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 
Abstract—In this paper, efforts were made to examine and 

compare the algorithmic iterative solutions of conjugate gradient 
method as against other methods such as Gauss-Seidel and Jacobi 
approaches for solving systems of linear equations of the form Ax = b, 
where A is a real n x n symmetric and positive definite matrix. We 
performed algorithmic iterative steps and obtained analytical solutions 
of a typical 3 x 3 symmetric and positive definite matrix using the three 
methods described in this paper (Gauss-Seidel, Jacobi and Conjugate 
Gradient methods) respectively. From the results obtained, we 
discovered that the Conjugate Gradient method converges faster to 
exact solutions in fewer iterative steps than the two other methods 
which took much iteration, much time and kept tending to the exact 
solutions. 

 
Keywords—Conjugate gradient, linear equations, symmetric and 

positive definite matrix, Gauss-Seidel, Jacobi, algorithm.  

I. INTRODUCTION 
ONJUGATE Gradient method is the most popular iterative 
method for solving large systems of linear equations. It is 

effective for systems of the form ݔܣ = ܾ where ݔ is an 
unknown vector, ܾ  is a known vector, and ܣ is a known, square, 
symmetric, positive-definite (or positive-indefinite) matrix [1]. 
It is also an iterative method for first approximation and 
converges after a specified number of iterations to produce the 
actual solutions. In this approach, the matrix of the system is 
not affected in the process of computation as every iteration is 
only used in multiplying the resulting vector. The order of 
systems of equation that can actually be computed is often high 
and it is being ascertained by the amount of arithmetical 
information required to stipulate the matrix. Being a direct 
iterative method, its arrangement is based on the method of 
sequential ܣ − orthogonalization of a set of vectors and is an 
ordinary orthogonalization process with respect to the scalar 
product 〈ݔ, 〈ݕ = ௜ݏif ሼ .ݕܣ்ܺ … ܣ ௡ሽ is anݏ − orthorgonal 
basis of the space, then for any initial approximation ݔ଴, the 
exact solution ݔ∗ of the system can be obtained from the 
decomposition [2]. 
∗ݔ  − ଴ݔ = ∑ ௝,௡௝ୀଵݏ௝ߙ ௝ߙ    = 〈௥బ,௦ೕ〉〈௦ೕ,஺௦ೕ〉  
 
where ݎ଴ = ܾ − -଴. In the conjugateݔ ଴ is the discrepancy ofݔܣ
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gradient method, the ܣ-orthogonal vectors ݏ௜ …  ௡ areݏ
constructed by ܣ-orthogonalizing the discrepancies ݎ଴ …  ௡ିଵ ofݎ
the sequence of approximations ݔ௜ …  :௡ିଵ, given byݔ
௞ݔ  = ଴ݔ + ∑ ௝,௞௝ୀଵݏ௝ߙ ௝ߙ    = 〈௥బ,௦ೕ〉〈௦ೕ,஺௦ೕ〉.  
 

The vectors ݎ଴ … ௜ݏ ௡ିଵ andݎ …  ௡ constructed in this wayݏ
have the following properties: 
,௜ݎ〉  〈௝ݎ = 0, ݅ ≠ ,௜ݎ〉  ;݆ 〈௝ݏ = 0, ݆ = 1 … ݅.   (1) 
 

The conjugate-gradient method is now defined by the 
following recurrence relations: 
 

۔ۖەۖ
ଵݏۓ = ௜ݔ  ;଴ݎ = ௜ିଵݔ + ,௜ݏ௜ߙ ௜ߙ = − 〈௦೔,௥೔షభ〉〈௦೔,஺௦೔〉 ௜ݎ, = ௜ିଵݎ + ௜ାଵݏ   ,௜ݏܣ௜ߙ = ௜ݎ + ௜ߚ,௜ݏ௜ߚ = − 〈௥೔,஺௦೔〉〈௦೔,஺௦೔〉 .   (2) 

