paper adopts a multi-carrier FDA structure based on proposed power exponential frequency offset to improve the array structure and frequency offset of the traditional FDA. The simulation results show that the beam pattern of the array can form a dot-shape beam with more concentrated energy, and its resolution and sidelobe level performance are improved. However, the covariance matrix of the signal in the traditional adaptive beamforming algorithm is estimated by the finite-time snapshot data. When the number of snapshots is limited, the algorithm has an underestimation problem, which leads to the estimation error of the covariance matrix to cause beam distortion, so that the output pattern cannot form a dot-shape beam. And it also has main lobe deviation and high sidelobe level problems in the case of limited snapshot. Aiming at these problems, an adaptive beamforming technique based on exponential correction for multi-carrier FDA is proposed to improve beamforming robustness. The steps are as follows: first, the beamforming of the multi-carrier FDA is formed under linear constrained minimum variance (LCMV) criteria. Then the eigenvalue decomposition of the covariance matrix is performed to obtain the diagonal matrix composed of the interference subspace, the noise subspace and the corresponding eigenvalues. Finally, the correction index is introduced to exponentially correct the small eigenvalues of the noise subspace, improve the divergence of small eigenvalues in the noise subspace, and improve the performance of beamforming. The theoretical analysis and simulation results show that the proposed algorithm can make the multi-carrier FDA form a dot-shape beam at limited snapshots, reduce the sidelobe level, improve the robustness of beamforming, and have better performance.

**Keywords:**
Multi-carrier frequency diverse array,
adaptive beamforming,
correction index,
limited snapshot,
robust.

##### 994 Turing Pattern in the Oregonator Revisited

**Authors:**
Elragig Aiman,
Dreiwi Hanan,
Townley Stuart,
Elmabrook Idriss

**Abstract:**

**Keywords:**
Diffusion driven instability,
common Lyapunov
function (CLF),
turing pattern,
positive-definite matrix.

##### 993 Weighted Harmonic Arnoldi Method for Large Interior Eigenproblems

**Authors:**
Zhengsheng Wang,
Jing Qi,
Chuntao Liu,
Yuanjun Li

**Abstract:**

The harmonic Arnoldi method can be used to find interior eigenpairs of large matrices. However, it has been shown that this method may converge erratically and even may fail to do so. In this paper, we present a new method for computing interior eigenpairs of large nonsymmetric matrices, which is called weighted harmonic Arnoldi method. The implementation of the method has been tested by numerical examples, the results show that the method converges fast and works with high accuracy.

**Keywords:**
Harmonic Arnoldi method,
weighted harmonic Arnoldi method,
eigenpair,
interior eigenproblem,
non symmetric matrix.

##### 992 Some New Inequalities for Eigenvalues of the Hadamard Product and the Fan Product of Matrices

**Authors:**
Jing Li,
Guang Zhou

**Abstract:**

Let A and B be nonnegative matrices. A new upper bound on the spectral radius ρ(A◦B) is obtained. Meanwhile, a new lower bound on the smallest eigenvalue q(AB) for the Fan product, and a new lower bound on the minimum eigenvalue q(B ◦A−1) for the Hadamard product of B and A−1 of two nonsingular M-matrices A and B are given. Some results of comparison are also given in theory. To illustrate our results, numerical examples are considered.

**Keywords:**
Hadamard product,
Fan product; nonnegative matrix,
M-matrix,
Spectral radius,
Minimum eigenvalue,
1-path cover.

##### 991 The Partial Non-combinatorially Symmetric N10 -Matrix Completion Problem

**Authors:**
Gu-Fang Mou,
Ting-Zhu Huang

**Abstract:**

An n×n matrix is called an N1 0 -matrix if all principal minors are non-positive and each entry is non-positive. In this paper, we study the partial non-combinatorially symmetric N1 0 -matrix completion problems if the graph of its specified entries is a transitive tournament or a double cycle. In general, these digraphs do not have N1 0 -completion. Therefore, we have given sufficient conditions that guarantee the existence of the N1 0 -completion for these digraphs.

**Keywords:**
Matrix completion,
matrix completion,
N10 -matrix,
non-combinatorially symmetric,
cycle,
digraph.

##### 990 Fuzzy Adjacency Matrix in Graphs

**Authors:**
Mahdi Taheri,
Mehrana Niroumand

**Abstract:**

**Keywords:**
Graph,
adjacency matrix,
fuzzy numbers

##### 989 Some New Bounds for a Real Power of the Normalized Laplacian Eigenvalues

**Authors:**
Ayşe Dilek Maden

**Abstract:**

For a given a simple connected graph, we present some new bounds via a new approach for a special topological index given by the sum of the real number power of the non-zero normalized Laplacian eigenvalues. To use this approach presents an advantage not only to derive old and new bounds on this topic but also gives an idea how some previous results in similar area can be developed.

