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Abstract—In this paper, efforts were made to examine and
compare the algorithmic iterative solutions of conjugate gradient
method as against other methods such as Gauss-Seidel and Jacobi
approaches for solving systems of linear equations of the form Ax = b,
where A is a real n X n symmetric and positive definite matrix. We
performed algorithmic iterative steps and obtained analytical solutions
of a typical 3 X 3 symmetric and positive definite matrix using the three
methods described in this paper (Gauss-Seidel, Jacobi and Conjugate
Gradient methods) respectively. From the results obtained, we
discovered that the Conjugate Gradient method converges faster to
exact solutions in fewer iterative steps than the two other methods
which took much iteration, much time and kept tending to the exact
solutions.
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I. INTRODUCTION

ONJUGATE Gradient method is the most popular iterative

method for solving large systems of linear equations. It is
effective for systems of the form Ax = b where x is an
unknown vector, b is a known vector, and A is a known, square,
symmetric, positive-definite (or positive-indefinite) matrix [1].
It is also an iterative method for first approximation and
converges after a specified number of iterations to produce the
actual solutions. In this approach, the matrix of the system is
not affected in the process of computation as every iteration is
only used in multiplying the resulting vector. The order of
systems of equation that can actually be computed is often high
and it is being ascertained by the amount of arithmetical
information required to stipulate the matrix. Being a direct
iterative method, its arrangement is based on the method of
sequential A — orthogonalization of a set of vectors and is an
ordinary orthogonalization process with respect to the scalar
product {(x,y) = XTAy. if {s;..s,} is an A — orthorgonal
basis of the space, then for any initial approximation x,, the
exact solution x* of the system can be obtained from the
decomposition [2].

(10,5 )
X —xo =X s, a; =
0 Z1—1 7 ST (s )as))

where 1, = b — Ax, is the discrepancy of x;. In the conjugate-
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gradient method, the A-orthogonal wvectors s;..s, are
constructed by A-orthogonalizing the discrepancies 1y ... 7,1 of
the sequence of approximations x; ... X,_4, given by:

(TorSj)
a'}- = .
(sjAsj)

- K
X = Xo + Xj=1 %S,

The vectors 1y ...17,,_1 and s; ... s, constructed in this way
have the following properties:

(rum) =0,i#j; (r,s;)=0, j=1..0 @)

The conjugate-gradient method is now defined by the
following recurrence relations:

( (sp1i-1)
S1 =71y, X;j=Xj_ a;S;, ;g = ————
1 0 i i—-1 + 20 i (spAs) ’
1y =T+ aids;, Si =1+ Bisi (2)
ﬁ- _ _(Ti,ASi>
t (spAsp) "

The process ends at some k < n for which r, = 0. Then,
x* = x,. The convergence point is known by the first
approximation Xx,. It follows from (2) that recurring vectors
Ty ...7; are direct combinations of the vectors 1y, Ay .... A'ry.
However, since the vectors 1y ...7; are orthogonal, r; can only
disappear when the vectors 1y, Ary...A'r, are linearly
dependent. For instance, when there are only i non-zero
components in the decomposition of ry with respect to a basis
of eigenvectors of A. It suffices to show that this can actually
impact on the choice of initial approximation [2].

A.  Systemof Linear Equation

A linear equation in the xy plane can be represented
algebraically by an equation of the form:

a; +a,y=>b

An equation in this kind is called a linear equation in the
variables x and y. In general terms, we can say a linear equation
in n variables x4, X,, ... X, is one that can be written in the form:

1% + ayx, +apx, =b
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where, aq,a, ...a,, and are real constants. In most times, the
variables in a typical linear equation are called the roots of the
linear equations or solution. For instance, a typical system of
linear equations in four unknows is given as:

A11%1 + A12X; + Aq3X3 + Q14X = by
Ap1%1 + AppX5 + Ap3X3 + AgeXy = b,
A31X1 + A32X; + A33X3 + Az4%, = b

It is pertinent to state that the double subscript on the
coefficients of the unknown parameters is often used specify
location of the coefficients in the given systems of equations in
that order.