 
The process ends at some ݇ ≤ ݊ for which ݎ௞ = 0. Then, ݔ∗ =  ௞. The convergence point is known by the firstݔ

approximation ݔ଴. It follows from (2) that recurring vectors ݎ଴ … ,଴ݎ ௜ are direct combinations of the vectorsݎ ଴ݎܣ … .  .଴ݎ௜ܣ
However, since the vectors ݎ଴ …  ௜ can onlyݎ ,௜ are orthogonalݎ
disappear when the vectors ݎ଴, ଴ݎܣ … .  ଴ are linearlyݎ௜ܣ
dependent. For instance, when there are only ݅ non-zero 
components in the decomposition of ݎ଴ with respect to a basis 
of eigenvectors of ܣ. It suffices to show that this can actually 
impact on the choice of initial approximation [2]. 

A. System of Linear Equation  
A linear equation in the ݕݔ plane can be represented 

algebraically by an equation of the form:  
 ܽଵ + ܽଶݕ = ܾ   

 
An equation in this kind is called a linear equation in the 

variables ݔ and ݕ. In general terms, we can say a linear equation 
in ݊  variables ݔଵ, ,ଶݔ …  :௡, is one that can be written in the formݔ
 ܽଵݔଵ + ܽଶݔଶ + ⋯ ܽ௡ݔ௡ = ܾ   
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where, ܽଵ, ܽଶ … ܽ௡, and are real constants. In most times, the 
variables in a typical linear equation are called the roots of the 
linear equations or solution. For instance, a typical system of 
linear equations in four unknows is given as: 
 ܽଵଵݔଵ + ܽଵଶݔଶ + ܽଵଷݔଷ + ܽଵସݔସ = ܾଵܽଶଵݔଵ + ܽଶଶݔଶ + ܽଶଷݔଷ + ܽଶସݔସ = ܾଶܽଷଵݔଵ + ܽଷଶݔଶ + ܽଷଷݔଷ + ܽଷସݔସ = ܾଷ

 

 
It is pertinent to state that the double subscript on the 

coefficients of the unknown parameters is often used specify 
location of the coefficients in the given systems of equations in 
that order.  

II. METHODS 

A. Gauss-Seidel Method 
This is a minor modification of the Jacobi method that often 

reduces the number of iterations needed to obtain a given degree 
of accuracy. The technique is called Gauss-Seidel iteration or 
the method of successive displacements. Gauss-Seidel method 
is more appropriate for programming as the successive 
approximations do not need to be stored in two separate arrays; 
the new values can be overwritten immediately on the old 
values [3]; which in turn requires less storage on a computer 
and that will be significantly effective in case of huge systems, 
for instance when solving for millions of unknowns [4]. 
ଵ(௡ାଵ)ݔ  = ଵ௔భభ ൣܾଵ − ܽଵଶݔଶ(௡) − ܽଵଷݔଷ(௡)൧  ݔଶ(௡ାଵ) = ଵ௔మమ ൣܾଶ − ܽଶଵݔଵ(௡ାଵ) − ܽଶଷݔଷ(௡)൧  ݔଷ(௡ାଵ) = ଵ௔యయ ൣܾଷ − ܽଷଵݔଵ(௡ାଵ) − ܽଷଶݔଶ(௡ାଵ)൧  
ଵ(௡ାଵ)ݔ  = ଵ௔೔೔ ൣܾ௜ − ∑ ܽ௜௝ݔ௝ (௡ାଵ)௜ିଵ௝ୀଵ − ∑ ܽ௜௝ݔ௝(௡)௡௝ୀଵାଵ ൧, ݅ =1, 2, … , ݊ (3) 
 

In a solved example applying Gauss-Seidel method, given 
the system: 
 

