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Abstract—The generalized Higham matrix is a complex symmetric
matrix A = B + iC, where both B ∈ C

n×n and C ∈ C
n×n are

Hermitian positive definite, and i =
√−1 is the imaginary unit. The

growth factor in Gaussian elimination is less than 3
√

2 for this kind
of matrices. In this paper, we give a new brief proof on this result by
different techniques, which can be understood very easily, and obtain
some new findings.
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I. INTRODUCTION

COMPLEX symmetric matrices arise frequently, specially
in algebraic eigenvalue problems see [2,3] and in the

computational electrodynamics see [4] etc. The Higham matrix
is a complex symmetric matrix A = B + iC, where both B
and C are real, symmetric and positive definite, which was
firstly presented by Higham in [3] (It was called by a CSPD
matrix.). In order to research the accuracy and stability of
their LU factorizations, the growth factor (denoted by ρn(A))
in Gaussian elimination was conjectured in [2] that

ρn(A) ≤ 2

for any Higham matrix A. Subsequently, the paper proved the
following result

ρn (A) < 3, (1)

for such matrix A, and so LU factorization without pivoting
is perfectly normwise backward stable see [3]. Moreover, they
pointed out that if the Higham matrix is extended by allowing
B and C to be arbitrary Hermitian positive definite matrices,
i.e., A = B + iC is a generalized Higham matrix, then

ρn (A) < 3
√

2, (2)

in [5] also noted that the above bound (2) remains true when
B or C or both are negative (rather than positive) definite.

In this paper, we mainly give a new brief proof of the results
(1) and (2) by different techniques, which can be understood
more easily than the proof of [1]. Next, for convenience, we
use the same notations as in [1].
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II. AUXILIARY RESULTS

In this section, we mainly list some results and lemmas
which will be essential to prove our results.

Lemma 1 ([6]). Let A be a CSPD matrix, then A is
nonsingular, and any principal submatrix of A and any schur
complement in A are also CSPD matrices. Obviously, Lemma
1 shows that, being a CSPD matrix is a hereditary property of
active submatrices in Gaussian elimination.

Lemma 2 ([6]). The largest element of a CSPD matrix A
lies on its main diagonal.

The above property also holds for generalized Higham
matrices in the following slightly weakened form.

Lemma 3 ([1]). If A is a generalized Higham matrix, then
√

2max
l

|all| ≥ max
l �=j

|alj |, (3)

Thus, for a CSPD matrix A, the growth factor

ρn (A) =
maxi,j,k|a(k)

ij |
maxi,j |aij | (4)

can be replaced by

ρn (A) =
maxj,k|a(k)

jj |
maxj |ajj | . (5)

By Lemma 1 and 2, one can obtain broader bounds for the
growth factor of a CSPD matrix A.

Lemma 4 ([7]). Let Z1 and Z2 be m × n matrices and

H = Z∗
1Z2 + Z∗

2Z1, (6)

then
H ≤ Z∗

1Z1 + Z∗
2Z2. (7)

Lemma 5 ([8]). If B1 and B2 are n×n Hermitian positive
definite, then inequalities B1 ≥ B2 if and only if B−1

2 ≥ B−1
1 .

In addition, according to the Theorem 2.1 in [1] and its
proof, we easily obtain the following corollary.

Corollary 1. Let A = B+iC, where B and C are Hermitian
and positive definite matrices, then A is nonsingular, and
A−1 = X + iY , X is a positive (semi)definite matrix when
B is positive (semi)definite and Y is a negative (semi)definite
matrix when C is positive (semi)definite.

III. MAIN RESULTS

The following theorem has been proved in [1], but the proof
of [1] is lengthy. Based on the ideas in [1] and [7], we next
give its a new proof, which can be understood more easily
than the proof of [1].

whose proof was quite lengthy in [1]. In addition, authors
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Theorem 1. Let A be a generalized Higham matrix, then

|a(k)
jj |

|ajj | < 3, j = 1, 2, · · · , n, k = 1, 2, · · · , n − 1. (8)

Proof. Similarly to [1], fix the number k ∈ {1, 2, · · · , n−1}
and j, where j ≥ k+1. Denote Ak, Bk and Ck by the leading
principal order k submatrices in A, B and C, respectively.
We split the matrix Akj , a principal order (k + 1) × (k + 1)
submatrix in A, into

Akj =
(

Ak α
βT ajj

)
,

where
αT =

(
a1j , a2j , · · · , akj

)
,

and
βT =

(
aj1, aj2, · · · , ajk

)
.

Defining the vectors

bT =
(

b1j , b2j , · · · , bkj

)

and
cT =

(
c1j , c2j , · · · , ckj

)
,

we can rewrite Akj as

Akj =
(

Bk + iCk b + ic
b∗ + ic∗ bjj + icjj

)
. (9)

It is easy to see that a
(k)
jj can be obtained by performing block

Gaussian elimination in Akj , namely,

a
(k)
jj = ajj − βT A−1

k α.