II. METHODS

A. Gauss-Seidel Method

This is a minor modification of the Jacobi method that often
reduces the number of iterations needed to obtain a given degree
of accuracy. The technique is called Gauss-Seidel iteration or
the method of successive displacements. Gauss-Seidel method
is more appropriate for programming as the successive
approximations do not need to be stored in two separate arrays;
the new values can be overwritten immediately on the old
values [3]; which in turn requires less storage on a computer
and that will be significantly effective in case of huge systems,
for instance when solving for millions of unknowns [4].

x1(n+1) = ai [b1 - a12x2(n) - a13x3(n)]
11
1
xz(n+1) = P [bz - a21x1(n+1) - azaxa(n)]
1
x3(n+1) — E [b3 _ a31x1(n+1) _ agzxz(n+1)]

1 i— .
0 = = [b = BT ayg ™D - ¥, 4 ™) i =

aij J= J
1,2,..,n(3)

In a solved example applying Gauss-Seidel method, given
the system:

3 -1 0 [
-1 2 -1 |xz|= 3
0 -1 3 dlx; 5
Comparing with Ax = b,
[ 3 -1 0 1 [xl
| | | 2
A=|—1 2 —1|x=Isz,b=
Ll
[ 0 -1 3 X3

A is symmetric since ATA. It is also positive definite since
the determinant of every principal sub-matrix is positive i.e.,
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3 -1
=3x)—(-1x—-1)=6—=5
-1 2
Also,
3 -1 -1 -1
3 +1 +0
-1 2 0 3

366-1)+1(-3-0)=15-3 =12

which are all positive. Therefore, the matrix A4 is symmetric and
positive definite. Now applying the Gauss-Seidel algorithm for
a three-by-three matrix we have,

xly =2(2 = (=1)(=0) — (0)(0)) == = 0.66666666
xly = (3 = (~1)(0.66666666) — (=1)(0)) =
1.83333333
(5 — (0)(0.66666666) — (—1)(1.83333333)) =
2.277777778
X%, = %(2 — (=1)(1.83333333) — (0)(2.277777778)) =
1.277777778
X%, = ;(3 — (-1)(1.277777778) —
(—1)(2.277777778)) = 3.277777778
x%; = %(5 - (0)(1.277777778) — (—1)(2.27777778)) =
2.7592595259
231 == (3= (=1))(1.759259259 + 2.759259259) =
3.759259259
x3, = §(5 — (0)(1.759259259) — (—1)(3.759259259)) =
6.2530864197)
x%3 = £(8.759259259) = 291753086
x* = %(3 — (~1)(1.919864197) —
(—=1)(2.919753086)) = 1.919864197
x*, == (7.839617283) = 3.919808642 =
~(7.839617283) = 3.919808642
xty = %(5 —(0)(1.919864197) — (—1)(3.919808642)) =
2.973269547
x5y =3 (2 - (1-1)(3.919808642) —
(0)(2.973269547)) = 1973269547
x5, = (3 - (-1)(1.973269547) —
(—1)(3.919808642)) = 3.973269547
(5 —(0)(1.973269547) — (—1)(3.973269547)) =
2.4991089849
x6, = %(5.973269547) =1.991089849

x6, = %(3 — (~1)(1.991089849) —
(—1)(2.991089849)) = 3.991089849
%65 = (5 — (0)(1.991089849) — (~1)(3.991089849)) =

2.99702995

. 1
xt, =1
373

g _ 1
x5, ==
373
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x7 = %(2 — (—1)(3.991089849) — (0)(2.99702995)) =
1.99702995
x,” = %(3 — (=1)(1.99702995) — (—=1)(2.99702995)) =
3.99702995
x37 = g(s - (0)(1.99702995) — (—1)(3.99702995)) =
2.999009983
x; = 1.99702995,
x, = 3.99702995,
x3 = 2.999009983,
B.  Jacobi Method

The simplest iterative method, which is called Jacobi
iteration or the method of simultaneous displacements, applies
to linear systems of n equations in n unknowns. We suppose
that the system

a, xq +a12x2 + .- +a1nxn = b]_
aAy1Xq +a22x2 + - +a2nxn = bz (4)
AipXy  FapaXy + 0 Fayx, = by

has exactly one solution and that the diagonal entries
aq1, Ao, ... Ay are nonzens. To start, we rewrite (4) by solving
the first equation for x; in terms of the remaining unknowns and
solving the second equation for x, and x3in terms of the
existing unknowns in the nth equation produces:

p— 1 b
X1 = _au( 1= QX — Qq3X3 — = QypXy)
1
X, = —(by — Ap1X1 — Gp3X3 — *** — AppX
2 azz( 2 21%1 23X3 2nXn) (5)
1
X1 = P (bn — Qp1Xq — AppXy — an,n—lxn—l)

examining a solved example applying Jacobi method, given the

system
3 =1 0]* 2
s 2l -fg
0 -1 31X 5

comparing with AX = b

-1 0 X1

2 _1],x=[xz], b=}
-1 3 X3

A is a symmetric since AT = A. It is also positive definitely
since the determinant of every principal sub-matrix is positive
ie.