ێێێۏ
ۍ 3 −1 0−1 2 −10 −1 3 ۑۑۑے

ې
ێێێۏ
ۑۑۑےଷݔଶݔଵݔۍ

ې = ێێێۏ
ۑۑۑے235ۍ

  ې
 

Comparing with ݔܣ = ܾ, 
 

ܣ = ێێۏ
ۍێ 3 −1 0−1 2 −10 −1 3 ۑۑے

ېۑ ݔ = ێێۏ
ۑۑے3ݔ2ݔ1ݔۍێ

, ېۑ ܾ = ൥23൩ 
 It is also positive definite since .ܣ்ܣ is symmetric since ܣ 
the determinant of every principal sub-matrix is positive i.e., 
 

อ 3 −1−1 2 อ = (ଶݔ3) − ݔ1−) − 1) = 6−= 5 

 
Also,  3 อ 3 −1−1 2 อ + 1 อ−1 −10 3 อ + 0      
 3(6 − 1) + 1(−3 − 0) = 15 − 3 = 12       
 
which are all positive. Therefore, the matrix ܣ is symmetric and 
positive definite. Now applying the Gauss-Seidel algorithm for 
a three-by-three matrix we have, 
ଵଵݔ  = ଵଷ (2 − (−1)(−0) − (0)(0)) = ଶଷ = ଵଶݔ  0.66666666 = ଵଶ (3 − (−1)(0.66666666) − (−1)(0)) ଵଷݔ  1.83333333= = ଵଷ (5 − (0)(0.66666666) − (−1)(1.83333333)) ଶଵݔ  2.277777778= = ଵଷ (2 − (−1)(1.83333333) − (0)(2.277777778)) ଶଶݔ  1.277777778= = ଵଶ ൫3 − (−1)(1.277777778) −(−1)(2.277777778)൯ = ଶଷݔ  3.277777778 = ଵଷ ൫5 − (0)(1.277777778) − (−1)(2.27777778)൯ ଷଵݔ  2.7592595259= = ଵଶ ൫3 − (−1)൯(1.759259259 + 2.759259259) ଷଶݔ  3.759259259= = ଵଷ (5 − (0)(1.759259259) − (−1)(3.759259259)) ଷଷݔ  (6.2530864197= = ଵଷ (8.759259259) = ସଵݔ  2.91753086 = ଵଶ (3 − (−1)(1.919864197) −(−1)(2.919753086)) = ସଶݔ  1.919864197 = ଵଶ (7.839617283) = 3.919808642 =ଵଶ (7.839617283) = ସଷݔ  3.919808642 = ଵଷ (5 − (0)(1.919864197) − (−1)(3.919808642)) ହଵݔ  2.973269547= = ଵଷ ൫2 − (1 − 1)(3.919808642) −(0)(2.973269547)൯ = ହଶݔ  1.973269547 = ଵଶ ൫3 − (−1)(1.973269547) −(−1)(3.919808642)൯ = ହଷݔ  3.973269547 = ଵଷ ൫5 − (0)(1.973269547) − (−1)(3.973269547)൯ ଺ଵݔ  2.4991089849=  = ଵଷ (5.973269547) = ଺ଶݔ  1.991089849 = ଵଶ ൫3 − (−1)(1.991089849) −(−1)(2.991089849)൯  = ଺ଷݔ  3.991089849 = ଵଷ ൫5 − (0)(1.991089849) − (−1)(3.991089849)൯ =2.99702995  
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ଵ଻ݔ = ଵଷ ൫2 − (−1)(3.991089849) − (0)(2.99702995)൯ ଶ଻ݔ  1.99702995= = ଵଶ ൫3 − (−1)(1.99702995) − (−1)(2.99702995)൯ ଷ଻ݔ  3.99702995= = ଵଷ ൫5 − (0)(1.99702995) − (−1)(3.99702995)൯ ଵݔ  2.999009983= = ଶݔ ,1.99702995 = ଷݔ ,3.99702995 = 2.999009983, 
B. Jacobi Method 
The simplest iterative method, which is called Jacobi 

iteration or the method of simultaneous displacements, applies 
to linear systems of ݊ equations in ݊ unknowns. We suppose 
that the system 
 