Similarly to [1], setting a
(k)
jj = β + iγ, β, γ ∈ R and using

(9), we have

β + iγ = bjj + icjj − (b∗ + ic∗)(Bk + iCk)−1(b + ic). (10)

Next, we use the same method as in [1] to deal with
(Bk + iCk)−1. By [1], we know that (Bk + iCk)−1 can be
written as

(Bk + iCk)−1 = Xk + iYk, (11)

where Xk is positive definite and Yk is negative definite by
Corollary 1. Substituting (11) into (10) yields

β + iγ = bjj + icjj − (b∗ + ic∗)(Xk + iY k)(b + ic),

we have

β = bjj − b∗Xkb + c∗Xkc + c∗Ykb + b∗Ykc, (12)

and

γ = cjj − b∗Ykb + c∗Ykc − c∗Xkb − b∗Xkc. (13)

Now, we use the other technique, which is different from
[1], to obtain the upper bounds on β and γ.

Since Xk is a positive definite matrix, Yk is negative
definite. It is obvious that −b∗Xkb in (12) and c∗Ykc in (13)
are negative semidefinite, so (12) and (13) can rewrite

β ≤ bjj + c∗Xkc + c∗Ykb + b∗Ykc, (14)

and
γ ≤ cjj − b∗Ykb − c∗Xkb − b∗Xkc. (15)

Now we mainly consider the last two summands on the right
hand side for the above two inequalities (14) and (15). First,
for (14), we apply the Lemma 4 with

Z1 = Gb and Z2 = Gc,

where G is the Hermitian positive definite square root of the
matrix −Yk, we get

c∗Ykb + b∗Ykc ≤ −b∗Ykb − c∗Ykc,

thus
β ≤ bjj + c∗Xkc − b∗Ykb − c∗Ykc. (16)

The last summand on the right-hand side of (15) may be
proved in the same way. Thus we have the following inequality

−c∗Xkb − b∗Xkc ≤ b∗Xkb + c∗Xkc.

So
γ ≤ cjj − b∗Ykb + b∗Xkb + c∗Xkc. (17)

In addition, by [1], we see that

Xk = (Bk + CkB−1
k Ck)−1 ≤ 1

2
C−1

k (18)

and
−Yk = (Ck + BkC−1

k Bk)−1 ≤ 1
2
B−1

k . (19)

Note that
(

Ck c
c∗ cjj

)
and

(
Bk b
b∗ bjj

)
are positive

definite, by [1], the Schur complement Ckj/Ck and Bkj/Bk

are also positive definite, i.e.,

c∗Ck
−1c < cjj and − b∗Bk

−1b < bjj ,

which implies that

c∗Xkc <
1
2
cjj , and − b∗Ykb <

1
2
bjj ,

Coming back to (18), from the trivial inequality

Bk + CkB−1
k Ck ≥ Bk,

we can deduce the bound Xk ≤ B−1
k by Lemma 5. In addition,

note that
(

Bk b
b∗ bjj

)
is positive definite, we have

b∗Xkb ≤ b∗B−1
k b < bjj .

Similarly, (19) implies the bound

−Yk < C−1
k

and
−c∗Ykc ≤ c∗C−1

k c < cjj .
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Summarizing the above results, we conclude that

β ≤ bjj + c∗Xkc − b∗Ykb − c∗Ykc
< bjj + 1

2cjj + 1
2bjj + cjj

= 3
2 (bjj + cjj)

and
γ ≤ cjj − b∗Ykb + b∗Xkb + c∗Xkc

< cjj + 1
2bjj + bjj + 1

2cjj

= 3
2 (bjj + cjj).

So both the matrix β and matrix γ are bounded above by the
same matrix 3

2 (bjj + cjj).

It follows that

β2 + γ2 < [ 32 (bjj + cjj)]2 + [32 (bjj + cjj)]2

= 9
2 (bjj + cjj)2

= 9
2 (b2

jj + c2
jj) + 9bjjcjj

≤ 9
2 (b2

jj + c2
jj) + 9

2 (b2
jj + c2

jj)
= 9(b2

jj + c2
jj).

which is equivalent to (8). �

Remark 1. Here, we obtain the same result as the paper
[1] by Lemma 4, but our proof may be easily understood. In
addition, according to the above analysis, we know that both
the matrix β and matrix γ are bounded by the same matrix
3
2 (bjj + cjj), while the paper [1] indicated that

β < 2bjj + cjj and γ < bjj + 2cjj .

This seems to be interesting, and we will continue to study
them in the future.

Finally, by (5), the following results are obvious.
Corollary 2 ([1]). Let A be a Higham matrix, then

ρn (A) < 3. (20)

Corollary 3 ([1]). Let A be a generalized Higham matrix,
then

ρn (A) < 3
√

2. (21)

IV. CONCLUSION

The main result of the paper has been proved in [1], but
the proof of [1] is lengthy and is not to be understood easily.
Based on the ideas in [1] and [7], we give its a new proof,
which can be understood more easily than the proof of [1],
and obtain some new findings.
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