3
-1
0

A=

|—31 _21| =(Bx2)~(-1x-1)=—6-=5

Also,
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31, F1+ Slro=36-D+1(-3-0)
=15-3=12

which are all positive. Therefore, the matrix A is symmetric and
positive definite.

0
Letx = (0)
0

1t =2(2 = (-1)(0) - (0)(0)) =2 = 0.6666666

5 =1(3 - (-1D(0) - (-1(0) =2=15

2
x5t = §(5 —(0)(0) = (-1)(0)) = 2 = 0.66666667
x,2 = §(2 — (—1)(1.5) — 0(1.66666667)) = 1.66666667
X% = %(3 — (—1)(1.6666666) — (—1)(1.66666667)) =
2.6666666
x3% = g(s — (0)(0)(0.6666666) — (—=1)(1.5)) =
2.16666666
x,3 = §(2 — (—1)(2.6666666) — (0)(2.166666667)) =
oReReRe = 15555556
x,3 = %(3 — (—1)(1.66666667) — (—1)(2.16666667)) =
3.16666685
x33 = §(3 - (0)(1.166666667) — (—1)(2.66666666)) =
2.55555555
0% =2 (2 - (~1)(3.66666685) — (—0)(2.55555555)) =
1.7222222228
Xt = % = (3 — (—1)(1.55555556) —
(=1)(2.55555555)) = 3.555555553
x5t = %(5 — (0)(1.55555556) — (—1)(3.1666666685)) =
2.7222228
x5 = %(2 — (=1)(3.5555555) — (0)(2.7222222228)) =
1.851851852
x,% = %(3 — (-1)(1.722222228) — (—1)(2.7222228)) =
3.7222228
x3° = 5 (5 — (0)(1.722222228) — (~1)(3.555555555)) =
2.851851252
x.% = %(2 — (—1)(3.72222228) — (0)(2.851851252)) =
1.907407427
%,° = 2 (3 — (~1)(1.8511851852) —
(—1)(2.851851882)) = 3.851851852
%3° = (5 — (0)(1.851851852) — (~1)(3.72222228)) =
2.907407427
x, = §(2 — (—1)(3.851851852) — (0)(2.907407427)) =
1.950617284
x,” = 2(3 = (=1)(1.907407427) —
(—1)(1.907407427)) = 3.907407427
%37 = (5 — (0)(1.907407427) — (—1)(3.85185152)) =
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2.950617284
%8 =2 (2 = (=1)(9.907407427) — (0)(2.950617284)) =
1.969135809
x,8 = §(3 — (~1)(1.950617284) —
(-1)(2.950617284)) = 3.950617284
x38 = g(s — (0)(1.950617284) — (—1)(3.907407427)) =
2.969135809
x,° = %(2 — (~1)(3.950617284)) = %(3.950617284) =
1.983539095
x,° == (3 — (~1)(1.969135809) —
(-1)(2.969135809)) = 3.969135809
x3° = %(5 — (0)(1.969135809) — (—1)(3.950617284)) =
2.93539095
2,10 = 2(2 - (~1)(3.969135809) — (0)(2.93539095)) =
1.989711936
%1 = 2(3 — (—1)(1.983539095) —
(—1)(2.983539095)) = 3.983539095
x310 = §(5 —(0)(1.983539095) — (—1)(3.96399177)) =
2.987997257
Xt = §(2 — (—1)(3.983539095) — (0)(2.98799257)) =
1.994513032
x, 1t = §(3 — (—=1)(1.98799257) — (—1)(2.98799257)) =
3.98799257
x3tl = §(5 —(0)(1.98799257) — (—1)(3.983539095)) =
2.994513032
x, 12 = §(2 — (—1)(3.983539095) — (0)(2.994513032)) =
1.99599999919
x,12 = %(3 — (-1)(1.994513032)) = %(7.989026064) =
3.994513032
x31% = 2 (5 — (0)(1.994513032) —
(—1)(3.987997257)) = 2.995999919
13 = 2(2 - (—1)(3.994513032) — (0)(2.99599919)) =
1.998171011
x,13 = %(3 — (~1)(1.995999919) —
(—1)(2.995999919) = 3.995999919
x5! = §(5 —(0)(1.995999919) — (—1)(3.994513032)) =
2.998171011