  ܽଵݔଵ +ܽଵଶݔଶ + ⋯ +ܽଵ௡ݔ௡ = ଵܾܽଶଵݔଵ +ܽଶଶݔଶ + ⋯ +ܽଶ௡ݔ௡ = ܾଶ⋮ ⋮ ⋮ܽଵ௡ݔଵ +ܽ௡ଶݔଶ + ⋯ +ܽ௡௡ݔ௡ = ܾ௡
ൢ  (4) 

 
has exactly one solution and that the diagonal entries ܽଵଵ, ܽଶଶ, … ܽ௡௡ are nonzens. To start, we rewrite (4) by solving 
the first equation for ݔଵ in terms of the remaining unknowns and 
solving the second equation for ݔଶ and ݔଷ in terms of the 
existing unknowns in the ݊ݐℎ equation produces: 
ଵݔ  = ଵ௔భభ (ܾଵ − ܽଵଶݔଶ − ܽଵଷݔଷ − ⋯ − ܽଵ௡ݔ௡)ݔଶ = ଵ௔మమ (ܾଶ − ܽଶଵݔଵ − ܽଶଷݔଷ − ⋯ − ܽଶ௡ݔ௡)⋮ݔଵ = ଵ௔೙೙ ൫ܾ௡ − ܽ௡ଵݔଵ − ܽ௡ଶݔଶ − ⋯ ܽ௡,௡ିଵݔ௡ିଵ൯ ۙۘۖ

ۖۗ
  (5) 

 
examining a solved example applying Jacobi method, given the 
system 
 ൥ 3 −1 0−1 2 −10 −1 3 ൩ ൥ݔଵݔଶݔଷ൩ = ൥235൩ 

 
comparing with ܺܣ = ܾ 
ܣ  = ൥ 3 −1 0−1 2 −10 −1 3 ൩ , ݔ = ൥3ݔ2ݔ1ݔ൩ , ܾ = ቂ23ቃ 
்ܣ is a symmetric since ܣ  =  It is also positive definitely .ܣ
since the determinant of every principal sub-matrix is positive 
i.e. 
 ቚ 3 −1−1 2 ቚ = (3 × 2) − ݔ1−) − 1) = −6−= 5 
 
Also, 
 

3 ቚ 3 −1−1 2 ቚ + ቚ−1 −10 3 ቚ + 0 = 3(6 − 1) + 1(−3 − 0)= 15 − 3 = 12 
 
which are all positive. Therefore, the matrix ܣ is symmetric and 
positive definite. 