**Keywords:**
Degree Kirchhoff index,
normalized Laplacian
eigenvalue,
spanning tree.

##### 988 Inverse Matrix in the Theory of Dynamic Systems

**Authors:**
R. Masarova,
M. Juhas,
B. Juhasova,
Z. Sutova

**Abstract:**

**Keywords:**
Dynamic system,
transfer matrix,
inverse matrix,
modeling.

##### 987 Numerical Treatment of Matrix Differential Models Using Matrix Splines

**Authors:**
Kholod M. Abualnaja

**Abstract:**

This paper consider the solution of the matrix differential models using quadratic, cubic, quartic, and quintic splines. Also using the Taylor’s and Picard’s matrix methods, one illustrative example is included.

**Keywords:**
Matrix Splines,
Cubic Splines,
Quartic Splines.

##### 986 On Positive Definite Solutions of Quaternionic Matrix Equations

**Authors:**
Minghui Wang

**Abstract:**

**Keywords:**
Matrix equation,
Quaternionic matrix,
Real representation,
positive (semi)definite solutions.

##### 985 Connectivity Estimation from the Inverse Coherence Matrix in a Complex Chaotic Oscillator Network

**Authors:**
Won Sup Kim,
Xue-Mei Cui,
Seung Kee Han

**Abstract:**

We present on the method of inverse coherence matrix for the estimation of network connectivity from multivariate time series of a complex system. In a model system of coupled chaotic oscillators, it is shown that the inverse coherence matrix defined as the inverse of cross coherence matrix is proportional to the network connectivity. Therefore the inverse coherence matrix could be used for the distinction between the directly connected links from indirectly connected links in a complex network. We compare the result of network estimation using the method of the inverse coherence matrix with the results obtained from the coherence matrix and the partial coherence matrix.

**Keywords:**
Chaotic oscillator,
complex network,
inverse coherence matrix,
network estimation.

##### 984 Stiffness Modeling of 3-PRS Mechanism

**Authors:**
Xiaohui Han,
Yuhan Wang,
Jing Shi

**Abstract:**

**Keywords:**
3-PRS,
parallel mechanism,
stiffness analysis,
workspace.

##### 983 Solving Linear Matrix Equations by Matrix Decompositions

**Authors:**
Yongxin Yuan,
Kezheng Zuo

**Abstract:**

In this paper, a system of linear matrix equations is considered. A new necessary and sufficient condition for the consistency of the equations is derived by means of the generalized singular-value decomposition, and the explicit representation of the general solution is provided.

**Keywords:**
Matrix equation,
Generalized inverse,
Generalized
singular-value decomposition.

##### 982 Bisymmetric, Persymmetric Matrices and Its Applications in Eigen-decomposition of Adjacency and Laplacian Matrices

**Authors:**
Mahdi Nouri

**Abstract:**

**Keywords:**
Graphs theory,
Eigensolution,
adjacency and
Laplacian matrix,
Canonical forms,
bisymmetric,
per symmetric.

##### 981 The Convergence Results between Backward USSOR and Jacobi Iterative Matrices

**Authors:**
Zuan-De Wang,
Hou-biao Li,
Zhong-xi Gao

**Abstract:**

In this paper, the backward Ussor iterative matrix is proposed. The relationship of convergence between the backward Ussor iterative matrix and Jacobi iterative matrix is obtained, which makes the results in the corresponding references be improved and refined.Moreover,numerical examples also illustrate the effectiveness of these conclusions.

**Keywords:**
Backward USSOR iterative matrix,
Jacobi iterative matrix,
convergence,
spectral radius

##### 980 Optimal Design of Two-Channel Recursive Parallelogram Quadrature Mirror Filter Banks

**Authors:**
Ju-Hong Lee,
Yi-Lin Shieh

**Abstract:**

This paper deals with the optimal design of two-channel recursive parallelogram quadrature mirror filter (PQMF) banks. The analysis and synthesis filters of the PQMF bank are composed of two-dimensional (2-D) recursive digital all-pass filters (DAFs) with nonsymmetric half-plane (NSHP) support region. The design problem can be facilitated by using the 2-D doubly complementary half-band (DC-HB) property possessed by the analysis and synthesis filters. For finding the coefficients of the 2-D recursive NSHP DAFs, we appropriately formulate the design problem to result in an optimization problem that can be solved by using a weighted least-squares (WLS) algorithm in the minimax (*L _{∞}*) optimal sense. The designed 2-D recursive PQMF bank achieves perfect magnitude response and possesses satisfactory phase response without requiring extra phase equalizer. Simulation results are also provided for illustration and comparison.

**Keywords:**
Parallelogram Quadrature Mirror Filter Bank,
Doubly Complementary Filter,
Nonsymmetric Half-Plane Filter,
Weighted Least Squares Algorithm,
Digital All-Pass Filter.