Therefore,
x; = 1998171011
x, = 3.995999919
x; = 2.99871011

C. Conjugate Gradient

One of the major problems in machine computations is to
find an effective method of solving a system of n simultaneous
equations in N unknowns, particularly if n is large [5]. The
conjugate gradient method solves systems of linear equations
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of the form Ax = b, where A is a real n X n symmetric and
positive definite matrix. This implies that,

AT = Aand xTAx > 0 for x # 0.

Theorem 1. A symmetric matrix A is a positive definite if
and only if all the eigenvalue of A are positive.

Theorem 2. A symmetric matrix 4 is positive definite if and
only if the determinant of every principal sub-matrix is positive.

2 -1 -3
ie, A=|-1 2 4 ]is positive definite since, [2]| =
-3 4 9
s 1 2 -1 -3
2,[ ] =3,]-1 2 4| =1all of which are positive.
-1z -3 4 9

Thus, we are guaranteed that all eigenvalues of A are positive
and x'Ax > 0forall x # 0. The inner-product notation for
real vectors x and y are used in the conjugate gradient method.

(1) =x"y = Xl 5y (6)

1. Algorithm Conjugate Gradient
In this section, we are going to apply the algorithm to solve
the system of linear equation of the form Ax = b is a positive

definite and symmetric matrix; using the conjugate gradient
method (“Algorithm Conjugate Gradient”).

Step 1: Input x°,m, A, b,e
Step2: setr® = b — Ax°
Step 3: Vo =70
Step4: ForK =0,1,2,...,m — 1do, Begin
Step 4a: if V¥ = 0 then stop
Else

Step 4b: set C =< rk,r*, >= (r*)Trk

Step 4c: set

c
e = o

Step de: set x K1 = x(O) 4 ¢, (O
Step 4f: set r**D =70 — ¢, 7
Step 4g: if (||k + kl[),* < X then stop
End do
Step 5:  set

<T(k+k),7"(k+k)>
SK =

C
set YK+ p(ktk) 4 g ()
output k + 1, x(k+K) 5 (k+k)
stop

Step 6:
Step 7:
Step 8:

A solved example applying the conjugate gradient method by
tracing the algorithm with the given matrix system in (7) yields:

3 =1 01[* 2
PN
0 -1 311x3 5
2 0
Step 1: V0 = (3),x° = (O)
5 0
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2 0.886247389 0.067990449
Step 2: VO = (3) = ( 0. 194540507) <0.245300293> =
5 0.237745115 0.006540039
2 0.954237838
Step3: C=VTV =2 3 5)( ) (—0.050759786)
—0.231205075
C = 0.879803181
Step 4: z = [— —1] [ ] [ ] 3 -1 0 0.954237838
12 7= (—1 2 —1> (—0.050759786>
Step 5: t = — 0 -1 3/\-0.231205075
vz vz 5)[ } 2.811953728
., 12 = (—0.621513191)
t=t==—=0603174603 —0.744375011
0 2\ /1.206349206 po_ ¢ 0879803181
x® = (0) + 0.603174603 (3) = (1.809523809) <V,zZ> <V, Z>
0 5 3.015873015 <V,Z >= (0.954237838 0.050759786
2 2 1.809523809 2.811953728
V= (3) —0.603174603 <3> - (—0.603174603) —0.231205075) (—0.621513191)
5 5 3.015873015 —0.744375011
0.194761913 <V,Z >=2.655153109 — 0.031547876 + 0.17210328
4 3.603174603 <V,Z >=2.795708512
—2.238095236 0.879083181
C= (0.1947619130?1.%(1?;16714;?%3 t=—se708512 = 0.314285459
1.699177468 0.954237838
2238095236)( 3262033;07;5620336> x® = < 3.97243339 ) + 0.314285459< 0.050759786 )
= (0.036281179 + 12.9828672197 + 5.009070285) 3'07333%%%3;777468 0_29990_3%'32 1205075
= (18.0287492947) x® = ( 3.97243339 ) ( 0.015953062 )
3.073841637 —0.072664393