Let ݔ = ൭000൱ 

ଵଵݔ  = ଵଷ ൫2 − (−1)(0) − (0)(0)൯ = ଶଷ = ଶଵݔ  0.6666666 = ଵଶ ൫3 − (−1)(0) − (−1)(0)൯ = ଷଶ = ଷଵݔ  1.5 = ଵଷ ൫5 − (0)(0) − (−1)(0)൯ = ହଷ = ଵଶݔ  0.66666667 = ଵଷ ൫2 − (−1)(1.5) − 0(1.66666667)൯ = ଶଶݔ  1.66666667 = ଵଶ ൫3 − (−1)(1.6666666) − (−1)(1.66666667)൯ ଷଶݔ  2.6666666= = ଵଷ (5 − (0)(0)(0.6666666) − (−1)(1.5)) ଵଷݔ  2.16666666= = ଵଷ (2 − (−1)(2.6666666) − (0)(2.166666667)) =ସ.଺଺଺଺଺଺଺଻ଷ = ଶଷݔ  1.5555556 = ଵଶ ൫3 − (−1)(1.66666667) − (−1)(2.16666667)൯ ଷଷݔ  3.16666685= = ଵଷ (3 − (0)(1.166666667) − (−1)(2.66666666)) ଵସݔ  2.55555555= = ଵଷ ൫2 − (−1)(3.66666685) − (−0)(2.55555555)൯ ଶସݔ  1.7222222228= = ଵଶ = (3 − (−1)(1.55555556) −(−1)(2.55555555)) = ଷସݔ  3.555555553 = ଵଷ ൫5 − (0)(1.55555556) − (−1)(3.1666666685)൯ ଵହݔ  2.7222228= = ଵଷ ൫2 − (−1)(3.5555555) − (0)(2.7222222228)൯ ଶହݔ  1.851851852= = ଵଶ ൫3 − (−1)(1.722222228) − (−1)(2.7222228)൯ ଷହݔ  3.7222228=  = ଵଷ ൫5 − (0)(1.722222228) − (−1)(3.555555555)൯ ଵ଺ݔ  2.851851252= = ଵଷ ൫2 − (−1)(3.72222228) − (0)(2.851851252)൯ ଶ଺ݔ  1.907407427= = ଵଶ ൫3 − (−1)(1.8511851852) −(−1)(2.851851882)൯ = ଷ଺ݔ  3.851851852 = ଵଷ ൫5 − (0)(1.851851852) − (−1)(3.72222228)൯ ଵ଻ݔ  2.907407427= = ଵଷ ൫2 − (−1)(3.851851852) − (0)(2.907407427)൯ ଶ଻ݔ  1.950617284= = ଵଷ ൫3 − (−1)(1.907407427) −(−1)(1.907407427)൯ = ଷ଻ݔ  3.907407427 = ଵଷ ൫5 − (0)(1.907407427) − (−1)(3.85185152)൯ =
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ଵ଼ݔ  2.950617284 = ଵଷ ൫2 − (−1)(9.907407427) − (0)(2.950617284)൯ ଶ଼ݔ  1.969135809= = ଵଷ ൫3 − (−1)(1.950617284) −(−1)(2.950617284)൯ = ଷ଼ݔ  3.950617284 = ଵଷ ൫5 − (0)(1.950617284) − (−1)(3.907407427)൯ ଵଽݔ  2.969135809= = ଵଷ ൫2 − (−1)(3.950617284)൯  = ଵଷ (3.950617284) ଶଽݔ  1.983539095= = ଵଶ ൫3 − (−1)(1.969135809) −(−1)(2.969135809)൯ = ଷଽݔ  3.969135809 = ଵଶ ൫5 − (0)(1.969135809) − (−1)(3.950617284)൯ ଵଵ଴ݔ  2.93539095= = ଵଷ ൫2 − (−1)(3.969135809) − (0)(2.93539095)൯ ଶଵ଴ݔ  1.989711936= = ଶଷ ൫3 − (−1)(1.983539095) −(−1)(2.983539095)൯ = ଷଵ଴ݔ  3.983539095 = ଵଷ ൫5 − (0)(1.983539095) − (−1)(3.96399177)൯ ଵଵଵݔ  2.987997257= = ଵଷ ൫2 − (−1)(3.983539095) − (0)(2.98799257)൯ ଶଵଵݔ  1.994513032= = ଵଷ ൫3 − (−1)(1.98799257) − (−1)(2.98799257)൯ ଷଵଵݔ  3.98799257= = ଵଷ ൫5 − (0)(1.98799257) − (−1)(3.983539095)൯ ଵଵଶݔ  2.994513032= = ଵଷ ൫2 − (−1)(3.983539095) − (0)(2.994513032)൯ ଶଵଶݔ  1.99599999919= = ଵଶ ൫3 − (−1)(1.994513032)൯  = ଵଶ (7.989026064) ଷଵଶݔ  3.994513032=  = ଵଷ ൫5 − (0)(1.994513032) −(−1)(3.987997257)൯  = ଵଵଷݔ  2.995999919 = ଵଷ (2 − (−1)(3.994513032) − (0)(2.99599919)) ଶଵଷݔ  1.998171011=  = ଵଶ (3 − (−1)(1.995999919) −(−1)(2.995999919) = ଷଵଷݔ  3.995999919 = ଵଷ ൫5 − (0)(1.995999919) − (−1)(3.994513032)൯ =2.998171011  
 
Therefore, ݔଵ = ଶݔ  1.998171011 = ଷݔ  3.995999919 = 2.99871011  

C. Conjugate Gradient  
One of the major problems in machine computations is to 

find an effective method of solving a system of n simultaneous 
equations in n unknowns, particularly if n is large [5]. The 
conjugate gradient method solves systems of linear equations 

of the form ݔܣ = ܾ, where ܣ is a real ݊ × ݊ symmetric and 
positive definite matrix. This implies that, 
்ܣ  = ݔܣ்ݔ and ܣ > 0 for ݔ ≠ 0. 
 

Theorem 1. A symmetric matrix ܣ is a positive definite if 
and only if all the eigenvalue of ܣ are positive.  

Theorem 2. A symmetric matrix ܣ is positive definite if and 
only if the determinant of every principal sub-matrix is positive. 

i.e., ܣ = ൥ 2 −1 −3−1 2 4−3 4 9 ൩ is positive definite since, |2| =
2, ቂ 2 −1−1 2 ቃ = 3, ൥ 2 −1 −3−1 2 4−3 4 9 ൩  = 1 all of which are positive. 

Thus, we are guaranteed that all eigenvalues of ܣ are positive 
and  ݔଵݔܣ > 0 for all ݔ ≠ 0. The inner-product notation for 
real vectors ݔ and ݕ are used in the conjugate gradient method. 
〈ݕଵݔ〉  = ݕ்ݔ = ∑ ௜௡௜ାଵݕ௜ݔ                      (6) 

1. Algorithm Conjugate Gradient 
In this section, we are going to apply the algorithm to solve 

the system of linear equation of the form ݔܣ = ܾ is a positive 
definite and symmetric matrix; using the conjugate gradient 
method (“Algorithm Conjugate Gradient”). 

 
Step 1:  Input ݔ଴, ݉, ,ܣ ܾ, ݁ 
Step 2:  set ݎ଴ = ܾ −  ଴ݔܣ
Step 3:   ܸ଴ =  ଴ݎ
Step 4:  For ܭ = 0,1,2, … , ݉ − 1 do,  Begin 
Step 4a:  if ܸ௞ = 0 then stop 

Else 
Step 4b:  set ܥ =< ,௞ݎ ,௞ݎ >=  ௞ݎ்(௞ݎ)

Step 4c:  set  ݐ௞ = ௖ழ௏(ೖ),௭வ  
Step 4e:  set ݔ(௞ାଵ) = (௞)ݔ +  ௞ܸ(௞)ݐ
Step 4f:  set ݎ(௞ାଵ) = (௞)ݎ −   ݖ௞ݐ
Step 4g:  if (‖݇ + ݇‖)ଶଶ < Σ then stop 

End do 
Step 5:  set ܵ௄ = ழ௥(ೖశೖ),௥(ೖశೖ)வ஼   

Step 6:  set ܸ(௞ା௞), (௞ା௞)ݎ + ܵ௄ܸ(௞) 
Step 7:  output ݇ + 1, ,(௞ା௞)ݔ  (௞ା௞)ݎ
Step 8:  stop 

 
A solved example applying the conjugate gradient method by 

tracing the algorithm with the given matrix system in (7) yields: 
 ൥ 3 −1 0−1 2 −10 −1 3 ൩ ൥ݔଵݔଶݔଷ൩ = ൥235൩    
 

Step 1: ܸ଴ = ൭235൱ , ଴ݔ = ൭000൱ 
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Step 2: ܸ଴ = ൭235൱ 