1.206349206 1.139318967
@ =11.809523809 | + 0.43256906 ( 5.026438767
3.015873015 0.134011694

1.999080545
3.988386452
0.206349206 0.492828262
x® = (1.809523809) + ( 2.16281953 )

3.001177244

3.015873015 0.057968621 Hence,

L@ = (13;_69979214737343698> %, = 1.999080545,

3.073841637 x, = 3.988386452,

0.190476191 x; = 3.001177244

%4 ( 3.603174603 ) —0.432563906 =

—2.238095236 III. CONVERGENCE
—1.608481866 The Conjugate Gradient method converges faster to the exact
8.779546923 solutions, the Gauss-Seidel and Jacobi method do not always
0.19047_641.8%440368—50,69571198 work. In few cases, the two methods may fail to produce a good
1% ( 3.603174603 ) ( 3.69771511 ) approximation to the solution, regardless of the number of
—2.238095236 —2.000350121 iterations performed. In such cases, the approximations are said

0.886247389 to diverge.
%4 (—0.194540507)
—0.237745115 i1 Qg . Qip
C = (0.886247389 — 0.194540507 A= a?l a22:---- a?n
0.886247389 : : :

— 0.237745115) (—0.194540507> A1 Apz - Qpp
C = 0.785434434 + 0.037846008 +_(§)_ '025367572425713195 _ However, if by performing sufficiently much iteration, the
0.879803181 solution can be obtained to any desired degree of accuracy, the
0.886247389 —1.139318967 approximations are said to converge. We shall now discuss

<_0.194540 507) (w) ( 5.026438767 ) some conditions that ensure convergence. A square matrix
~0.237745115/ U\ 0134011694

0.886247389 —1.139318967 lai1] > lagz| + lags| + - + [agy]
V =(-0.194540507 | + 0.048802005| 5.026438767 lays] > |ay| + lags]| + - + lagy]
—0.237745115 0.134011694 |annl > lans| + @zl + -+ lap(n — 1)]
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is called strictly diagonally dominant, if the absolute value of
each diagonal entry is greater than of the absolute value of the
remaining entries in the same row. That is, if A is strictly
diagonally dominant, then the Gauss-Seidel and Jacobi
approximations to the solution of Ax = b both converge to
exact solutions to the system for all choices of the initial
approximation. In practical problems we are concerned not only
with the convergence of iterative method but also with how fast
they converge; for example, there are linear system in which the
Gauss-Seidel approximation converge, but the convergence is
such that millions of iterations would be required to obtain any
reasonable accuracy. With clever programming, less computer
memory is needed for iterative methods than direct methods.
Thus, if memory space is a problem, iterative methods may be
essential. If the iterative methods diverge or the rate of
convergence is too slow, direct methods may be essential.

A.  Comparisons with Other Methods

TABLEI
DIFFERENCE BETWEEN CONJUGATE GRADIENT, JACOBI AND GAUSS SEIDEL
METHODS
Conjugate Gradient Jacobi and Gauss-Seidel
For any initial approximation, the It is only an iterative method for any
conjugate gradient method initial approximation, it converges
converges after a finite number of after many iterations given the
iterations convergent condition
It gives the exact solution It keeps tending to the solution
As a direct method, its structure is It is more iterative and is based on
based in the process of sequential the process of continuous and
A —Orthogonalization process recessive replacement of proves
with respect to the scalar product results of the iteration and it is less
<xy> matrix and dimensional oriented
It is best in strategic layout, i.e., it It is more sensitive to rounding-off
gives the maximal minimization error. Therefore, the method is
after n step continued beyond n- iterations.

IV. CONCLUSION

In this research, we examined the solutions of three different
iterative methods for solving systems of linear equations of the
form Ax = b, where A is a real n X n symmetric and positive
definite matrix. From the results obtained from the preceding
sections, it is clear to state that the conjugate gradient method
produces more exact and efficient solutions in small iterative
steps than the other two methods (Gauss-Seidel and Jacobi).
The essential advantage of the conjugate gradient method over
the other two methods is that it does not require knowledge of
the boundaries of the spectrum. It also places small demands on
computer memory when compared to other methods. Since it
gives the maximal minimization after n step, the conjugate
Gradient method generally should be adopted for solving
systems of linear equations of the form Ax = b, where the
matrix A must be positive definite and symmetric.
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