Step 3: ܥ = ்ܸܸ = (2 3 5) ൭235൱ =  38 

Step 4: ݖ = ൥ 3 −1 0−1 2 −10 −1 3 ൩ ൥235൩ = ൥ 3−112൩ 

Step 5: ݐ = ஼ழ௏,௓வ = ஼௏೅௓ = ଷ଼(ଶ ଷ ହ)൥ ଷିଵଵଶ൩  ݐ = ݐ = ଷ଼଺ଷ = (ଵ)ݔ  0.603174603 = ൭000൱ + 0.603174603 ൭235൱ = ൭1.2063492061.8095238093.015873015൱  

ܸ = ൭235൱ − 0.603174603 ൭235൱ − ൭ 1.809523809−0.6031746033.015873015 ൱ 

ܸ = ൭ 0.1947619133.603174603−2.238095236൱ ܥ = (0.194761913 3.603174603 −2.238095236) ൭ 0.1947619133.603174603−2.238095236൱  ܥ = (0.036281179 + 12.9828672197 + 5.009070285)= (ଶ)ݔ  (18.0287492947) = ൭1.2063492061.8095238093.015873015൱ + 0.43256906 ൭1.1393189675.0264387670.134011694൱  

(ଶ)ݔ = ൭0.2063492061.8095238093.015873015൱ + ൭0.4928282622.162819530.057968621൱  
(ଶ)ݔ = ൭1.6991774683.972433393.073841637൱    

ܸ = ൭ 0.1904761913.603174603−2.238095236൱ − 0.432563906 =
൭−1.6084818668.779546923−4.624403685൱  

ܸ = ൭ 0.1904761913.603174603−2.238095236൱ − ൭ −0.695711983.69771511−2.000350121൱ 

ܸ = ൭ 0.886247389−0.194540507−0.237745115൱   ܥ = (0.886247389 − 0.194540507 − 0.237745115) ൭ 0.886247389−0.194540507−0.237745115൱ ܥ = 0.785434434 + 0.037846008 + 0.056522739 =0.879803181  ܸ = ൭ 0.886247389−0.194540507−0.237745115൱ + ቀ଴.଼଻ଽ଼଴ଷଵ଼ଵଵ଼.଴ଶ଼଴ଵଶ଻଻ቁ ൭−1.1393189675.0264387670.134011694 ൱  

ܸ = ൭ 0.886247389−0.194540507−0.237745115൱ + 0.048802005 ൭−1.1393189675.0264387670.134011694 ൱ 

ܸ = ൭ 0.886247389−0.194540507−0.237745115൱ + ൭0.0679904490.2453002930.006540039൱ =
൭ 0.954237838−0.050759786−0.231205075൱  ܥ = 0.879803181   ܼ = ൭ 3 −1 0−1 2 −10 −1 3 ൱ ൭ 0.954237838−0.050759786−0.231205075൱     

ܼ = ൭ 2.811953728−0.621513191−0.744375011൱  
ݐ = >ܥ ܸ, ܼ > = 0.879803181< ܸ, ܼ >   < ܸ, ܼ >= (0.954237838 0.050759786 − 0.231205075) ൭ 2.811953728−0.621513191−0.744375011൱ < ܸ, ܼ >= 2.655153109 − 0.031547876 + 0.17210328 < ܸ, ܼ >= ݐ  2.795708512 = 0.8790831812.795708512 = (ଷ)ݔ  0.314285459 = ൭1.6991774683.972433393.073841637൱ + 0.314285459 ൭ 0.9542378380.050759786−0.231205075൱ 

(ଷ)ݔ = ൭1.6991774683.972433393.073841637൱ + ൭ 0.2999030760.015953062−0.072664393൱  =
൭1.9990805453.9883864523.001177244൱  

 
Hence,     ݔଵ = ଶݔ   ,1.999080545 = ଷݔ   ,3.988386452 = 3.001177244 

III. CONVERGENCE 
The Conjugate Gradient method converges faster to the exact 

solutions, the Gauss-Seidel and Jacobi method do not always 
work. In few cases, the two methods may fail to produce a good 
approximation to the solution, regardless of the number of 
iterations performed. In such cases, the approximations are said 
to diverge. 

 

ܣ = ൦ܽଵଵ ܽଵଶ … . ܽଵ௡ܽଶଵ ܽଶଶ … . ܽଶ௡⋮ ⋮ ⋮ܽ௡ଵ ܽ௡ଶ … . ܽ௡௡൪     
 
However, if by performing sufficiently much iteration, the 
solution can be obtained to any desired degree of accuracy, the 
approximations are said to converge. We shall now discuss 
some conditions that ensure convergence. A square matrix 
 |ܽଵଵ| > |ܽଵଶ| + |ܽଵଷ| + ⋯ + |ܽଵ௡| |ܽଶଶ| > |ܽଶଵ| + |ܽଶଷ| + ⋯ + |ܽଶ௡| |ܽ௡௡| > |ܽ௡௦| + |ܽ௡ଶ| + ⋯ + |ܽ௡(݊ − 1)| 
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is called strictly diagonally dominant, if the absolute value of 
each diagonal entry is greater than of the absolute value of the 
remaining entries in the same row. That is, if ܣ is strictly 
diagonally dominant, then the Gauss-Seidel and Jacobi 
approximations to the solution of ݔܣ = ܾ both converge to 
exact solutions to the system for all choices of the initial 
approximation. In practical problems we are concerned not only 
with the convergence of iterative method but also with how fast 
they converge; for example, there are linear system in which the 
Gauss-Seidel approximation converge, but the convergence is 
such that millions of iterations would be required to obtain any 
reasonable accuracy. With clever programming, less computer 
memory is needed for iterative methods than direct methods. 
Thus, if memory space is a problem, iterative methods may be 
essential. If the iterative methods diverge or the rate of 
convergence is too slow, direct methods may be essential. 

A. Comparisons with Other Methods 
TABLE I 

DIFFERENCE BETWEEN CONJUGATE GRADIENT, JACOBI AND GAUSS SEIDEL 
METHODS 

Conjugate Gradient Jacobi and Gauss-Seidel 
For any initial approximation, the 

conjugate gradient method 
converges after a finite number of 

iterations  
 

It gives the exact solution  
 

As a direct method, its structure is 
based in the process of sequential ܣ −Orthogonalization process 
with respect to the scalar product < ,ݔ ݕ > 

 
It is best in strategic layout, i.e., it 
gives the maximal minimization 

after ݊ step 

It is only an iterative method for any 
initial approximation, it converges 

after many iterations given the 
convergent condition 

 
It keeps tending to the solution  

 
It is more iterative and is based on 

the process of continuous and 
recessive replacement of proves 

results of the iteration and it is less 
matrix and dimensional oriented 

 
It is more sensitive to rounding-off 

error. Therefore, the method is 
continued beyond ݊- iterations. 

IV. CONCLUSION 
In this research, we examined the solutions of three different 

iterative methods for solving systems of linear equations of the 
form ݔܣ = ܾ, where ܣ is a real ݊ × ݊ symmetric and positive 
definite matrix. From the results obtained from the preceding 
sections, it is clear to state that the conjugate gradient method 
produces more exact and efficient solutions in small iterative 
steps than the other two methods (Gauss-Seidel and Jacobi). 
The essential advantage of the conjugate gradient method over 
the other two methods is that it does not require knowledge of 
the boundaries of the spectrum. It also places small demands on 
computer memory when compared to other methods. Since it 
gives the maximal minimization after ݊ step, the conjugate 
Gradient method generally should be adopted for solving 
systems of linear equations of the form ݔܣ = ܾ, where the 
matrix ܣ must be positive definite and symmetric. 
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